Regular separability of WSTS

Sebastian Muskalla <s.muskalla@tu-braunschweig.de>

September 20, HIGHLIGHTS 2018, Berlin

Regular separability of well-structured transition systems with W. Czerwiński, S. Lasota, R. Meyer, K. N. Kumar, P. Saivasan. *CONCUR 2018.* arXiv:1702.05334.

Regular separability

Regular separability of \mathcal{F}

Given: Languages $\mathcal{L}, \mathcal{K} \subseteq \Sigma^*$ from class \mathcal{F} .

Decide: Is there $\mathcal{R} \subseteq \Sigma^*$ regular such that

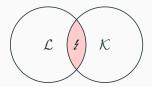
 $\mathcal{L} \subseteq \mathcal{R}, \quad \mathcal{K} \cap \mathcal{R} = \emptyset?$

Regular separability of ${\cal F}$

Given: Languages $\mathcal{L}, \mathcal{K} \subseteq \Sigma^*$ from class \mathcal{F} .

Decide: Is there $\mathcal{R} \subseteq \Sigma^*$ regular such that

 $\mathcal{L} \subseteq \mathcal{R}, \quad \mathcal{K} \cap \mathcal{R} = \emptyset?$



Disjointness is necessary!

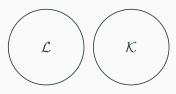
Regular separability of ${\cal F}$

Given: Languages $\mathcal{L}, \mathcal{K} \subseteq \Sigma^*$ from class \mathcal{F} .

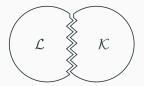
Decide: Is there $\mathcal{R} \subseteq \Sigma^*$ regular such that

 $\mathcal{L} \subseteq \mathcal{R}, \quad \mathcal{K} \cap \mathcal{R} = \emptyset?$

Intuition:



separable



not separable

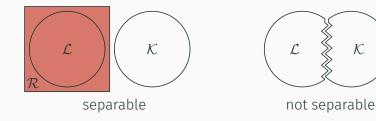
Regular separability of ${\cal F}$

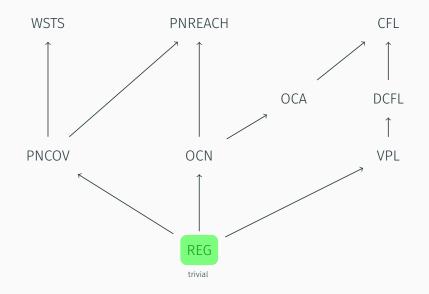
Given: Languages $\mathcal{L}, \mathcal{K} \subseteq \Sigma^*$ from class \mathcal{F} .

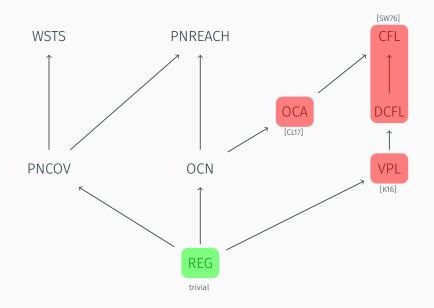
Decide: Is there $\mathcal{R} \subseteq \Sigma^*$ regular such that

 $\mathcal{L} \subseteq \mathcal{R}, \quad \mathcal{K} \cap \mathcal{R} = \emptyset?$

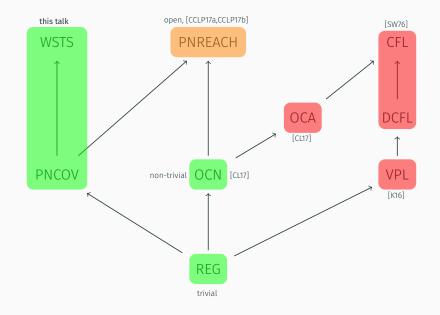
Intuition:







Related work



The result

Labeled well-structured transition systems (WSTS) [F87,ACJT96,FS01]

 $\mathcal{W} = (S, \leqslant, T, I, F)$

 (S,\leqslant) states, well-quasi ordered

 $T \subseteq S \times \Sigma \times S$ labeled transitions

 $I \subseteq S$ initial states

 $F \subseteq S$ final states, upward-closed

(Strong) upward compatibility:

$$S' \xrightarrow{a} r' (\exists)$$

$$Y | \qquad Y |$$

$$S \xrightarrow{a} r$$

Labeled well-structured transition systems (WSTS) [F87,ACJT96,FS01]

 $\mathcal{W} = (S, \leqslant, T, I, F)$

(S, \leqslant) states, well-quasi ordered

 $\mathit{T} \subseteq \mathsf{S} \times \Sigma \times \mathsf{S}$ labeled transitions

 $I \subseteq S$ initial states

 $F \subseteq S$ final states, upward-closed

Coverability language

$$\mathcal{L}(\mathcal{W}) = \left\{ w \in \Sigma^* \mid s_I \xrightarrow{w} s_F \text{ for some } s_I \in I, s_F \in F \right\}$$

Labeled well-structured transition systems (WSTS) [F87,ACJT96,FS01]

 $\mathcal{W} = (S, \leqslant, T, I, F)$

 (S, \leqslant) states, well-quasi ordered

 $\mathit{T} \subseteq \mathsf{S} \times \Sigma \times \mathsf{S}$ labeled transitions

 $I \subseteq S$ initial states

 $F \subseteq S$ final states, upward-closed

Examples:

- Petri nets with covering a marking as acceptance condition
- Transfer nets, reset nets, ...
- Lossy channel systems

The result

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Corollary

If a language and its complement are finitely-branching WSTS languages, then they are **necessarily regular**.

Generalizes earlier results for PNCOV [MKR98a,MKR98b]

Theorem

If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Corollary

If a language and its complement are finitely-branching WSTS languages, then they are **necessarily regular**.

Generalizes earlier results for PNCOV [MKR98a,MKR98b]

Corollary

No subclass of the class of languages of finitely-branching WSTS beyond REG is closed under complement.

How much of a restriction is it to assume finite branching? What do we gain by it?

How much of a restriction is it to assume finite branching? What do we gain by it?

Theorem

Languages of ω²-WSTS ⊆ Languages of finitely-branching WSTS (2) Languages of deterministic WSTS

How much of a restriction is it to assume finite branching? What do we gain by it?

Theorem

```
Languages of ω<sup>2</sup>-WSTS

⊆ Languages of finitely-branching WSTS

(2)

Languages of deterministic WSTS
```

WSTS is ω^2 iff state space does not embed the Rado order.

(1) shows that result applies to all WSTS of practical interest.

How much of a restriction is it to assume finite branching? What do we gain by it?

Theorem

Languages of ω²-WSTS ⊆ Languages of finitely-branching WSTS (2) Languages of deterministic WSTS

(2) proves that it is sufficient to show:

Theorem

If two WSTS languages, one of them deterministic, are disjoint, then they are regularly separable

Proof sketch

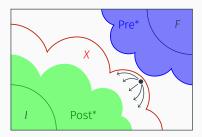
$\mathcal{L}(\mathcal{W}_1), \mathcal{L}(\mathcal{W}_2) \text{ reg. sep} \Longleftrightarrow \mathcal{L}(\mathcal{W}_1) \cap \mathcal{L}(\mathcal{W}_2) = \mathcal{L}(\mathcal{W}_1 \times \mathcal{W}_2) = \varnothing$

 $\mathcal{W}_1 imes \mathcal{W}_2$ has inductive invariant

Inductive invariant

Inductive invariant [MP95] X for WSTS W:

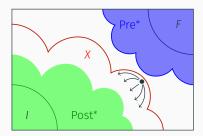
- (1) $X \subseteq$ S downward-closed
- (2) *I* ⊆ X
- (3) $F \cap \mathbf{X} = \emptyset$
- (4) $\mathsf{Post}_{\Sigma}(X) \subseteq X$



Inductive invariant

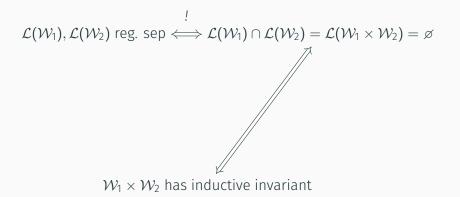
Inductive invariant [MP95] X for WSTS W:

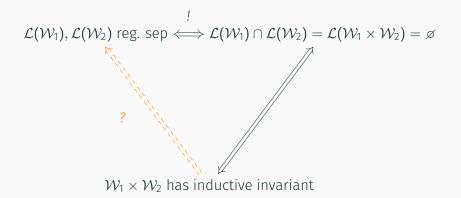
- (1) $X \subseteq$ S downward-closed
- (2) I ⊆ <mark>X</mark>
- (3) $F \cap \mathbf{X} = \emptyset$
- (4) $\mathsf{Post}_{\Sigma}(X) \subseteq X$

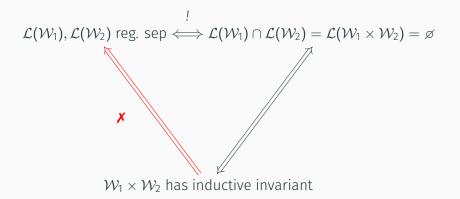


Lemma

 $\mathcal{L}(\mathcal{W}) = \emptyset$ iff inductive invariant for \mathcal{W} exists.







Call an invariant X finitely represented if $X = Q \downarrow$ for Q finite

Call an invariant X finitely represented if $X = Q \downarrow$ for Q finite

Theorem

Let W_1, W_2 WSTS, W_2 deterministic.

If $W_1 \times W_2$ admits a finitely-represented inductive invariant, then $\mathcal{L}(W_1)$ and $\mathcal{L}(W_2)$ are regularly separable.

Call an invariant X finitely represented if $X = Q \downarrow$ for Q finite

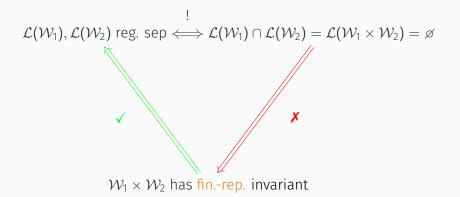
Theorem

Let W_1, W_2 WSTS, W_2 deterministic.

If $W_1 \times W_2$ admits a finitely-represented inductive invariant, then $\mathcal{L}(W_1)$ and $\mathcal{L}(W_2)$ are regularly separable.

Let $Q\downarrow$ be an invariant with Q finite. Construct NFA with states Q. NFA over-approximates $W_1 \times W_2$.





Ideals

Finitely represented invariants do not necessarily exist.

Solution: Ideals

Definition

For WSTS \mathcal{W} , let $\widehat{\mathcal{W}}$ be its ideal completion [KP92][BFM14,FG12]

Lemma

 $\mathcal{L}(\mathcal{W}) = \mathcal{L}(\widehat{\mathcal{W}}).$

Ideals

Finitely represented invariants do not necessarily exist.

Solution: Ideals

Definition

For WSTS \mathcal{W} , let $\widehat{\mathcal{W}}$ be its ideal completion [KP92][BFM14,FG12]

Lemma

 $\mathcal{L}(\mathcal{W}) = \mathcal{L}(\widehat{\mathcal{W}}).$

Proposition

If X is an inductive invariant for \mathcal{W} , then its ideal decomposition $IDEC(X)\downarrow$ is a finitely-represented inductive invariant for $\widehat{\mathcal{W}}$. Putting everything together:

Let W_1, W_2 be language-disjoint WSTS, W_2 deterministic.

 $\mathcal{W}_1\times\mathcal{W}_2$ admits an invariant X.

Then IDEC(X) \downarrow is a finitely-represented invariant for $\widehat{\mathcal{W}_1 \times \mathcal{W}_2} \cong \widehat{\mathcal{W}_1} \times \widehat{\mathcal{W}_2}$.

This gives rise to a regular separator.

Conclusion

Theorem

If two WSTS languages are disjoint,

one of them finitely branching or deterministic or ω^2 ,

then they are regularly separable.

Conclusion

Theorem

If two WSTS languages are disjoint,

one of them finitely branching or deterministic or ω^2 ,

then they are regularly separable.

Can we drop the assumption of finite branching resp. ω^2 ?

Related problem:

Expressiveness of infinitely-branching non- ω^2 WSTS?

Thank you!

Questions?

[PZ16] T. Place, M. Zeitoun

Separating regular languages with first-order logic LMCS, 2016

[SW76] T. G. Szymanski, J. H. Williams Noncanonical extensions of bottom-up parsing techniques SIAM Journal on Computing, 1976

[K16] E. Kopczynski

Invisible pushdown languages LICS, 2016

[CL17] W. Czerwiński, S. Lasota Regular separability of one counter automata LICS, 2017

References 2/5

[CCLP17a] L. Clemente, W. Czerwiński, S. Lasota, C. Paperman Regular separability of Parikh automata ICALP, 2017

[CCLP17b] L. Clemente, W. Czerwiński, S. Lasota, C. Paperman Separability of reachability sets of vector addition systems STACS, 2017

[F87] A. Finkel

A generalization of the procedure of Karp and Miller to well structured transition systems ICALP, 1987

[ACJT96] P. A. Abdulla, K. Cerans, B. Jonsson, Y.-K. Tsay General decidability theorems for infinite-state systems ICALP, 1996

References 3/5

[FS01] A. Finkel and P. Schnoebelen Well-structured transition systems everywhere! Theor. Comput. Sci., 2001

[AJ93] P. A. Abdulla, B. Jonsson Verifying programs with unreliable channels LICS, 1993

[MKR98a] M. Mukund, K. N. Kumar, J. Radhakrishnan, M. A. Sohoni Robust asynchronous protocols are finite-state ICALP, 1998

[MKR98b] M. Mukund, K. N. Kumar, J. Radhakrishnan, M. A. Sohoni Towards a characterisation of finite-state message-passing systems ASIAN, 1998

[MP95] Z. Manna and A. Pnueli Temporal verification of reactive systems - Safety 1995

- [KP92] M. Kabil, M. Pouzet Une extension d'un théorème de P. Jullien sur les âges de mots ITA, 1992
- [FG12] A. Finkel, J. Goubault-Larrecq Forward analysis for wsts, part II: Complete WSTS LMCS, 2012

[BFM14] M. Blondin, A. Finkel, P. McKenzie Handling infinitely branching WSTS ICALP, 2014

[BFM17] M. Blondin, A. Finkel, P. McKenzie Well behaved transition systems LMCS, 2017