
TU Kaiserslautern

Solving Integer Programs using the Algorithm of
Hosten and Sturmfels

Bachelor Thesis in Mathematics

Author Supervisor

Sebastian Muskalla Thomas Markwig

July 15, 2013

Contents 2

Contents

1 Introduction 3

2 Basics of Linear and Integer Optimization 4

3 Monomial Orderings, Reduction and Gröbner Bases 11

4 A generic Algorithm for solving Integer Programs 20

5 Computing IA - The Algorithm of Hosten and Sturmfels 29

Bibliography 43

3

1 Introduction

The goal of this bachelor thesis is to show how one can translate certain integer linear

optimization problems into the language of multivariate polynomials and solve them

using methods from computer algebra.

In the second section I will define the basic notions from optimization, which we will

need to describe the integer programs we look at. I will show how to bring arbitrary

integer programs into a certain form which we will use later to translate them into

algebraic terms. Furthermore, I will cite some results on the complexity of optimization

problems, which will show that solving integer programs efficiently is a task of interest

in modern mathematics.

In the third section we will look at the algorithms for reduction and computing Gröbner

bases, which we will need to solve the optimization problem. We will also see how we

can use the cost function of a linear program to define a monomial ordering. This gives

us the first step in the way to translating our problem.

In the fourth section we will associate the toric ideal IA to the constraint matrix A of

an integer program and see that we can use this ideal to reduce an initial solution of

the integer program to an optimal one, using the algorithms introduced in the previous

section.

The only problem that we are left with is the computation of a Gröbner basis of IA. We

will show in the fifth section general properties of IA which would allow to compute a

Gröbner basis in various ways. Several of the algorithms for different types of integer

programs are described in the diploma thesis of Christine Theis [The99], on which this

bachelor thesis is based.

We will study one of these algorithms in detail, which was introduced by Serkan Hosten

and Bernd Sturmfels in [HS95].

4

2 Basics of Linear and Integer Optimization

In this section, we will define the basic structure of the problems we will later try to

solve. Therefore, I will introduce linear and integer programs and show that we can

bring them into a so called standard form, which will allow us to treat them without

case-by-case analysis.

2.1 Definition: Linear Program
A linear program (LP) is a problem of the following form:

Find a vector x = (x1, ..., xn)T ∈ Rn (for some n ∈ N, n > 0, n <∞) subject to

• a finite amount of equal-constraints of the form:

ai1 ∗ xi1 + ...+ ain ∗ xin = bi for some i ∈ {1, ..., imax},

• a finite amount of less-or-equal-constraints of the form:

aj1 ∗ xj1 + ...+ ajn ∗ xjn ≤ bj for some j ∈ {imax + 1, .., jmax},

• a finite amount of greater-or-equal-constraints of the form:

ak1 ∗ xk1 + ...+ akn ∗ xkn ≥ bk for some k ∈ {jmax + 1, .., kmax = m},

where for all i ∈ {1, ..., n} and j ∈ {1, ..., m}: ai j ∈ R, bj ∈ R

• and some sign-constraints of the form:

xi ≥ 0 for i ∈ S
where S ⊆ {1, ..., n}

such that the objective function value

c1 ∗ x1 + ...+ cn ∗ xn
for some ci ∈ R, i ∈ {1, ..., n} is minimal (respectively maximal).

2.2 Definition: Integer Program
We call a problem an integer program (IP) if it has the same form as described in

definition 2.1, but we only search for integer solution vectors x ∈ Zn and all occurring

coefficients in the constraints are integer: ai j ∈ Z and bj ∈ Z (for all i ∈ {1, ..., n} and

all j ∈ {1, ..., m}).

2.3 Example
Consider the following problem:

Suppose an automaker wants to transport 50 new cars from its production facility to

the city where they should be sold. It can hire a company C1 to transport them for $100

per car or a company C2 to transport them for $80 per car. Due to limited resources,

each company cannot transport more than 40 cars. How should the automaker split the

5

cars among the companies such that the expense is minimal?

This problem can be formulated as integer program as follows:

Find x = (x1, x2)T ∈ Z2 subject to the constraints

x1 ≤ 40,
x2 ≤ 40,
x1 + x2 = 50,

x1, x2 ≥ 0,
such that 100 ∗ x1 + 80 ∗ x2 is minimal,

where x1 corresponds to the number of cars transported by the company C1 and x2 to

the number of cars transported by company C2.

Note that v ′ = (40, 10)T is a feasible solution of the integer program with objective

function value 100 ∗ 40 + 80 ∗ 10 = 4800.

2.4 Definition
Suppose we have a linear program (LP).

We call the components xi ∈ R of the vector x ∈ Rn we are searching for the variables
of (LP).

We call a vector x ∈ Rn a feasible solution for (LP) if the vector fulfills all constraints

of (LP).

For any vector x ∈ Rn exactly one of following properties is true:

• It may not be a solution of (LP): the vector is not a feasible solution of (LP).

• It may be a feasible optimal solution of (LP): the vector is a feasible solution

of (LP) and there is no other vector which is a feasible solution of (LP) and

has a smaller objective function value, if the problem is a minimization problem

(respectively has a bigger objective function value, if the problem is a maximization

problem).

• It may be a feasible but non-optimal solution of (LP): the vector is a feasible solu-

tion of (LP), but there is another feasible solution with a strictly better objective

function value.

The same holds true for integer programs if we replace R by Z.

6

2.5 Definition
Suppose we have a linear program (LP).

Exactly one of following properties is true:

• The program is infeasible: there is no feasible solution (and thus no feasible

optimal solution) for the program.

• The program is unbounded: for each value z ∈ R, there is a feasible solution x

with a better objective function value cT x < z if the program is a minimization

problem (respectively cT x > z if the program is a maximization problem).

• The program is feasible and not unbounded: an optimal feasible solution exists.

The same holds true for integer programs if we replace R by Z.

Note that due to the linearity of the constraints, the value sup{cT x | x is a feasible solution }
will always be taken if the program is neither infeasible nor unbounded for some x∗ ∈ Rn,

so the statement is indeed true.

2.6 Definition: Standard Form
We say that a given linear program (LP) is in standard form if

• there are no less-or-equal- and greater-or-equal-constraints in (LP),

• all variables are sign-constrained (that means S = {1, ..., n} in definition 2.1) and

• (LP) is a minimization problem.

By using the definition of matrix multiplication, we may combine the constraint coef-

ficients ai j to a matrix A = (ai j) ∈ Rmxn respectively the right-hand-sides of the con-

straints and objective function coefficients bj and ci to vectors b = (b1, ..., bm) ∈ Rm

and c = (c1, ..., cn) ∈ Rn.

Hence, we can write (LP) in the following form:

min cT x

s.t. Ax = b

x ≥ 0

We say that a given inter program (IP) is in standard form if the same properties hold

true, where b ∈ Zm, A ∈ Zmxn.

7

2.7 Theorem
For every linear program (LP) (respectively integer program (IP)), there is a linear

program (LP’) (respectively integer program (IP’)) in standard form with an equivalent

solution.

Proof & Algorithm:
In the case of a linear program (LP):

• If we maximize the objective function value in (LP), we minimize it in (LP’) and

use −c instead of c as coefficient vector.

If x∗ was an optimal feasible solution of (LP), there is no x with cT x > cT x∗.

This is equivalent to there is no x with −cT x < −cT x∗

If we already minimize in (LP), take c from (LP) without change.

• Take all equal-constraints from (LP) without change.

• For each less-or-equal-constraint j ∈ {imax+1, .., jmax} , add a surplus variable xn+j
with objective function coefficient 0 to (LP’) and replace the original constraint

aj1 ∗ xj1 + ...+ ajn ∗ xjn ≤ bj by

aj1 ∗ xj1 + ...+ ajn ∗ xjn + xn+j = bj

Add a sign-constraint for the new surplus variable: xn+j ≥ 0.

Since they have coefficient 0, the value of xn+j in an optimal solution of (LP’)

will be exactly bj − A.jx∗ (which is non-negative since we had a less-or-equal-

constraint) where x∗ is an optimal solution of (LP).

• For each greater-or-equal-constraint k ∈ {jmax+1, .., m}, add a slack variable xn+k
with objective function coefficient 0 to (LP’) and replace the original constraint

ak1 ∗ xk1 + ...+ akn ∗ xkn ≥ bk by

ak1 ∗ xk1 + ...+ akn ∗ xkn − xn+k = bk

Add a sign-constraint for the new slack variable: xn+k ≥ 0.

With the same argumentation as above, these variables won’t influence optimality.

• Take all sign-constraints from (LP) without change.

8

• Every variable xi which is not sign-constrained in (LP) (that means i /∈ S) is re-

placed by the variables x+i and x−i . Every occurrence of xi in the objective function

and constraints is replace by x+i − x−i .

The new variables should both by sign-constrained: x+i ≥ 0, x−i ≥ 0

(LP’) is feasible (respectively unbounded) if and only if (LP) was feasible (respectively

unbounded).

To get an feasible solution x of (LP) given a feasible solution y of (LP’), set xi = yi
for i ∈ S and xi = y+i − y−i for i /∈ S. If y was an optimal feasible solution, x will be

an optimal feasible solution. The components of y corresponding to surplus or slack

variables can be omitted.

If we replace (LP) by (IP) and (LP’) by (IP’), we get a proof for the integer case, since

the coefficients of the new variables in the constraints are integer.

2.8 Remark
Note that if (LP) is in standard form with c ≥ 0 component-wise, (LP) cannot be

unbounded since no feasible solution can produce a smaller objective function value

than 0. Therefore, (LP) has an optimal solution if and only if it has a feasible solution

at all.

2.9 Example
The integer program from example 2.3 is equivalent to the integer program

(IP) = min cx s.t. Ax = b, x ≥ 0 in standard form with

c = (100, 80, 0, 0)T ,

A =

1 0 1 0

0 1 0 1

1 1 0 0

 ,
b = (40, 40, 50)T

we get by introducing slack variables x3, x4 to transform the less-or-equal-constraints to

equal-constraints.

9

Note that the initial solution v ′ given in example 2.3 corresponds to the feasible solution

v = (40, 10, 0, 30)T of (IP).

In the rest of this thesis, we will assume that (IP) is a feasible and not unbounded

integer program given in standard form.

In the following remarks, I will cite some results on the complexity of optimization

problems. This will show that there is currently no known good algorithm for solving

integer programs (in contrast to linear optimization, which can be solved efficiently).

2.10 Remark
Although the Simplex algorithm is commonly used for solving linear programs in prac-

tice, it may take up to
(
n
m

)
iterations to solve a linear program in standard form with

n variables and m constraints, since in the worst case, it iterates through all basis so-

lutions (vectors such that only m out of n components are nonzero). For an example,

see [KM72, pp. 159-175].

Karmarkar’s algorithm can solve linear programs in a certain form in polynomial time,

see [Kar84, p. 373-395] and has thus a better worst-case-complexity, but since the

Simplex algorithm is better in the average case, it is not commonly used in practice.

2.11 Example
The following example shows, that rounding an optimal feasible solution of a linear

program with integer coefficients does not necessarily give an optimal or even feasible

solution of the corresponding integer program.

Consider the linear program (LP) in standard form given by the objective function

coefficient vector

c = (−1,−3, 0, 0)T ,

the constraint matrix

A =

(
1 6 1 0

1 0 0 1

)
,

and the right-hand side vector

b = (12, 2)T .

Using methods from optimization, we can check, that x (LP) = (2, 5
3
, 0, 0)T is an optimal

feasible solution with objective function value cT x (LP) = −7.

10

If we consider the integer program (IP) given by the same matrix and vectors, we can

easily see that that the vector xup = (2, 2, 0, 0)T we get by rounding x (LP) component-

wise is not feasible since 1 ∗ 2 + 6 ∗ 2 + 1 ∗ 0 + 0 ∗ 0 = 14 6= 12.

Note that the third and fourth variable of the (IP) are surplus variables as in the proof

of 2.7. The vector xdown = (2, 1, 4, 0)T we get by rounding the second component

of x (LP) down and assigning a suitable value to the first surplus variable is a feasible

solution with objective function value cT xdown = −5.

The feasible solution x (IP) = (0, 2, 0, 2)T has objective function value cT x (IP) = −6, so

xdown is not optimal. (One could check that x (IP) is in fact an optimal solution.)

2.12 Remark
Solving integer programs is a so-called NP-complete problem. (For further information

and a proof, see [Kar72, p. 95ff]). That is: if we had a computer, that could "guess" the

optimal solution (a non-deterministic Turing machine), we could verify its optimality in

polynomial time, but there is currently no known algorithm for solving any NP-complete

problem on a real computer (a deterministic Turing machine) in polynomial time.

11

3 Monomial Orderings, Reduction and Gröbner Bases

Before we can actually try to translate our problem into the language of multivariate

polynomials, we will have to introduce several notions and algorithms from computer

algebra, which we will need later for solving integer programs.

I will omit some proofs on details in this section, they can be found in any book or

lecture notes on computer algebra (for example [Bö]).

3.1 Notation
By

K[t] = K[t1, ..., tn] =
{ ∑
α∈Nn

cα ∗ tα| only finitely many cα 6= 0
}

we define the polynomial ring over a field K in n > 0 independent variables.

If I is an ideal generated by f1, ..., fn in K[t], we write 〈f1, ..., fn〉 = I ⊆ K[t].

We call a vector w ∈ Rn a weight vector and define for any f =
∑
α

cαt
α, f 6= 0, f ∈ K[t]

degw(f) = max{wTα|cα 6= 0}

the weighted degree with respect to w .

If we write just deg, we mean the weighted degree with respect to the weight vector

w = (1, 1, ..., 1).

If we write degti , we mean the weighted degree with respect to the i th unit vector ei .

In the following, we will always suppose, that K is any field of characteristic 0.

If we try to generalize algorithms (like polynomial division with remainder) for the poly-

nomial ring in one variable to multivariate polynomials, we notice that these use the

notation of leading coefficient and leading monomial which are naturally defined for

K[t] but not for K[t] if n > 1.

Therefore, we define:

3.2 Definition: Monomial Ordering
> is called a monomial ordering on K[t] if > is a homogeneous relation on the mono-

mials of K[t], which fulfills the following properties:

• For monomials tα and tβ exactly one of the following statements is true:

tα > tβ, tα < tβ, tα = tβ (In particular: > is total.)

12

• > is transitive: If tα > tβ and tβ > tγ, then tα > tγ

• > respects multiplication:

If tα > tβ, then for any monomial tγ it holds: tα ∗ tγ = tα+γ > tβ+γ = tβ ∗ tγ

Given a monomial ordering >, we can define the usual notions as follows.

Given any f =
∑
α

cαt
α, f 6= 0, f ∈ K[t], we set:

LM>(f) = max>{tα|cα 6= 0}

the leading monomial,

LC>(f) = cα such that tα = LM(f)

the leading coefficient and

LT>(f) = LC(f) ∗ LT(f)

the leading term of f .

If > is clearly defined by the context, we omit the subscript.

3.3 Definition & Proposition
We say that a monomial ordering > is global if it fulfills any of the following equivalent

properties:

a) All variables are bigger than the constant monomial, i.e.

for all i ∈ {1, ..., n}: ti > 1 = t0.

b) All non-constant monomials are bigger than the constant monomial, i.e.

for all α ∈ Nn, α 6= 0: tα > 1.

c) > is compatible with divisibility, i.e.

if tα|tβ (that is α ≥ β component-wise) and α 6= β, then tα > tβ.

d) > is a well-ordering, i.e.

every non-empty set of monomials has a smallest element.

Proof of equivalency:

a) => b)

Induction on k = deg(tα).

k = 1: By assumption.

k > 1: Choose i such that αi 6= 0. We have tα−ei > 1 by induction, thus tα > tei

by compatibility with multiplication. Since tei > 1, tα > 1 follows by transitivity.

13

b) => c)

Suppose α ≥ β component-wise and α 6= β, set γ = α− β 6= 0. We have tγ > 1

by assumption, so by compatibility with multiplication, tα = tγ+β > tβ follows.

c) => d)

We can prove this by showing that there are only finitely many elements which

are minimal with respect to divisibility in every non-empty set of monomials. For

a detailed proof, see [Bö, p. 40f].

d) => a)

Set S = {t ji |j ∈ N} for any i ∈ {1, ..., n}. By assumption, this set has a minimal

element tki . Suppose this element would not be 1 = t0i . Then we have tki < 1

(since 1 divides any ti and is not the smallest element) and thus by compatibility

with multiplication t2ki < t
k
i . This is a contradiction to the choice of tki as smallest

element. So for every variable,t0i = 1 is the smallest element in the set.

3.4 Example
The degree reverse lexicographical ordering >dp defined by

tα >dp t
β :⇔ deg(tα) > deg(tβ)

or (degrees equal and rightmost non-zero entry of α− β is negative)

is a global monomial ordering.

3.5 Example
Suppose ti1 < ... < tin < 1 is an ordering of the variables of K[t] with {i1, ..., in} =
{1, ..., n}. Then the local reverse lexicographic ordering >ls with respect to this

ordering defined by

tα >ls t
β :⇔ degtik (t

α) = degtik
(tβ) for k = 1, ..., r − 1 and degtir (t

α) < degtir (t
β)

is a local monomial ordering (that is: 1 >ls ti for all i ∈ {1, ..., n}, in particular >ls is

not global).

3.6 Remark
Note that the monomials of K[t] (with the multiplication of polynomials) are isomorphic

to Nn (with component-wise addition) as semi-groups via the map tα 7→ α.

Therefore, any monomial ordering > induces an ordering of vectors in Nn with the same

properties (if we replace the multiplication of monomials by the addition of vectors),

which we will also call >.

3.7 Example
Note that any vector w ∈ Rn gives a partial ordering on the monomials of K[t] by

setting tα >w tβ :⇔ wTα >R w
Tβ.

14

If we choose any monomial ordering > as tie-break, we get an induced monomial or-

dering >w :

tα >w t
β :⇔ (wTα >R w

Tβ) or (wTα = wTβ and tα > tβ)

(The first two properties of a monomial ordering are induced by the orderings >R and

>. The compatibility with multiplication is given since > is compatible and if we multiply

both sides with some tγ, their value increases by the constant wTγ.)

Note that if w > 0 component-wise, >w is global, even if we choose a non-global

tie-break (like >ls): wT0 = 0 and for any non-constant monomial tα 6= 1, wTα has a

positve value.

If w ≥ 0 component-wise, >w is global if for all i with wi = 0, xi > 0 holds (where > is

the chosen tie-break). This is for example the case if the tie-break is a global ordering

(like >dp).

3.8 Definition
Let (IP) = min cx s.t. Ax = b, x ≥ 0 be an integer program. We say that a monomial

ordering > is compatible to (IP) if tv > tu for all v , u ∈ Nn with cT v > cTu and

Av = Au = b.

3.9 Example
Let (IP) = min cx s.t. Ax = b, x ≥ 0 be an integer program, then any monomial order-

ing >c induced by c with an arbitrary monomial ordering as tie-break (as in example 3.7)

is compatible with (IP), since tv >c tu holds for all v , u ∈ Nn with cT v > cTu.

Note that this monomial ordering may not be global, as shown above.

With this knowledge, we can take the first step in translating our optimization problem

into an algebraic one:

3.10 Theorem
Let (IP) be an integer program in standard form and > a monomial ordering compatible

to (IP).

If the monomial tx ∈ K[t] is minimal with respect to > among those ty with Ay = b,

then x is an optimal feasible solution for (IP).

Proof:
Since (IP) is in standard form, all variables are sign-constrained. Therefore, we loose

15

nothing by the restriction to monomials with exponent vectors y ≥ 0 component-wise.

Suppose there is a feasible solution y with cT y < cT x , then ty < tx by the compatibility

of the monomial ordering, so tx was not minimal with respect to >.

Note that there may be several optimal feasible solutions with the same objective func-

tion value, but our monomial ordering will favor one of the corresponding monomials.

Since it is sufficient to find one arbitrary optimal feasible solution, the following theorem

makes sense.

3.11 Corollary
With the same setup as in theorem 3.10, we can reformulate our optimization problem

(IP) as

min
x∈Nn
{tx |Ax = b}.

Using the notion of a monomial ordering, we can generalize polynomial division to

multivariate polynomials.

3.12 Algorithm: Reduced Buchberger Normal Form
Input:
f ∈ K[t],
G finite set of non-zero polynomials in K[t],

> global monomial ordering.

Output:
redNF>(f , G), the reduced Buchberger normal form of f with respect to G and >.

1 r := 0

2 while f 6= 0 do
3 if LM(f) divisible by LM(g) for some g ∈ G then
4 f := f − LT(f)

LT(g)
∗ g

5 else
6 r := r + LT(f)

7 f := f − LT(f)
8 end

9 end
10 return r

Proof of termination:
LM(f) gets smaller in every step with respect to >, so the algorithm terminates after

finitely many steps, since > is global (see definition 3.3).

16

3.13 Definition: Leading Ideal
For G ⊆ K[t] and a monomial ordering > define

L(G) = L>(G) = 〈LM(f) | f ∈ G〉

the leading ideal of G with respect to >.

3.14 Proposition
For f , G and > as in the input of algorithm 3.12, r = redNF>(f , G) fulfills the following

properties:

a) If r 6= 0, then LM(r) 6∈ L(G).

b) r is tail-reduced: no term in tail(r) = r − LT(r) is in L(G).

Proof:

a)

Suppose r 6= 0, LM(r) ∈ L(G). Since membership can be decided by division in

ideals generated by monomials and L(G) is generated by the leading monomials

of the g ∈ G, LM(r) would be divisible by LM(g) for some g ∈ G.

This is a contradiction, because in this situation, the term LM(r) of f would not

be put in the remainder, but canceled out in the algorithm.

b)

If some term would be in L(G), it would be divisible by some g ∈ G. Then the

term of f would not by put into the remainder, but canceled out in the algorithm.

3.15 Example
For f = t1 and G = {t1t2 + t1, t2}, we get (using >dp from example 3.4):

redNF(f , G) = t1.

Note that f = 1 ∗ (t1t2 + t1) + (−t1) ∗ (t2), so we get a non-zero remainder altough

f ∈ 〈G〉. This occurs since t1 ∈ L(〈G〉) but t1 6∈ L(G).

3.16 Example
Consider the global monomial ordering >c induced by the vector c = (100, 80, 0, 0)T

with >dp as tie-break.

Let f = tv = t401 t
10
2 t
30
4 with v = (40, 10, 0, 30)T from example 2.9 and

G = {t1t4 − t2t3}.
We get redNF(f , G) = t101 t

40
2 t
30
3 .

17

3.17 Definition: Gröbner Basis
Let I ⊆ K[t] be an ideal and > a global monomial ordering.

We call a finite set G ⊆ I Gröbner basis of I (with respect to >) if L(G) = L(I).

We call a Gröbner basis G minimal if there are no two elements f 6= g in G such that

LT (f) divides LT (g).

We call a minimal Gröbner basis G reduced, if for all g ∈ G:

• LC(g) = 1 and

• no term of tail(g) = g − LT (g) is in L(G).

3.18 Theorem
Let I ⊂ K[t] be an ideal and > a global monomial ordering. Then there exists a reduced

Gröbner basis for I with respect to >.

Proof:
L(I) is a monomial ideal in K[t] and thus has finitely many monomial generators since

K[t] is noetherian (by Hilbert’s Basis Theorem and results on monomial ideals, see [Bö,

p. 31f resp. p. 41]). By definition of L(I), there are polynomials g ∈ I, such that these

generators are their leading monomials. These g form a Gröbner basis G of I.

If the leading monomial of g ∈ G divides the leading monomial of some f ∈ G, we have

〈LM(f)〉 ⊆ 〈LM(g)〉, so we can remove f from G without changing the leading ideal.

If we remove all such elements, we get a minimal Gröbner basis.

We normalize every g by dividing by LC(g). If we replace every g by redNF(g, G\{g}),
one gets a reduced Gröbner basis, since the reduced Buchberger normal form is tail-

reduced with respect to G\{g} (and that no term of tail(g) is divisible by LM(g) is

clear since > is a global monomial ordering and thus compatible with divisibility).

3.19 Remark
One can show that the reduced Gröbner basis of some ideal I ⊆ K[t] is uniquely

determined by I and >, see [Bö, p. 55]. Therefore, it is correct to speak of "the"

reduced Gröbner basis of I with respect to >.

3.20 Remark
Note that a Gröbner basis G of an ideal I ⊆ K[t] is always a set of generators, that is

〈G〉 = I, as proven in [Bö, p. 49]

18

3.21 Definition
Given monomials tα, tβ ∈ K[t], we may define γ ∈ Nn by γi = max{αi , βi} and call

lcm(tα, tβ) = tγ the least common multiple of tα and tβ.

We call tα and tβ coprime if lcm(tα, tβ) = tα ∗ tβ

3.22 Algorithm: Buchberger
Input:
I = 〈g1, ..., gk〉 ⊆ K[t] ideal,

> global monomial ordering.

Output:
G Gröbner basis of I with respect to >.

1 G = {g1, ..., gk}
2 repeat
3 H := G

4 forall f , g ∈ H do
5 spoly(f , g) := lcm(LM(f),LM(g))

LT(f)
f − lcm(LM(f),LM(g))

LT(g)
g

6 r := redNF(spoly(f , g), H)

7 if r 6= 0 then
8 G := G ∪ {r}
9 end

10 end

11 until G = H;

12 return G

Proof of termination:
Suppose we add some r 6= 0 to G during the algorithm. By the properties of the normal

form from proposition 3.14, we have LM(r) 6∈ L(H), hence L(H) ⫋ L(H ∪ {r}).

That means every time we add an element to G, we increase its leading ideal. This gives

an ascending chain of ideals, which has to stop since K[t] is noetherian. Therefore, the

algorithm terminates after finitely many steps.

Proof of correctness:
One may show, that 〈G〉 = I and redNF(spoly(f , g), G) = 0 for all f , g ∈ G is an

equivalent condition for being a Gröbner basis. For a proof, see [Bö, p. 148f].

3.23 Example
Suppose I = 〈f 〉 ⊆ K[t] is a principal ideal. Then G =

{
f

LC(f)

}
is a reduced Gröbner

19

basis of I with respect to any global monomial ordering by definition.

20

4 A generic Algorithm for solving Integer Programs

In this section, we will associate an ideal to the constraint matrix and then show that

this ideal (respectively its reduced Gröbner basis) has nice properties, which allow us to

reduce any feasible solution of an integer program to an optimal one.

Since this ideal is spanned by binomials, we will at first look at such polynomials.

4.1 Definition
Suppose x ∈ Zn, then we define x+ and x− ∈ Nn by

x+i =

{
0 , xi ≤ 0,
xi , xi ≥ 0,

respectively

x−i =

{
−xi , xi ≤ 0,
0 , xi ≥ 0.

4.2 Definition: Pure and Primitive Binomials
Suppose f ∈ K[t]. We call f a binomial if it is of the form f = atu + btv for some

a, b ∈ K, u, v ∈ Nn.

We call f a pure binomial if f is a binomial and a = 1, b = −1, that is: f = tu − tv .

We call f a primitive binomial if f is a pure binomial and tu and tv are coprime.

As the following lemma shows, definition 4.2 and 4.1 define indeed the same thing.

4.3 Lemma

a) For any x ∈ Zn, x+ and x− are the unique vectors in Nn with x = x+ − x− and

x+i ∗ x−i = 0 for all i ∈ {1, ..., n}.

b) f ∈ K[t] is a primitve binomial if and only if there is an x ∈ Zn with f = tx
+−tx−.

Proof:

a)

By definition, it is clear that x+ and x− have the desired properties.

Suppose u, v would have these properties, too. Then for each component, xi =

ui − vi and at least one of them is zero. It follows that ui = xi = x+i if xi ≥ 0 and

vi = −xi = x−i if xi ≤ 0 and the other one is zero.

b) "=>"

Suppose f = tu − tv is a primitive binomial. Set x = u − v . Since tu and tv

are coprime, ui ∗ vi = 0 for all i ∈ {1, ..., n}. Using a), we get that u = x+

and v = x−.

21

"<="

Suppose that f = tx
+ − tx−. Since x+i ∗ x−i = 0 for all i ∈ {1, ..., n}, tx+ and

tx
−

are coprime. Thus, f is a primitive binomial.

The following proposition will show, that at least pure binomials behave well with respect

to the algorithms introduced in the third section.

4.4 Proposition
Let f ∈ K[t], G ⊂ K[t] a finite set, > a global monomial ordering.

a) If f = tx is a monomial and G is a finite set of pure binomials, then redNF(f , G)

is a monomial.

b) If f = tu − tv is a pure binomial and G is a finite set of pure binomials, then

redNF(f , G) is a pure binomial.

c) If G is a finite set of pure binomials, then 〈G〉 has a (minimal / reduced) Gröbner

basis consisting of pure binomials.

Proof:

a)

Suppose f = tx , g = tu− tv and we are in the if-case of algorithm 3.12. Suppose

LT(g) = tu divides f . Then the next step will set

new f = f − LT(f)
LT(g)

∗ g
= tx − tx

tu
(tu − tv)

= tx − tx−u ∗ (tu − tv)
= tx − tx−u+u + tx−u+v

= tx−u+v .

With the same argument, we get for LT(g) = −tv dividing f , that new f = tx−v+u.

Thus, we replace the monomial f in each if-step by another monomial. As soon

as the else-step occurs, the algorithm will terminate with a monomial as output

since LT(f) = f .

b)

Suppose f = tx − ty , g = tu − tv and we are in the if-case of algorithm 3.12.

Case LT(f) = tx ,LT(g) = tu:

new f = f − LT(f)
LT(g)

∗ g
= tx − ty − tx

tu
(tu − tv)

= tx − ty − tx−u ∗ (tu − tv)

22

= tx − ty − tx−u+u + tx−u+v

= tx−u+v − ty .
Analogously:

Case LT(f) = tx ,LT(g) = −tv : new f = tx−v+u − ty .
Case LT(f) = −ty ,LT(g) = tu: new f = tx − ty−u+v .
Case LT(f) = −ty ,LT(g) = −tv : new f = tx − ty+u−v .
So as long as we stay in the if-step, we will always get pure binomials. When we

enter the else-step for the first time (after having subtracted some monomial),

we continue with a monomial which means we are in the case of a). (By replacing

tx by −tx in the proof of a), we see that even if we start with a signed monomial,

the algorithm preserves this sign). By adding these two monomials up, we see

that redNF(f , G) is a pure binomial.

c)

Suppose f = tx − ty , g = tu − tv . We compute spoly(f , g) as in algorithm 3.22.

In the case LT(f) = tx ,LT(g) = tu, we get

spoly(f , g) = lcm(LM(f),LM(g))
LT(f)

f − lcm(LM(f),LM(g))
LT(g)

g

= lcm(tx ,tu)
tx

(tx − ty)− lcm(tx ,tu)
tu

(tu − tv)
= lcm(tx , tu)− lcm(tx ,tu)

tx
ty − lcm(tx , tu) + lcm(tx ,tu)

tu
tv

= lcm(tx ,tu)
tu

tv − lcm(tx ,tu)
tx

ty

which is a pure binomial.

Analogously, we see that we get a pure binomial in the other cases too, since the

parts corresponding to the lead terms of each binomial cancel out.

With the statement from b), we get that if we start with a set of pure binomi-

als, we get a Gröbner basis consisting of pure binomials by applying algorithm 3.22.

If we omit elements to minimize the Gröbner basis as in the proof of thereom 3.18,

this stays true, so we can also get a minimal Gröbner basis consisting of such bi-

nomials.

By normalizing, we may switch the signs of the terms, but the binomials stay in

the required form. We already know from b) that applying the reduction-algorithm

will give us pure binomials, so we also have a reduced Gröbner basis consisting of

such binomials.

4.5 Example
For f = t31 − t22 and G = {t21 − t2}, we get (using >dp from example 3.4):

redNF(f , G) = t1t2 − t22 .

23

So even if we start with primitive binomials, the algorithms may not preserve the co-

primeness. We will get pure binomials, but there are cases in which they are not primitive.

We will see, that our further progress on the way to represent the optimization problem

as an algebraic one will give us an example for an ideal generated by primitive binomials

where the reduced Gröbner basis consists of primitive binomials, too.

4.6 Definition: Lattice
A Z-Module is called lattice if it is free and finitely generated (that means, it has a

finite basis).

We call such a finite basis a lattice basis for the lattice.

4.7 Example
Suppose A ∈ Zmxn is a matrix with integer entries. Then

Ker(A) = {x ∈ Zn|Ax = 0} ⊆ Zn

is a Z-submodule of Zn (Proof as for Ker(A) ⊆ Kn subvectorspace).

Since Zn is noetherian (see [Mar, p. 59]), Ker(A) is finitely generated. As a finitely

generated torsion-free module over the principal ideal domain Z, it is free (see [Bö, p.

103]). Therefore, Ker(A) is a lattice.

4.8 Remark
Every lattice has a finite basis by definition, but on our way to compute an optimal

solution for integer optimization problems, we will need a way to compute it.

This task can be done in polynomial time using the LLL algorithm, see [LLL82, p.

515-534].

4.9 Definition: Toric Ideal associated to A
Suppose A ∈ Zmxn is a matrix with integer entries. Then we define the ideal IA by

IA = 〈tx
+ − tx− |x ∈ Ker(A)〉 ⊆ K[t]

and call it the toric ideal associated to A.

As we can see, the ideal is generated by (in general) infinitely many primitive binomials.

Note that it is not immediately clear how to compute IA, but we are able to compute

IA0 = 〈tx
+ − tx− |x ∈ U〉 ⊆ K[t]

where U ⊂ Zn is a lattice basis for Ker(A) (which we may compute using the LLL

algorithm from the remark above).

Since those ideals may differ and we really need IA for the final algorithm, we will study

later how to compute IA from IA0.

24

4.10 Example
Let A = 1n ∈ Znxn be the unit matrix of rank n.

Obviously, Ker(A) = 0, so IA = 〈t0 − t0〉 = 〈0〉.

4.11 Example
One can check using the LLL algorithm that the kernel of the constraint matrix A of

the integer program in standard form from example 2.9 is spanned by the vector

x = (1,−1,−1, 1)T .

Therefor, we can compute at least

IA0 = 〈tx
+ − tx−〉 = 〈t(1,0,0,1)T − t(0,1,1,0)T 〉 = 〈t1t4 − t2t3〉.

As the following lemma shows, IA arises in a natural way if we want to translate the

kernel of an integer matrix into algebraic terms.

4.12 Lemma
Let A ∈ Zmxn, x ∈ Zn

a) Define

ϕ : K[t]→ K[s1, s−11 , ..., sm, s−1m]

ti 7→ sai

as the K-algebra homomorphism which sends the i th Variable ti to sai , where ai
is the i th column of A.

Then: IA = Ker(ϕ)

b) x ∈ Ker(A)⇔ tx+ − tx− ∈ IA

Proof:

a) "⊆"

Let x ∈ Ker(A), then

0 =
m∑
j=1

xjaj =
m∑
j=1

x+j aj −
m∑
j=1

x−j aj , so
m∑
j=1

x+j aj =
m∑
j=1

x−j aj .

Thus: ϕ(tx
+ − tx−) = s

m∑
j=1

x+j aj − s
m∑
j=1

x−j aj
= 0.

Since IA is generated by all tx
+−tx− where x ∈ Ker(A), IA ⊆ Ker(ϕ) follows.

25

"⊇"

Suppose Ker(ϕ)\IA is nonempty. Choose any global monomial ordering >

and choose f ∈ Ker(ϕ)\IA with LT(f) = LM(f) = tx minimal with respect

to > for some x ∈ Zn, x 6= 0. (This is possible since for any

g ∈ Ker(ϕ)\IA, g
LC(g)

∈ Ker(ϕ)\IA, too.)

Since ϕ sends monomials to monomials and K-linear combinations of differ-

ent monomials are never zero, it follows from ϕ(f) = 0 that there is another

monomial tv in tail(f) with ϕ(tx) = ϕ(tv).

In particular we have : f ′ = f − tx − tv ∈ Ker(ϕ) (since the images of the

monomials cancel each other out) and tx − tv ∈ Ker(ϕ) (since Ker(ϕ) is an

ideal).

We know ϕ(tx − tv) = s
m∑
j=1

xjaj
− s

m∑
j=1

vjaj
= 0, thus

m∑
j=1

xjaj =
m∑
j=1

vjaj , so x − v

is in Ker(A), tx − tv ∈ IA (Compare with "⊆").

Since f 6∈ IA and tx − tv ∈ IA, their difference f ′ 6∈ IA. We have LM(f ′) <

LM(f) (since we canceled out the original leading monomial), which is a

contradiction to the choice of f .

b) "=>"

Follows directly from the definition of IA.

"<="

Suppose tx
+ − tx− is in IA, then ϕ(tx

+ − tx−) = s
m∑
j=1

x+j aj − s
m∑
j=1

x−j aj
= 0, thus

m∑
j=1

x+j aj =
m∑
j=1

x−j aj , so x+ − x− = x is in Ker(A).

In the following part, we want to show the correspondence between IA and the solution

of the optimization problem. As you may have noted, the definition of IA does not use

the right-hand side b of the equation Ax = b, which is defining the space of feasible

solutions of an integer program.

Indeed, we can generalize our problem to solving families of linear programs where b is

variable.

4.13 Definition: Test Set
Suppose A ∈ Zmxn, c ∈ Rn≥0. Then

IPA,c = {IPA,c(b)|b ∈ Zm} = {min cT x s.t. Ax = b, x ≥ 0|b ∈ Zm}

26

is the family of linear programs given by A and c .

Let >c be a global monomial ordering with tx > ty for x, y with cT x > cT y (which

then also induces an ordering >c of the vectors in Nn as in remark 3.6).

We call a finite set X ⊆ {x ∈ Zn|Ax = 0, x+ >c x−} a test set for IPA,c if it fulfills the

following properties:

• Suppose v is a feasible solution for some IPA,c(b), but not the solution such that

its corresponding monomial is minimal with respect to >c among the feasible ones

(see theorem 3.10 and corollary 3.11). Then there is an x ∈ X such that v − x is

also a feasible solution of IPA,c(b).

• Suppose v ∗ is the feasible solution of some IPA,c(b) such that its corresponding

monomial is minimal among the feasible ones (in particular: v ∗ is an optimal

feasible solution). Then there is no x ∈ X such that v ∗ − x is a feasible solution

of IPA,c(b).

As the name suggests, we can indeed check optimality using test sets: for a feasible

solution v , there is either no x ∈ X with v − x feasible (thus: v is optimal), or there is

such an x and we can replace v by v − x and iterate.

In the next step, we want to show that the toric ideal IA associated to the constraint

matrix of an integer program gives us a test set. Therefore, we need the following

statement, which we will prove later in the next section, where we will show how to

compute IA.

4.14 Assumption
Let A ∈ Zmxn, > any global monomial ordering. Then the reduced Gröbner basis of IA
with respect to > consists of primitive binomials.

4.15 Theorem
Suppose A ∈ Zmxn, c ∈ Rn, >c a global monomial ordering with cTα > cTβ ⇒
tα >c t

β (in particular: c ≥ 0 component-wise, compare with example 3.7). Suppose

G = {tx+i − tx−i |i ∈ {1, ..., k}} is the reduced Gröbner basis of IA with respect to >c .

Then the exponent vectors X = {xi |i ∈ {1, ..., k}} form a test set for IPA,c .

Proof:
Under the assumption 4.14, the reduced Gröbner basis of IA is indeed in the given form,

as we have shown in 4.3.

27

A Gröbner basis is a finite set by definition, therefore X too.

We have shown in lemma 4.12 that the x ∈ X are in Ker(A), so Ax = 0 is fulfilled.

We have LM(tx
+
i − tx−i) = tx+i , since the elements of the reduced Gröbner basis are

monic. Hence, x+i >c x
−
i .

• Suppose v is a feasible solution for some IPA,c(b), but not the exponent vector

of the solution described in 3.11.

Suppose v ∗ is this optimal solution of IPA,c(b).

By A(v − v ∗) = Av − Av ∗ = b − b = 0, we see that y = (v − v ∗) ∈ Ker(A), so

with 4.12, we have ty
+ − ty− ∈ IA.

Since v ∗ <c v , we have LT(ty
+ − ty−) = ty+.

Since L(G) spans the leading ideal of IA, there is an x in X such that LT(tx
+ −

tx
−
) = tx

+
divides LT(ty

+ − ty−) = ty+, that is x+ ≤ y+ component-wise.

We get x+ ≤ y+ = (v − v ∗)+ ≤ v+ = v since v , v ∗ ≥ 0 as feasible solutions, so

v − x = (v − x+) + x− ≥ 0.
Since Av = b and Ax = 0 (since x ∈ Ker(A)), we have A(v − x) = b, so (v − x)
is a feasible solution.

• Suppose v ∗ is the optimal solution for some IPA,c(b) described by corollary 3.11.

Suppose there is an x ∈ X, such that (v ∗ − x) is feasible. Since x+ >c x−, we

have x = x+ − x− >c 0 respectively 0 >c −x . v ∗ >c v ∗ − x follows, but this is a

contradiction to the choice of v ∗.

4.16 Theorem
In the same setting as in theorem 4.15 and for v any feasible solution for some IPA,c(b),

the exponent vector v ∗ of redNF(tv , G) = tv
∗

is an optimal solution for IPA,c(b).

Proof:
We have shown in proposition 4.4, that redNF(tv , G) is indeed a monomial. We saw in

the proof, that reducing tv by tx
+ − tx− (when the leading term is tx

+
, which is true for

x ∈ X, since X is a test set) gives tv−x
++x− = tv−(x

+−x−). Since A(v − (x+ − x−)) =
A(v −x) = Av −Ax = b−0 = b and we get redNF(tv , G) by iterating such reductions,

the exponent vector of redNF(tv , G) is a feasible solution.

Suppose the exponent vector v ∗ of redNF(tv , G) would not be optimal. Since X is

a test set, we would have some x ∈ X such that v ∗ − x is feasible. In particular

v ∗ − x+ ≥ 0 component-wise (since we assume that the Gröbner basis consists of

28

primitive binomials). It follows that LT(tx
+ − tx−) = tx+ would divide tv

∗
, but then by

the properties of redNF from proposition 3.14, tv
∗

could not be the reduced normal

form of tv .

This proves the correctness of the following algorithm in situations where the assump-

tion 4.14 holds.

4.17 Algorithm: Generic algorithm for solving IPs
Input:
A ∈ Zmxn,

c ∈ Rn≥0,

>c a global monomial ordering with cα > cβ ⇒ tα >c tβ,
v a feasible solution of (IP) = min cx s.t. Ax = b, x ≥ 0.

Output:
v ∗ an optimal solution of (IP).

1 Compute a reduced Gröbner basis G of IA with respect to >c
2 Compute tv

∗
= redNF(tv , G)

3 return v ∗

29

5 Computing IA - The Algorithm of Hosten and
Sturmfels

In the previous section, we have seen that we can solve our optimization problem as

soon as we have a Gröbner basis of the toric ideal IA associated to the constraint matrix.

Therefore, we will study how we can compute IA as a saturation of the ideal IA0 gener-

ated by the binomials induced by the vectors in a lattice basis of the kernel.

We start defining saturations and their properties in general.

5.1 Definition: Ideal Quotient, Saturation
Suppose I, J ⊆ K[t] are ideals. Then we define

I : J = {f ∈ K[t] | f J ⊆ I}

the ideal quotient of I and J and

I : J∞ = {f ∈ K[t] | ∃n ∈ N : f Jn ⊆ I}

the saturation of I and J.

We say that I is saturated with respect to J if I : J = I.

If J = 〈g〉 is principal, we may write I : g (respectively I : g∞) instead of I : J

(respectively I : J∞).

5.2 Lemma
Suppose I, K, J, J ′ ⊆ K[t] are ideals.

a) I : J is an ideal of K[t].

b) I ⊆ I : J

c) (I : J) : K = I : (JK)

d) If K ⊆ I, then K : J ⊆ I : J

e) If J ′ ⊆ J, then I : J ⊆ I : J ′. In particular: I : J ⊆ I : Jn for any n ∈ N, n > 0.

f) a) - d) hold true for saturations as well.

g) Suppose g ∈ K[t]. If there is an f ∈ K[t] such that f g−1 ∈ I, then I is saturated

with respect to g (that is: I : g = I).

30

Proof:

a) 0 ∈ I : J, so I : J is nonempty. If f J ⊆ I, gJ ⊆ I, then (f + g)J ⊆ I as well. If

f J ⊆ I and r ∈ K[t], then (r f)J = r(f J) ⊆ I since I is an ideal.

b) IJ ⊆ I since I is an ideal.

c) Suppose f ∈ (I : J) : K ⇔ f K ∈ (I : J)⇔ f KJ ∈ I ⇔ f ∈ I : (JK)

d) Suppose f ∈ K : J, that is f J ⊆ K ⊆ I, so f ∈ I : J.

e) Suppose f ∈ I : J, then f J ⊂ I, but since J ′ ⊆ J, f J ′ ⊆ I as well, so f ∈ I : J ′.

f)

I = I : J0 ⊆ I : J ⊆ I : J2 ⊆ I : J3 ⊆ ...

is a chain of ideals in K[t]. Since K[t] is noetherian, this chain will get stationary

at some position, say at I : Jk . Therefore, it holds I : J∞ = I : Jk . That means

we can write a saturation as ideal quotient and we know that a) - d) hold for ideal

quotients.

In addition, this shows that our definition of being saturated makes sense: if

I = I : J, then by induction also

I : J∞ = I : Jk = (I : J) : Jk−1 = I : Jk−1 = ... = I.

g) Suppose h ∈ (I : g), that is hg ∈ I. WE have f hg ∈ I since I is an ideal and

f g − 1 in I by assumption. It follows that h = f gh − (f g − 1)h ∈ I, so we get

I : g = I.

5.3 Lemma
Suppose A ∈ Zmxn is a matrix with integer entries and IA is the toric ideal associated

to A. Then:

a) IA is a prime ideal.

b) IA is saturated with respect to ti for all i ∈ {1, ..., n}.

Proof:

a)

An ideal I ⊆ K[t] is an prime ideal if and only if its quotient ring K[t]/I is an integral

domain.

31

We have shown in the first statement of 4.12 that IA = Ker(ϕ) for the ring-homomorphism

ϕ : K[t] → K[s1, s−11 , ..., sm, s−1m], ti 7→ sai . Using the homomorphy theorem for rings,

K[t]/I = K[t]/Ker(ϕ) is isomorphic to a subring R of K[s1, s−11 , ..., sm, s
−1
m], which is

not the ring {0}, since ϕ(1) = 1 ∈ R

We can show using induction:

K[s1, s
−1
1 , ..., sm, s

−1
m]

∼= K[s1, s−11 , ..., sm−1, s−1m−1][sm, s−m1]
∼= K[s1, s−11 , ..., sm−1, s−1m−1][a, b]/〈ab − 1〉
is an integral domain since K[s1, s−11 , ..., sm−1, s

−1
m−1] is an integral domain (by induction)

and 〈ab − 1〉 is a prime ideal (generated by an irreducible element).

Therefore, its subrings (but {0}) must be integral domains, too, so IA is prime.

b)

Since ϕ(ti) = sα 6= 0 for some α ∈ Zn, ti is not in IA for any i ∈ {1, ..., n}. Since IA is

prime, it follows from ti f ∈ IA for some f ∈ K[t] that f ∈ IA. By the definition of the

ideal quotient, I = I : ti follows.

5.4 Theorem
Suppose A ∈ Zmxn is a matrix with integer entries and U = {u1, ..., ur} is a lattice basis

for Ker(A).

IA = 〈tx
+ − tx− |x ∈ Ker(A)〉

IA0 = 〈tx
+ − tx− |x ∈ U〉

Then:

IA = IA0 : t
∞ = IA0 : (t1 ∗ t2 ∗ ... ∗ tn)∞ = (...((IA0 : t∞1) : t∞2)...) : t∞n

Proof:
All equalities but the first one are clear by definition respectively the by lemma 5.2.

Note that IA0 ⊆ IA by definition, so using lemma 5.2, we get the "⊇"-direction of the

first equality.

It remains to show the "⊆"-direction of the first equality. Let f be a generator of IA,

that is: there is an x ∈ Ker(A) with f = tx
+ − tx−.

Since U was a lattice basis of Ker(A), we may write x =
r∑
k=1

zkuk for some zk ∈ Z.

32

We may write

tx − 1
= tx

+−x− − 1

= t

r∑
k=1

zkuk
− 1

= t

r∑
k=1

(zkuk)
+−(zkuk)−

− 1

=

r∏
k=1

t(zk uk)
+

r∏
k=1

t(zk uk)
−
− 1

as an expression in the ring of Laurent-polynomials K[t1, t−11 , ..., tn, t
−1
n], where negative

exponents are allowed.

Define g = t(z1u1)
− ∗ ... ∗ t(zrur)− as the denominator in the equation above, a monomial

in K[t].

If we multiply the above equation with gtx
−
, we get the following equation in K[t]:

gtx
−
(tx − 1)

= gtx
−
(tx

+−x− − 1)

= tx
−
g
(r∏
k=1

t(zk uk)
+

g
− 1
)

= tx
−
(r∏
k=1

t(zkuk)
+ − g

)
= tx

−
(r∏
k=1

t(zkuk)
+ −

r∏
k=1

t(zkuk)
−
)
.

On the other hand, we get:

gtx
−
(tx − 1)

= gtx
−
(tx

+−x− − 1)
= g(tx

+−x−+x− − tx−)
= g(tx

+ − tx−)
= gf .

If we could show d =
r∏
k=1

t(zkuk)
+ −

r∏
k=1

t(zkuk)
− ∈ IA0 (and thus tx

− ∗ d ∈ IA0, too), we

would have gf ∈ IA0, and thus f ∈ IA0 : t∞, since g is a monomial.

Define

dj =

j∏
k=1

t(zkuk)
+ −

j∏
k=1

t(zkuk)
−

for j ∈ {1, ..., r}. Show dj ∈ IA0 for all j by induction, then d = dr ∈ IA0 follows.

33

j = 1:

d1 = t
(z1u1)

+ − t(z1u1)−. If z1 = 0, then d1 = 0 ∈ IA0, so suppose z1 6= 0.

Set σk =

{
1 , zk > 0,

−1 , zk < 0.

We have

(zkuk)
+ =

{
|zk |u+k , σk = 1,

|zk |u−k , σk = −1,
and

(zkuk)
− =

{
|zk |u−k , σk = 1,

|zk |u+k , σk = −1.
Therefore

d1 = t
(z1u1)

+ − t(z1u1)−

= σ1
(
t |z1|u

+
1 − t |z1|u−1

)
= σ1

(
(tu

+
1)
|z1| − (tu−1)|z1|

)
and by multiplying out

= σ1

(
tu
+
1 − tu−1

)(|z1|−1∑
s=0

(tu
+
1)
s − (tu−1)|z1|−1−s

)
.

Since (tu
+
1 − tu−1) ∈ IA0 and IA0 is an ideal, the whole product d1 ∈ IA.

j > 1:

Suppose dj−1 ∈ IA0 by induction and zj 6= 0 (since otherwise dj = dj−1 ∈ IA0).

dj =
j∏
k=1

t(zkuk)
+ −

j∏
k=1

t(zkuk)
−

=
(j−1∏
k=1

t(zkuk)
+
)(
t(zjuj)

+
)
−

j∏
k=1

t(zkuk)
−

and by adding 0 in a nice way

=
(j−1∏
k=1

t(zkuk)
+
)(
t(zjuj)

+ − t(zjuj)−
)
−

j∏
k=1

t(zkuk)
−
+
(j−1∏
k=1

t(zkuk)
+
)(
t(zjuj)

−
)

=
(j−1∏
k=1

t(zkuk)
+
)(
t(zjuj)

+ − t(zjuj)−)−
(j−1∏
k=1

t(zkuk)
−
)(
t(zjuj)

−
)
+
(j−1∏
k=1

t(zkuk)
+
)(
t(zjuj)

−
)

=
(j−1∏
k=1

t(zkuk)
+
)(
t(zjuj)

+ − t(zjuj)−
)
+
(j−1∏
k=1

t(zkuk)
+ −

j−1∏
k=1

t(zkuk)
−
)(
t(zjuj)

−
)

=
(j−1∏
k=1

t(zkuk)
+
)(
t(zjuj)

+ − t(zjuj)−
)
+ dj−1

(
t(zjuj)

−
)

The first summand is in IA0, since we may show t(zjuj)
+ − t(zjuj)− ∈ IA0 with the same

arguments as in the case j = 1.

The second summand is in IA0 since it is a multiple of dj−1 and dj−1 ∈ IA0 by induction.

Therefore, the dj ∈ IA0 for all j ∈ {1, ..., r} and thus f ∈ IA0 : t∞. Since f was chosen

as an arbitrary generator, IA ⊆ IA0 : t∞ follows.

With this knowledge, we are able to compute IA.

34

For example, we know from the proof of lemma 5.2 that we can write IA as ideal quo-

tient IA = IA0 : t
k for some k ∈ N, so we could apply methods from computer algebra

to compute this ideal quotient (see [Bö, p. 78]).

However, we can find much more efficient methods for our special situation. Depending

on several properties of the integer program, there are different algorithms to compute

the saturation, which are presented in Christine Theiss’ diploma thesis [The99].

In the rest of this section, we will show how to compute the saturation in a certain

simple situation where the ideal is homogeneous, using an algorithm given by Serkan

Hosten and Bernd Sturmfels in [HS95].

5.5 Definition: Homogeneous
We call a polynomial f ∈ K[t] homogeneous with respect to some weight vector

w ∈ Rn if all terms of f have the same degree degw(f).

We call an ideal I ⊆ K[t] homogeneous with respect to some weight vector w ∈ Rn if

we can write I = 〈H〉 for some set H ⊆ K[t] of homogeneous polynomials.

Next, I will show some properties of homogeneous ideals, especially that they behave

well with respect to the algorithms introduced in the third section.

5.6 Lemma
An ideal I ⊆ K[t] is homogeneous (with respect to some weight vector w ∈ Rn) if and

only if for every f ∈ I, its homogeneous components lie in I.

Proof:

"=>"

Suppose H is a set of homogeneous generators of I. We may write f =
k∑
i=1

aihi for

some hi ∈ H, ai ∈ K[t] where aihi ∈ I. If we split ai into its homogeneous compo-

nents ai j (j ∈ {1, ..., l}), we have ai jhi ∈ I. Since the homogeneous components

of f are sums of the ai jhi with the same degree, these are in I, too.

"<="

Suppose for every f ∈ I its homogeneous components are in I. Then

H = {h|h is a homogeneous component of some f ∈ I}

is a set of homogeneous generators of I, so I is homogeneous.

35

5.7 Proposition
Let > be a global monomial ordering and w ∈ Rn a weight vector.

a) Suppose f and all elements of G = {g1, ..., gq} ⊂ K[t] are homogeneous (with

respect to w). Then redNF(f , G) is homogeneous, too.

b) Suppose f and g ∈ K[t] are homogeneous, then spoly(f , g) is homogeneous.

c) Suppose I ⊆ K[t] is a homogeneous ideal, then its reduced Gröbner basis consists

of homogeneous elements.

Proof:

a)

Applying algorithm 3.12 gives us a representation

f =

k∑
i=1

aigji + r

where ji ∈ {1, ..., q}, ai = LT(f)
LT(gji)

, r = redNF(f , G) and k is the number of times

the if-step occurs.

Suppose f is homogeneous of degree a ∈ R and gi is homogeneous of degree

bi ∈ R. Then ai∗gji is homogeneous of degree a = (a−bji)+bji for all i ∈ {1, ..., q}.

Since we may write r = f −
k∑
i=1

aigji and all summands occuring on the right hand

side are homogeneous of the same degree a, r = redNF(f , G) is also homogeneous

of this degree.

b)

Suppose degw(f) = a ∈ R is the degree of f (and all its terms, since it is

homogeneous), degw(g) = b ∈ R, degw(lcm(LM(f),LM(g))) = c ∈ R. Then

both parts of spoly(f , g) := lcm(LM(f),LM(g))
LT(f)

f − lcm(LM(f),LM(g))
LT(g)

g are homogeneous

of degree c = (c − a) + a = (c − b) + b.

c)

Suppose I is a homogeneous ideal. Since K[t] is noetherian, we may find a finite

set of generators G with I = 〈G〉. Similar to the proof of lemma 5.6, we may get

a finite set of homogeneous generators H by defining

H = {h|h is a homogeneous component of some g ∈ G}

Using this set as starting set for the Buchberger algorithm 3.22, we know from

a) and b) that we get a Gröbner basis consisting of homogeneous elements.

36

If we use the procedure from the proof of theorem 3.18, we see with a) that the

reduced Gröbner basis of I consists of homogeneous elements.

5.8 Lemma
Let w be a weight vector such that I ⊆ K[t] is a homogeneous ideal and g is a

homogeneous element. Then I : g and I : g∞ are homogeneous ideals, too.

Proof:
Suppose f ∈ I : g, that is f g ∈ I. Since I is homogeneous, all homogeneous components

of f g lie in I (see lemma 5.6). Since g is homogeneous, the homogeneous components

of f g are exactly the homogeneous components of f multiplied with g.

It follows that the homogeneous components of f lie in I : g, so I : g is a homogeneous

ideal. Since I : g∞ = I : gk for some k ∈ N (as in the proof of lemma 5.2) and gk

is a homogeneous element, I : g∞ is homogeneous with respect to the same weight

vector.

The following theorem shows, that we can indeed compute the saturation in a nice way

if IA0 is homogeneous.

5.9 Theorem
Suppose I ⊆ K[t] is an ideal which is homogeneous with respect to some positive weight

vector w ∈ Rn>0. Let i ∈ {1, ..., n} be arbitrary. Let >ls be the local reverse lexicograpical

ordering with respect to the variable ordering ti < t1 < ... < ti−1 < ti+1 < ... < tn < 1

(see example 3.5).

Let >w be the global monomial ordering which is induced by w with >ls as tie-break

(see example 3.7).

Let G be the reduced Gröbner basis of I with respect to >w .

Then the set

G ′ = {g ∈ K[t] | ti ∤ g, ∃k ∈ N : tki g ∈ G}

which is obtained by dividing all elements of G by the highest possible power of ti is a

Gröbner basis of I : t∞i with respect to >w .

Proof:
Suppose g ∈ G ′, then there is a k ∈ N with gtki ∈ G ⊂ I, so G ′ is indeed a finite subset

of I : t∞i and L(G ′) ⊆ L(I : t∞i).
We still have to show:

L(I : t∞i) ⊆ L(G ′)

37

So suppose f ∈ I : t∞i , so there is some k ∈ N with f tki ∈ I.
Since G is a Gröbner basis of I, there is some g ∈ G such that LM(g) divides LM(f tki) =

LM(f) ∗ tki .
Since G is the reduced Gröbner basis of I, g is homogeneous with respect to w (as

shown in lemma 5.8). Therefore, LM>w (g) = LM>ls (g), so by the definiton of >ls the

leading monomial of g is a monomial such that ti occurs with a minimal power, say

q ∈ N.

By the definiton of G ′, g
tqi
∈ G ′ and LM(g

tqi
) = LM(g)

tqi
divides LM(f tki) = LM(f) ∗ tki .

By the choice of q, LM(g
tqi
) does not contain a power of ti , so we have LM(g

tqi
) divides

LM(f).

It follows LM(f) ∈ L(G ′), so G ′ is indeed a Gröbner basis of I : t∞i .

The theorem above allows us to show the assumption 4.14 needed for the correctness

of the general algorithm, if the ideal is homogeneous.

5.10 Theorem
Let A ∈ Zmxn, > any global monomial ordering.

Suppose IA0 is homogeneous with respect to some positive weight vector w ∈ Rn>0.

Then the reduced Gröbner basis of IA with respect to > consists of primitive binomials.

Proof:
Let >ls,i be the local reverse lexicograpical ordering from example 3.5 with respect to

the variable ordering ti < t1 < ... < ti−1 < ti+1 < ... < tn < 1. Let be >w,i the

monomial ordering induced by w with >ls,i as tie-break.

IA0 is by definition generated by finitely many primitive binomials, so we can apply the

Buchberger-algorithm to these generators to get a reduced Gröbner basis with respect

to >w,1 consisting of pure binomials according to proposition 4.4.

Using theorem 5.9, we get again a Gröbner basis of I : t∞1 with respect to >w,1 con-

sisting of pure binomials since we only divide both monomials in each generator by a

power of t1.

We can apply the Buchberger algorithm (and reduction) again to compute a reduced

Gröbner basis of I : t∞1 with respect to >w,2, which consists again of pure binomials.

38

Since I : t∞1 is homogeneous again, we may iterate this process to get a Gröbner basis

of IA with respect to >w,n consisting of finitely many pure binomials. We can use these

generators to compute a reduced Gröbner basis G of IA with respect to > consisting of

pure binomials.

Suppose the non-primitive binomial f = txtv − txtu ∈ IA (where x 6= 0 and tv and tu

are coprime), then the primitive binomial f ′ = f
tx
∈ IA : tx ⊆ IA : t∞ = IA.

By the definition of a Gröbner basis, there is a element g ∈ G such that LT(g) divides

LT (f ′) and thus divides LT(f) strictly, that is 〈LT (f)〉 ⊊ 〈LT (g)〉. Since a reduced

Gröbner basis is minimal, f /∈ G.

This holds true for all non-primitive binomials, so G consists only of primitive ones.

Before we state the final algorithm, we want to see how we can express the condition

of IA being homogeneous as a property of the integer program.

5.11 Proposition
Suppose A ∈ Zmxn. The following statements are equivalent:

a) There is a positive weight vector w ∈ Rn>0 such that IA0 is homogeneous with

respect to w .

b) There is a positive weight vector gw ∈ Rn>0 such that IA is homogeneous with

respect to w .

c) There is a vector w ∈ Rn>0 in the row-space of A (the R vector space V ⊆ Rn

spanned by the rows of A), which has only positive components.

Proof:
Note that the row-space of a matrix is the orthogonal complement of its kernel, so

we have that w is in the row-space of A if and only if wT x = 0 for all x ∈ Ker(A),
see [Str03, p. 187].

We show b) ⇔ c):

c) => b)

Suppose w ∈ Rn is a vector in the row-space of A with w > 0 component-wise

and x ∈ Ker(A). Then: 0 = wT x = wT (x+ − x−). Hence wT x+ = wT x−. It

follows, that degw(tx
+
) = degw(t

x−), so the generators of IA are homogeneous

with respect to w ; IA is a homogeneous ideal.

39

b) => c)

We show that no monomial is contained in IA and use the lemma about homoge-

neous ideals to show that the weight vector is in the row-space.

Look at I0, the toric ideal associated to the zero-matrix 0.

Note that the unit vectors span Ker(0), so we may set

I := I00 = 〈ti − 1|i ∈ {1, ..., n}〉

Since ti ∗ 1− 1 ∈ I, I is saturated with respect to every variable (see lemma 5.2),

so by theorem 5.4, I = I0.

Since we have shown, that I0 is a prime ideal and a prime ideal is a strict subset

of K[t], 1 6∈ I.

Suppose some monomial tα ∈ I. Then 1 ∈ I : tα ⊆ I : t∞ = I by lemma 5.3.

Hence, no monomial is contained in I.

Since Ker(A) ⊆ Ker(0), we also have IA ⊆ I0, so there is no monomial in IA.

Suppose w defines a positive weight vector such that IA is homogeneous with

respect to w . If f = tx
+ − tx− would not be homogeneous with respect to w for

some x ∈ Ker(A), then its homogeneous components, the monomials tx
+

and

tx
−
, would lie in IA (see lemma 5.6). This is not possible since IA contains no

monomials.

Hence, we have 0 = wT x = wT (x+−x−) since wT x+ = wT x− for all x ∈ Ker(A),
so w is in the row space.

Now we can use this equivalency to show a) ⇔ c):

c) => a)

Since the generators of IA0 are a subset of the generators of IA, the statement

follows with the same proof as in c) => b).

a) => c)

Suppose w is a positive weight vector such that IA0 is homogeneous with respect

to w . By applying theorem 5.9 iteratively as in the proof of theorem 5.10, we can

show that IA is homogeneous with respect to the same weight vector, so we are

in the situation of b) and can apply the proof of b) => c).

40

5.12 Algorithm: Hosten and Sturmfels
Input:
A ∈ Zmxn,

w ∈ Rn>0 a vector in the row-space of A,

c ∈ Rn≥0,

>c a global monomial ordering with cTα > cTβ ⇒ tα >c tβ,
v a feasible solution of (IP) = min cx s.t. Ax = b, x ≥ 0.

Output:
v ∗ an optimal solution of (IP).

Let >ls,i be the local reverse lexicographical ordering w.r.t the variable ordering

ti < t1 < ... < ti−1 < ti+1 < ... < tn

Let >w,i be the global monomial ordering induced by w with >ls,i as tie-break.

1 Compute a lattice basis U of Ker(A)

2 IA0 := 〈tx
+ − tx− |x ∈ U〉

3 Compute a reduced Gröbner basis G0 of IA0 with respect to >w,1
4 for i = 1, ..., n − 1 do
5 Gi := {g ∈ K[t] | ti ∤ g, ∃k ∈ N : tki g ∈ Gi−1}
6 IAi := 〈Gi〉
7 Replace Gi by a reduced Gröbner basis of IAi with respect to >w,i+1

8 end
9 Gn := {g ∈ K[t] | tn ∤ g, ∃k ∈ N : tkn g ∈ Gn−1}

10 IA := 〈Gn〉
11 Use Gn to compute a reduced Gröbner basis G of IA = IAn with respect to >c
12 Compute tv

∗
= redNF(tv , G)

13 return v ∗

Proof of termination:
We have seen in the third section, that computing a (reduced) Gröbner basis starting

with a finite set of generators can be done in finite time (see algorithm 3.22 and

theorem 3.18).

In particular, the reduction in step 12 can also be done in finite time.

Computing a lattice basis can be done in polynomial time using the LLL algorithm, see

remark 4.8.

41

Proof of correctness:
We have shown in the proof of proposition 5.11, that if we suppose the existence of

a positive vector in the row-space, IA0 is homogeneous with respect to the weighted

degree given by this vector, so we can iteratively apply theorem 5.9, as done in the

proof of theorem 5.10.

Theorem 5.4 shows that we get indeed a Gröbner basis for IA after the 10th step, so

the correctness follows by the correctness of the generic algorithm (see theorem 4.16),

since we are in a situation where the assumptiom 4.14 holds.

5.13 Example
If we consider the integer program (IP) from example 2.9 and the toric ideal associated

to its constraint matrix IA0 = 〈g〉 with g = t1t4 − t2t3 from example 4.11, the steps

4 up to 11 of the algorithm above become trivial since IA0 is principal so the Gröbner

basis of IA0 with respect to any monomial ordering is {g} (see example 3.23) and g is

a primitive binomial, so we cannot divide both monomials by any variable.

We have already computed in example 3.16 that redNF(tv , {g}) = t101 t402 t303 , where

v = (40, 10, 0, 30)T is the initial solution of (IP) given in example 2.9.

Therefore, v ∗ = (10, 40, 30, 0)T is an optimal solution for (IP).

At the end of this thesis, we will take a look at the restrictions on the integer program

we have in the final algorithm, and show that some of them can be eased.

5.14 Remark
First note that we really need the vector w ∈ Rn>0 in the row space, since otherwise our

ideal would not be homogeneous and its components must be positive, since otherwise

the monomial orderings we use would not be global. If there is no such vector, we may

use other algorithms described in [The99] which work by introducing additional variables.

Finding such a vector (under the assumption of its existence) can be done using meth-

ods from linear optimization:

Instead of solving the system of strict inequalities

m∑
i=1

aizi > 0

(where ai denotes the i th row of A), we can also solve the system of ≥-inequalities

m∑
i=1

aizi ≥ 1

42

since if z ∈ Rm solves the first system, we can find λ ∈ N such that λz solves the

second system.

Note that the second system looks like a constraint of a linear program as in defini-

ton 2.1, so we may apply methods for finding initial solutions of linear programs to find

a solution z and thus w = AT z , a positive vector in the row space of A.

5.15 Remark
In the case c ∈ Rn≥0 as in the algorithm above, it is easy to find a global monomial

ordering >c as desired, we can use the monomial ordering induced by c with >dp as

tie-break as in example 3.7.

But we could indeed drop this condition using more theory from optimization: We can

also solve the problem in the case c 6∈ Rn≥0 if our problem has an optimal solution (this

is always the case for c ∈ Rn≥0 if the program has a solution at all as shown in 2.8). In

this situation, we can use efficient methods from linear optimization to solve the linear

relaxation of (IP) (the linear program we get by dropping the condition x ∈ Zn).

We can derive a vector a vector z ∈ Nn from the optimal solution of this linear pro-

gram such that any monomial ordering >z induced by z is compatible with (IP) (that

is cT x > cT y ⇒ tx >z ty for feasible solutions x, y).

Since this monomial ordering is not compatible with all integer programs in IPA,c , the

reduced Gröbner basis of IA would not be a test set, but the theory would work for the

special instance IPA,c(b) we used to define >z .

For more information on how to find this vector, see [The99, p. 43f].

5.16 Remark
We require an initial solution of the integer program as input to our algorithm.

In many real-life applications of integer programming, it is easy to give such an non-

optimal but feasible initial solution.

If we don’t have an initial solution given, we can compute one either by using methods

from optimization or by using computer algebra: we can add variables y1, ..., ym (where

m is the number of constraints) to define a certain ideal related to the toric ideal IA,

compute a Gröbner basis of this new ideal and then reduce y b with respect to this

Gröbner basis as shown in [The99, p. 52] and [Stu96, p. 43].

Note that it may be more convenient to use the algorithm of Conti and Traverso instead

of the algorithm of Hosten and Sturmfels in this setup.

Bibliography 43

Bibliography

[Bö] Böhm, Janko: Computer Algebra. – Lecture Notes (TU Kaiserslautern, win-

ter term 2012/13), http://www.mathematik.uni-kl.de/~boehm/lehre/

1213_CA/ca.pdf

[HS95] Hosten., S. ; Sturmfels, B.: GRIN: An implementation of Gröbner bases for

integer prgramming. In: Balas, E.: Integer programming and combinatorial

optimization (1995)

[Kar72] Karp, Richard M.: Reducibility Among Combinatorial Problems. In: R. E.

Miller and J. W. Thatcher (editors): Complexity of Computer Computations

(1972)

[Kar84] Karmarkar, Narendra: A New Polynomial Time Algorithm for Linear Program-

ming. In: Combinatorica (1984)

[KM72] Klee, V. ; Minty, G.J.: How Good is the Simplex Algorithm? In: Inequalities

III (1972)

[LLL82] Lenstra, A. K. ; Lenstra, H. W. ; Lovász, L.: Factoring polynomials with

rational coefficients. In: Mathematische Annalen (1982)

[Mar] Markwig, Thomas: Commutative Algebra. – Lecture Notes (TU

Kaiserslautern, winter term 2010/11), http://www.mathematik.uni-kl.

de/~keilen/download/Lehre/MGSS09/CommutativeAlg.pdf

[Str03] Strang, Gilbert: Introduction to Linear Algebra. Wellesley-Cambridge

Press,U.S., 2003

[Stu96] Sturmfels, Bernd: Gröbner Bases and Convex Polytopes. American Mathe-

matical Soc., 1996

[The99] Theis, Christine: Der Buchberger-Algorithmus fuer torische Ideale und seine

Anwendung in der ganzzahligen Optimierung, Universitaet des Saarlandes,

Diplomarbeit, 1999

http://www.mathematik.uni-kl.de/~boehm/lehre/1213_CA/ca.pdf
http://www.mathematik.uni-kl.de/~boehm/lehre/1213_CA/ca.pdf
http://www.mathematik.uni-kl.de/~keilen/download/Lehre/MGSS09/CommutativeAlg.pdf
http://www.mathematik.uni-kl.de/~keilen/download/Lehre/MGSS09/CommutativeAlg.pdf

	1 Introduction
	2 Basics of Linear and Integer Optimization
	3 Monomial Orderings, Reduction and Gröbner Bases
	4 A generic Algorithm for solving Integer Programs
	5 Computing IA - The Algorithm of Hosten and Sturmfels
	Bibliography

