Certificates for automata in a hostile environment

Sebastian Muskalla

May 11, 2023
PhD defense

Table of contents

Title
Three examples

- Practical relevance
- Theoretical results

The title

Certificates for automata
 in a hostile environment

The title

(1)

Certificates for automata
in a hostile environment

The title
(2)

Certificates for automata in a hostile environment

The title
(2)

Certificates for automata in a hostile environment
(3)

Automata theory

Automata theory

Theoretical computer science:

Which problems can be solved by computers in principle?

Automata theory

Theoretical computer science:

Which problems can be solved by computers in principle?
Concept of self-application

Automata theory

Theoretical computer science:

Which problems can be solved by computers in principle?

Concept of self-application

Study verification:
Which problems about computer (programs) can be solved by computer (programs)?

Automata theory

Verification problem

Verification problem for specification φ
Given: Program P.
Question: Does behavior of P satisfy $\varphi, P \vDash \varphi$?

Automata theory

Verification problem

Verification problem for specification φ
Given: Program P.
Question: Does behavior of P satisfy $\varphi, P \vDash \varphi$?

Automated verification:

Automata theory

Verification problem

Verification problem for specification φ
Given: Program P.
Question: Does behavior of P satisfy $\varphi, P \vDash \varphi$?

Automated verification:

Theorem ([Church 1935/36, Turing 1936])
The verification problem is undecidable for some specification.

Automata theory

Verification problem

Verification problem for specification φ
Given: Program P.
Question: Does behavior of P satisfy $\varphi, P \vDash \varphi$?

Automated verification:

Theorem ([Church 1935/36, Turing 1936, Rice 1953])
The verification problem is undecidable for all specifications.

Automata theory

Theorem ([Church 1935/36, Turing 1936, Rice 1953])
The verification problem is undecidable for all specifications.

Two loopholes exist:

Automata theory

Theorem ([Church 1935/36, Turing 1936, Rice 1953])

The verification problem is undecidable for all specifications.

Two loopholes exist:

1. Problem is just undecidable in full generality

- We may be able to verify some programs (We come back to this later)

Automata theory

Theorem ([Church 1935/36, Turing 1936, Rice 1953])

The verification problem is undecidable for all specifications.

Two loopholes exist:

1. Problem is just undecidable in full generality

- We may be able to verify some programs (We come back to this later)

2. Problem undecidable if input are general computer programs

- Study restricted computer models: Automata

Automata theory

Automata theory

Verification problems may be decidable if we consider automata as input

Automata theory

Verification problems may be decidable if we consider automata as input

How to solve general verification problems?

Automata theory

Verification problems may be decidable if we consider automata as input

How to solve general verification problems?

Abstract to an automaton first!

Automata theory

Does this always work?

Automata theory

Does this always work?
NO!

Need to pick abstraction carefully

Automata theory

Does this always work?
NO!

Need to pick abstraction carefully

- Verification problem needs to be (efficiently) decidable

Automata theory

Does this always work?
NO!

Need to pick abstraction carefully

- Verification problem needs to be (efficiently) decidable
- Expressiveness needs to be high enough so that we can model the behavior relevant to the specification

Automata theory

Does this always work?
NO!

Need to pick abstraction carefully

- Verification problem needs to be (efficiently) decidable
- Expressiveness needs to be high enough so that we can model the behavior relevant to the specification
- Need some relation between P and A_{p}, e.g. overapproximation: $\mathcal{L}(P) \subseteq \mathcal{L}\left(A_{P}\right)$

Automata theory

The automata-theoretic approach to verification

Certificates

Certificates

This is too optimistic!

Certificates

This is too optimistic!
Problem: We assume that a boolean (yes/no) answer to the decision problem is sufficient

Certificates

This is too optimistic!
Problem: We assume that a boolean (yes/no) answer to the decision problem is sufficient

Need more detailed output!

Certificates

This is too optimistic!
Problem: We assume that a boolean (yes/no) answer to the decision problem is sufficient

Need more detailed output!

- Accountability: We don't want to trust the algorithm blindly

Certificates

This is too optimistic!
Problem: We assume that a boolean (yes/no) answer to the decision problem is sufficient

Need more detailed output!

- Accountability: We don't want to trust the algorithm blindly
- We often need more than one call of a decision procedure

Certificates

This is too optimistic!
Problem: We assume that a boolean (yes/no) answer to the decision problem is sufficient

Need more detailed output!

- Accountability: We don't want to trust the algorithm blindly
- We often need more than one call of a decision procedure
- Later calls need information computed by earlier ones e.g. compositional verification, refinement loops (CEGAR)

Certificates

We need algorithms that also compute certificates

Certificates

We need algorithms that also compute certificates

A certificate is additional information justifying the boolean answer

Certificates

We need algorithms that also compute certificates

A certificate is additional information justifying the boolean answer
A certificate can be used to check the correctness of the answer

Certificates

We need algorithms that also compute certificates

A certificate is additional information justifying the boolean answer
A certificate can be used to check the correctness of the answer
This check should be easier than the original computation

The (hostile) environment

The (hostile) environment

The (hostile) environment

When abstracting P into A_{P}, we usually forget a part of the system

The (hostile) environment

When abstracting P into A_{P}, we usually forget a part of the system

Example:

- P uses recursion + unbounded storage
- A_{p} comes from a class that only supports bounded storage
- Solution: Abstract away data
- But: This introduces non-determinism

The (hostile) environment

When abstracting P into A_{P}, we usually forget a part of the system

Example:

- P uses recursion + unbounded storage
- A_{P} comes from a class that only supports bounded storage
- Solution: Abstract away data
- But: This introduces non-determinism

This imprecision may affect verification!

The (hostile) environment

The automaton lives A_{P} in an environment

The (hostile) environment

The automaton lives A_{p} in an environment

- Parts of system P abstracted away in A_{P}

The (hostile) environment

The automaton lives A_{p} in an environment

- Parts of system P abstracted away in A_{P}
- Parts of the system that were never modeled to begin with:
- User input
- External components

The (hostile) environment

The automaton lives A_{p} in an environment

- Parts of system P abstracted away in A_{P}
- Parts of the system that were never modeled to begin with:
- User input
- External components
- Compositional verification
- Focus on one component
- Rest of the components becomes the environment

The (hostile) environment

The environment is hostile because when we apply a decision procedure to A_{p}, it may break the correspondence between

- correctness of $A_{P} \quad\left(A_{P} \vDash \varphi / A_{P} \neq \varphi\right)$
- correctness of $P \quad(P \vDash \varphi / P \not \vDash \varphi)$

Certificates for automata in a hostile environment

In order to enable the automata-theoretic approach to verification, we need decision procedures for automata that produce certificates and are equipped to take the (hostile) environment into account.

Certificates for automata in a hostile environment

In order to enable the automata-theoretic approach to verification, we need decision procedures for automata that produce certificates and are equipped to take the (hostile) environment into account.

This thesis aims to provide such decision procedures

$1^{\text {st }}$ example:
 Unreliable communication \& Language closures

Unreliable communication

Program sending messages

Unreliable communication

Program sending messages over a lossy network connection

Unreliable communication

Program sending messages over a lossy network connection

Unreliable communication

Program sending messages over a lossy network connection

Unreliable communication

Program sending messages over a lossy network connection

Unreliable communication

Program sending messages over a lossy network connection

We are typically given a description of A

Unreliable communication

Program sending messages over a lossy network connection

We are typically given a description of A
Specification talks about $\mathcal{L}(A) \downarrow$, the visible behavior of A

Unreliable communication

Program sending messages over a lossy network connection

We are typically given a description of A
Specification talks about $\mathcal{L}(A) \downarrow$, the visible behavior of A
Unreliable communication forms an environment that has to be taken into account

Unreliable communication

Same problem can happen even when communication is reliable

Unreliable communication

Same problem can happen even when communication is reliable

Thread A sees \mathcal{L} (other threads) \downarrow

Unreliable communication

Opposite problem: Gaininess

Unreliable communication

Opposite problem: Gaininess

Closures

Environment turns $\mathcal{L}(A)$ into $\mathcal{L}(A) \downarrow$ resp. $\mathcal{L}(A) \uparrow$
How to design a theoretical model?

Closures

Environment turns $\mathcal{L}(A)$ into $\mathcal{L}(A) \downarrow$ resp. $\mathcal{L}(A) \uparrow$
How to design a theoretical model?
Subword ordering: $v \leq w$ iff v obtained from w by deleting letters

Closures

Environment turns $\mathcal{L}(A)$ into $\mathcal{L}(A) \downarrow$ resp. $\mathcal{L}(A) \uparrow$
How to design a theoretical model?
Subword ordering: $v \leq w$ iff v obtained from w by deleting letters

$$
\text { RADAR } \leq \text { ABRACADABRA }
$$

Closures

Environment turns $\mathcal{L}(A)$ into $\mathcal{L}(A) \downarrow$ resp. $\mathcal{L}(A) \uparrow$
How to design a theoretical model?
Subword ordering: $v \leq w$ iff v obtained from w by deleting letters

$$
\text { RADAR } \leq \text { ABRACADABRA }
$$

Downward closure: $\mathcal{L}(A) \downarrow=\{v \mid \exists w \in \mathcal{L}(A): v \leq w\} \quad$ (Lossiness)
Upward closure: $\quad \mathcal{L}(A) \uparrow=\{v \mid \exists w \in \mathcal{L}(A): w \leq v\} \quad$ (Gaininess)

Closures

Environment turns $\mathcal{L}(A)$ into $\mathcal{L}(A) \downarrow$ resp. $\mathcal{L}(A) \uparrow$
How to design a theoretical model?
Subword ordering: $v \leq w$ iff v obtained from w by deleting letters

$$
\text { RADAR } \leq \text { ABRACADABRA }
$$

$$
\begin{array}{lll}
\text { Downward closure: } & \mathcal{L}(A) \downarrow=\{v \mid \exists w \in \mathcal{L}(A): v \leq w\} & \text { (Lossiness) } \\
\text { Upward closure: } & \mathcal{L}(A) \uparrow=\{v \mid \exists w \in \mathcal{L}(A): w \leq v\} & \text { (Gaininess) }
\end{array}
$$

Theorem ([Haines 1969],[Abdulla et al. 2004])
$\mathcal{L}(A) \downarrow, \mathcal{L}(A) \uparrow$ always simply regular.

Closures

Environment turns $\mathcal{L}(A)$ into $\mathcal{L}(A) \downarrow$ resp. $\mathcal{L}(A) \uparrow$
How to design a theoretical model?
Subword ordering: $v \leq w$ iff v obtained from w by deleting letters

$$
\text { RADAR } \leq \text { ABRACADABRA }
$$

Downward closure: $\mathcal{L}(A) \downarrow=\{v \mid \exists w \in \mathcal{L}(A): v \leq w\} \quad$ (Lossiness)
Upward closure: $\quad \mathcal{L}(A) \uparrow=\{v \mid \exists w \in \mathcal{L}(A): w \leq v\} \quad$ (Gaininess)
Theorem ([Haines 1969],[Abdulla et al. 2004])
$\mathcal{L}(A) \downarrow, \mathcal{L}(A) \uparrow$ always simply regular.
Regular languages can be represented by finite automata

Closures

Environment turns $\mathcal{L}(A)$ into $\mathcal{L}(A) \downarrow$ resp. $\mathcal{L}(A) \uparrow$
How to design a theoretical model?
Subword ordering: $v \leq w$ iff v obtained from w by deleting letters

$$
\text { RADAR } \leq \text { ABRACADABRA }
$$

Downward closure: $\mathcal{L}(A) \downarrow=\{v \mid \exists w \in \mathcal{L}(A): v \leq w\} \quad$ (Lossiness)
Upward closure: $\quad \mathcal{L}(A) \uparrow=\{v \mid \exists w \in \mathcal{L}(A): w \leq v\} \quad$ (Gaininess)
Theorem ([Haines 1969],[Abdulla et al. 2004])
$\mathcal{L}(A) \downarrow, \mathcal{L}(A) \uparrow$ always simply regular.
Regular languages can be represented by finite automata
But: Closures are not necessarily effectively regular

Closures

Computing the downward closure
Given: Automaton A.
Compute: Finite automaton B with $\mathcal{L}(B)=\mathcal{L}(A) \downarrow$
Computing the upward closure
Given: Automaton A.
Compute: Finite automaton B with $\mathcal{L}(B)=\mathcal{L}(A) \uparrow$

Closures

Computing the downward closure
Given: Automaton A.
Compute: Finite automaton B with $\mathcal{L}(B)=\mathcal{L}(A) \downarrow$

Computing the upward closure
Given: Automaton A.
Compute: Finite automaton B with $\mathcal{L}(B)=\mathcal{L}(A) \uparrow$

Computing closure is taking the environment into account

Closures

Computing the downward closure
Given: Automaton A.
Compute: Finite automaton B with $\mathcal{L}(B)=\mathcal{L}(A) \downarrow$
Computing the upward closure
Given: Automaton A.
Compute: Finite automaton B with $\mathcal{L}(B)=\mathcal{L}(A) \uparrow$

Computing closure is taking the environment into account
Finite automaton can serve as certificate

Closures

Closures

Petri nets

Closures

Petri nets

- a finite automaton run by multiple threads
- number of threads is unbounded
- threads can spawn, die, synchronize at runtime

Closures

Petri nets

- a finite automaton run by multiple threads
- number of threads is unbounded
- threads can spawn, die, synchronize at runtime

Limitation: Cannot check
non-existence of threads

Closures

Petri nets

- a finite automaton run by multiple threads
- number of threads is unbounded
- threads can spawn, die, synchronize at runtime

Limitation: Cannot check
non-existence of threads
Good for modelling concurrent
 systems

Closures

Petri nets

Compute $\mathcal{L}(A) \downarrow$ non-prim. rec. [HMW 2010]
Compute $\mathcal{L}(A) \uparrow \quad$???

Closures

Petri nets

Compute $\mathcal{L}(A) \downarrow$ non-prim. rec. [HMW 2010]
Compute $\mathcal{L}(A) \uparrow \quad$ doubly exponential

Closures

Petri nets BPP nets

Compute $\mathcal{L}(A) \downarrow$ non-prim. rec. [HMW 2010] exponential
Compute $\mathcal{L}(A) \uparrow \quad$ doubly exponential exponential

Closures

Petri nets
 BPP nets

Compute $\mathcal{L}(A) \downarrow$ non-prim. rec. [HMW 2010] exponential
Compute $\mathcal{L}(A) \uparrow$ doubly exponential exponential $\begin{array}{lll}S R E \subseteq \mathcal{L}(A) \downarrow & \text { EXPSPACE-compl. } & \text { NP-compl. } \\ S R E \subseteq \mathcal{L}(A) \uparrow & \text { EXPSPACE-compl. } & \text { NP-compl. }\end{array}$

Closures

Petri nets
 BPP nets

Compute $\mathcal{L}(A) \downarrow$ non-prim. rec. [HMW 2010] exponential
Compute $\mathcal{L}(A) \uparrow$ doubly exponential exponential
$\begin{array}{lll}S R E \subseteq \mathcal{L}(A) \downarrow & \text { EXPSPACE-compl. } & \text { NP-compl. } \\ S R E \subseteq \mathcal{L}(A) \uparrow & \text { EXPSPACE-compl. } & \text { NP-compl. }\end{array}$

Theorem
It is decidable whether \mathcal{L} (finite automaton $) \subseteq \mathcal{L}$ (Petri net).

Closures

Petri nets BPP nets

Compute $\mathcal{L}(A) \downarrow$ non-prim. rec. [HMW 2010] exponential
Compute $\mathcal{L}(A) \uparrow$ doubly exponential exponential $\begin{array}{lll}S R E \subseteq \mathcal{L}(A) \downarrow & \text { EXPSPACE-compl. } & \text { NP-compl. } \\ S R E \subseteq \mathcal{L}(A) \uparrow & \text { EXPSPACE-compl. } & \text { NP-compl. }\end{array}$

Theorem

It is decidable whether \mathcal{L} (finite automaton $) \subseteq \mathcal{L}$ (Petri net).

Theorem

It is decidable whether $\mathcal{L}(P N)=\mathcal{L}(P N) \downarrow$ resp. $\mathcal{L}(P N)=\mathcal{L}(P N) \uparrow$.

Closures

Part III. of the thesis

Publication:

M. F. Atig, R. Meyer, S. M., and P. Saivasan

On the upward/downward closure of Petri nets
In: MFCS 2017, volume 83 of LIPIcs, pages 49:1-49:14
$2^{\text {nd }}$ example:
Compositional verification
\& Regular separability

Compositional verification

Concurrent system

Compositional verification

Concurrent system

State explosion problem

Compositional verification

Concurrent system

State explosion problem

\#LoC(Comp ${ }_{1}| |$ Comp $\left._{2}\right)=\# \operatorname{LoC}\left(\right.$ Comp $\left._{1}\right) \quad+\# \operatorname{LoC}\left(\right.$ Comp $\left._{2}\right)$
\#States $\left(\right.$ Comp $_{1} \|$ Comp $\left._{2}\right)=$ \#States $\left(\right.$ Comp $\left._{1}\right) *$ \#States $\left(\right.$ Comp $\left._{2}\right)$

Compositional verification

Concurrent system

State explosion problem

$$
\# \mathrm{LoC}\left(\mathrm{Comp}_{1} \| \mathrm{Comp}_{2}\right)=\# \mathrm{LoC}\left(\mathrm{Comp}_{1}\right) \quad+\# \mathrm{LoC}\left(\mathrm{Comp}_{2}\right)
$$

\#States $\left(C_{0 m p}^{1} \|\right.$ Comp $\left._{2}\right)=\#$ States $\left(\right.$ Comp $\left._{1}\right) * \# S t a t e s(C o m p ~ 2)$

Solution: Compositional verification verify each component separately

Compositional verification

Concurrent system

Assume-guarantee reasoning [Jones 1983]

Compositional verification

Concurrent system

Assume－guarantee reasoning［Jones 1983］
〈Assume〉 Comp 〈Guarantee〉

Compositional verification

Concurrent system

Assume－guarantee reasoning［Jones 1983］
〈Assume〉 Comp 〈Guarantee〉 satisfied if
\forall Env：Comp｜｜Env F Assume \Longrightarrow Comp｜｜Env F Guarantee

Compositional verification

Concurrent system

Assume－guarantee reasoning［Jones 1983］
〈Assume〉 Comp 〈Guarantee〉 satisfied if
\forall Env：Comp｜｜Env F Assume \Longrightarrow Comp｜｜Env F Guarantee
Asymmetric proof rule for two components：
〈true〉 Comp ${ }_{1}$ 〈Assume〉
〈Assume〉 Comp ${ }_{2}$ 〈Guarantee〉
〈true〉 Comp $_{1} \|$ Comp $_{2}$ 〈Guarantee〉

Compositional verification

Concurrent system

Assume－guarantee reasoning［Jones 1983］
〈Assume〉 Comp 〈Guarantee〉 satisfied if
\forall Env：Comp｜｜Env F Assume \Longrightarrow Comp｜｜Env F Guarantee
Asymmetric proof rule for two components：

〈true〉 Comp ${ }_{1}$ 〈Assume〉
〈Assume〉 Comp 2 〈Guarantee〉
〈true〉 Comp ${ }_{1}$｜｜Comp ${ }_{2}$ 〈Guarantee〉

When checking Comp ${ }_{2}$ ：
Environment：Comp ${ }_{1}$
Certificate：Assume

Compositional verification

$$
\text { 〈true〉 Comp } 1 \text { || Comp } 2 \text { 〈Guarantee〉 }
$$

How to express this using languages？

Compositional verification

〈true〉 Comp ${ }_{1}$ II Comp ${ }_{2}$ 〈Guarantee〉

How to express this using languages？
First simplification：
〈Assume〉 Comp 〈Guarantee〉 satisfied if
\forall Env：Comp｜｜Env F Assume \Longrightarrow Comp｜｜Env $₹$ Guarantee

Compositional verification

〈true〉 Comp ${ }_{1}$ II Comp ${ }_{2}$ 〈Guarantee〉

How to express this using languages？
First simplification：

> 〈Assume〉 Comp 〈Guarantee〉 satisfied if Comp \vDash Assume \Longrightarrow Comp \& Guarantee

In particular：
〈true〉 Comp 〈Guarantee〉 if Comp \＆Guarantee．

Compositional verification

Comp $_{1} \|_{\text {Comp }}^{2}$ \& Guarantee

How to express this using languages?

Compositional verification

Comp $_{1}$ \| Comp $_{2}$ \& Guarantee

How to express this using languages?
Second simplification:
Comp \vDash Spec $\Longleftrightarrow \mathcal{L}($ Comp $) \subseteq \mathcal{L}($ Spec $) \Longleftrightarrow \mathcal{L}($ Comp $) \cap \mathcal{L}(\overline{\text { Spec }})=\varnothing$

Compositional verification

$$
\mathcal{L}\left(\text { Comp }_{1} \| \text { Comp }_{2}\right) \cap \mathcal{L}(\overline{\text { Guarantee }})=\varnothing
$$

How to express this using languages?
Second simplification:
Comp \vDash Spec $\Longleftrightarrow \mathcal{L}($ Comp $) \subseteq \mathcal{L}($ Spec $) \Longleftrightarrow \mathcal{L}($ Comp $) \cap \mathcal{L}(\overline{\text { Spec }})=\varnothing$

Compositional verification

$$
\mathcal{L}\left(\text { Comp }_{1} \| \text { Comp }_{2}\right) \cap \mathcal{L}(\overline{\text { Guarantee }})=\varnothing
$$

How to express this using languages?
Second simplification:
Comp \vDash Spec $\Longleftrightarrow \mathcal{L}($ Comp $) \subseteq \mathcal{L}($ Spec $) \Longleftrightarrow \mathcal{L}($ Comp $) \cap \mathcal{L}(\overline{\text { Spec }})=\varnothing$
Third simplification:
$\mathcal{L}\left(\right.$ Comp $_{1} \|$ Comp $\left._{2}\right)=\mathcal{L}\left(\right.$ Comp $\left._{1}\right) \| \mathcal{L}\left(\right.$ Comp $\left._{2}\right)=\mathcal{L}\left(\right.$ Comp $\left._{1}^{\prime}\right) \cap \mathcal{L}\left(\right.$ Comp $\left._{2}^{\prime}\right)$

Compositional verification

$$
\mathcal{L}\left(\text { Comp }_{1}^{\prime}\right) \cap \mathcal{L}\left(\text { Comp }_{2}^{\prime}\right) \cap \mathcal{L}(\overline{\text { Guarantee }})=\varnothing
$$

How to express this using languages?
Second simplification:
Comp \vDash Spec $\Longleftrightarrow \mathcal{L}($ Comp $) \subseteq \mathcal{L}($ Spec $) \Longleftrightarrow \mathcal{L}($ Comp $) \cap \mathcal{L}(\overline{\text { Spec }})=\varnothing$
Third simplification:
$\mathcal{L}\left(\right.$ Comp $_{1} \|$ Comp $\left._{2}\right)=\mathcal{L}\left(\right.$ Comp $\left._{1}\right) \| \mathcal{L}\left(\right.$ Comp $\left._{2}\right)=\mathcal{L}\left(\right.$ Comp $\left._{1}^{\prime}\right) \cap \mathcal{L}\left(\right.$ Comp $\left._{2}^{\prime}\right)$

Compositional verification

$$
\mathcal{L}\left(\text { Comp }_{1}^{\prime}\right) \cap \mathcal{L}\left(\text { Comp }_{2}^{\prime}\right) \cap \mathcal{L}(\overline{\text { Guarantee }})=\varnothing
$$

How to express this using languages?
Second simplification:
Comp \vDash Spec $\Longleftrightarrow \mathcal{L}($ Comp $) \subseteq \mathcal{L}($ Spec $) \Longleftrightarrow \mathcal{L}($ Comp $) \cap \mathcal{L}(\overline{\text { Spec }})=\varnothing$
Third simplification:
$\mathcal{L}\left(\right.$ Comp $\left._{1} \| \mathrm{Comp}_{2}\right)=\mathcal{L}\left(\mathrm{Comp}_{1}\right) \| \mathcal{L}\left(\mathrm{Comp}_{2}\right)=\mathcal{L}\left(\right.$ Comp $\left._{1}^{\prime}\right) \cap \mathcal{L}\left(\right.$ Comp $\left._{2}^{\prime}\right)$
Final simplification:
$\mathcal{L}\left(\right.$ Comp $\left._{2}^{\prime \prime}\right):=$ Comp $_{2}^{\prime} \cap \mathcal{L}(\overline{\text { Guarantee }})$

Compositional verification

$$
\mathcal{L}\left(\text { Comp }_{1}^{\prime}\right) \cap \mathcal{L}\left(\text { Comp }_{2}^{\prime \prime}\right)=\varnothing
$$

How to express this using languages?
Second simplification:
Comp \vDash Spec $\Longleftrightarrow \mathcal{L}($ Comp $) \subseteq \mathcal{L}($ Spec $) \Longleftrightarrow \mathcal{L}($ Comp $) \cap \mathcal{L}(\overline{\text { Spec }})=\varnothing$
Third simplification:
$\mathcal{L}\left(\right.$ Comp $\left._{1} \| \mathrm{Comp}_{2}\right)=\mathcal{L}\left(\mathrm{Comp}_{1}\right) \| \mathcal{L}\left(\mathrm{Comp}_{2}\right)=\mathcal{L}\left(\right.$ Comp $\left._{1}^{\prime}\right) \cap \mathcal{L}\left(\right.$ Comp $\left._{2}^{\prime}\right)$
Final simplification:
$\mathcal{L}\left(\right.$ Comp $\left._{2}^{\prime \prime}\right):=$ Comp $_{2}^{\prime} \cap \mathcal{L}(\overline{\text { Guarantee }})$

Compositional verification

〈true〉 Comp ${ }_{1}$｜｜Comp ${ }_{2}$ 〈Guarantee〉 $\mathcal{L}\left(\right.$ Comp $\left._{1}^{\prime}\right) \cap \mathcal{L}\left(\right.$ Comp $\left._{2}^{\prime \prime}\right)=\varnothing$

Compositional verification

〈true〉 Comp $_{1} \|$ Comp $_{2}$ 〈Guarantee〉 $\quad \mathcal{L} \cap \mathcal{K}=\varnothing$

Compositional verification

〈true〉 Comp $_{1} \|$ Comp $_{2}$ 〈Guarantee〉 $\quad \mathcal{L} \cap \mathcal{K}=\varnothing$
Proof rule：
〈true〉 Comp ${ }_{1}$ 〈Assume〉
〈Assume〉 Comp ${ }_{2}$ 〈Guarantee）
〈true〉 Comp ${ }_{1}$ I｜Comp ${ }_{2}$ 〈Guarantee〉

Compositional verification

〈true〉 Comp $_{1} \|$ Comp $_{2}$ 〈Guarantee〉 $\quad \mathcal{L} \cap \mathcal{K}=\varnothing$
Proof rule：
〈true〉 Comp ${ }_{1}$ 〈Assume〉
〈Assume〉 Comp ${ }_{2}$ 〈Guarantee〉
〈true〉 Comp ${ }_{1}$ I｜Comp ${ }_{2}$ 〈Guarantee〉
Separability proof rule：

$$
\begin{aligned}
& \mathcal{L} \subseteq \mathcal{R} \\
& \mathcal{K} \subseteq \overline{\mathcal{R}} \\
& \mathcal{L} \cap \mathcal{K}=\varnothing
\end{aligned}
$$

Compositional verification

〈true〉 Comp $_{1} \|$ Comp $_{2}$ 〈Guarantee〉 $\quad \mathcal{L} \cap \mathcal{K}=\varnothing$
Proof rule：
Separability proof rule：
〈true〉 Comp ${ }_{1}$ 〈Assume〉
$\mathcal{L} \subseteq \mathcal{R}$
〈Assume〉 Comp ${ }_{2}$ 〈Guarantee〉
$\mathcal{K} \subseteq \overline{\mathcal{R}}$
〈true〉 Comp ${ }_{1}$ I｜Comp ${ }_{2}$ 〈Guarantee〉
$\mathcal{L} \cap \mathcal{K}=\varnothing$

Compositional verification

〈true〉 Comp $_{1} \|$ Comp $_{2}$ 〈Guarantee〉 $\quad \mathcal{L} \cap \mathcal{K}=\varnothing$
Proof rule：
Separability proof rule：
〈true〉 Comp ${ }_{1}$ 〈Assume〉
$\mathcal{L} \subseteq \mathcal{R}$
〈Assume〉 Comp ${ }_{2}$ 〈Guarantee〉
$\mathcal{K} \subseteq \overline{\mathcal{R}}$
〈true）Comp ${ }_{1}$ I｜Comp ${ }_{2}$ 〈Guarantee〉
$\mathcal{L} \cap \mathcal{K}=\varnothing$

Compositional verification

〈true〉 Comp $_{1} \|$ Comp $_{2}$ 〈Guarantee〉 $\quad \mathcal{L} \cap \mathcal{K}=\varnothing$
Proof rule：
Separability proof rule：
〈true〉 Comp ${ }_{1}$ 〈Assume〉
$\mathcal{L} \subseteq \mathcal{R}$
〈Assume〉 Comp ${ }_{2}$ 〈Guarantee〉
$\mathcal{K} \subseteq \overline{\mathcal{R}}$
〈true）Comp ${ }_{1}$ I｜Comp ${ }_{2}$ 〈Guarantee〉
$\mathcal{L} \cap \mathcal{K}=\varnothing$

Comp．verification $\widehat{=}$ finding certificate for intersection emptiness

Regular separability

Separability
Given: Languages \mathcal{L}, \mathcal{K}.
Question: Is there \mathcal{R} with $\mathcal{L} \subseteq \mathcal{R}$ and $\mathcal{K} \cap \mathcal{R}=\varnothing$?

Regular separability

Separability
Given: Languages \mathcal{L}, \mathcal{K}.
Question: Is there \mathcal{R} with $\mathcal{L} \subseteq \mathcal{R}$ and $\mathcal{K} \cap \mathcal{R}=\varnothing$?
\mathcal{R} is an abstraction of \mathcal{L} that is a certificate for $\mathcal{L} \cap \mathcal{K}=\varnothing$.

Regular separability

Separability

Given: Languages \mathcal{L}, \mathcal{K}.
Question: Is there \mathcal{R} with $\mathcal{L} \subseteq \mathcal{R}$ and $\mathcal{K} \cap \mathcal{R}=\varnothing$?
\mathcal{R} is an abstraction of \mathcal{L} that is a certificate for $\mathcal{L} \cap \mathcal{K}=\varnothing$.
Only makes sense if \mathcal{R} is from a simpler class!

Regular separability

```
Regular separability for class \(\mathcal{F}\)
Given: Languages \(\mathcal{L}, \mathcal{K}\) from class \(\mathcal{F}\).
Question: Is there \(\mathcal{R}\) regular with \(\mathcal{L} \subseteq \mathcal{R}\) and \(\mathcal{K} \cap \mathcal{R}=\varnothing\) ?
```

\mathcal{R} is an abstraction of \mathcal{L} that is a certificate for $\mathcal{L} \cap \mathcal{K}=\varnothing$.
Only makes sense if \mathcal{R} is from a simpler class!

Regular separability

Regular separability for class \mathcal{F}

Given: Languages \mathcal{L}, \mathcal{K} from class \mathcal{F}.
Question: Is there \mathcal{R} regular with $\mathcal{L} \subseteq \mathcal{R}$ and $\mathcal{K} \cap \mathcal{R}=\varnothing$?
\mathcal{R} is an abstraction of \mathcal{L} that is a certificate for $\mathcal{L} \cap \mathcal{K}=\varnothing$.
Only makes sense if \mathcal{R} is from a simpler class!

Regular separability

Regular separability for class \mathcal{F}

Given: Languages \mathcal{L}, \mathcal{K} from class \mathcal{F}.
Question: Is there \mathcal{R} regular with $\mathcal{L} \subseteq \mathcal{R}$ and $\mathcal{K} \cap \mathcal{R}=\varnothing$?
\mathcal{R} is an abstraction of \mathcal{L} that is a certificate for $\mathcal{L} \cap \mathcal{K}=\varnothing$.
Only makes sense if \mathcal{R} is from a simpler class!

Regular separability

Regular separability for class \mathcal{F}
 Given: Languages \mathcal{L}, \mathcal{K} from class \mathcal{F}.
 Question: Is there \mathcal{R} regular with $\mathcal{L} \subseteq \mathcal{R}$ and $\mathcal{K} \cap \mathcal{R}=\varnothing$?

\mathcal{R} is an abstraction of \mathcal{L} that is a certificate for $\mathcal{L} \cap \mathcal{K}=\varnothing$.
Only makes sense if \mathcal{R} is from a simpler class!

Regular separability

Regular separability for class \mathcal{F}
 Given: Languages \mathcal{L}, \mathcal{K} from class \mathcal{F}.
 Question: Is there \mathcal{R} regular with $\mathcal{L} \subseteq \mathcal{R}$ and $\mathcal{K} \cap \mathcal{R}=\varnothing$?

\mathcal{R} is an abstraction of \mathcal{L} that is a certificate for $\mathcal{L} \cap \mathcal{K}=\varnothing$.
Only makes sense if \mathcal{R} is from a simpler class!

Regular separability

Regular separability for class \mathcal{F}
 Given: Languages \mathcal{L}, \mathcal{K} from class \mathcal{F}.
 Question: Is there \mathcal{R} regular with $\mathcal{L} \subseteq \mathcal{R}$ and $\mathcal{K} \cap \mathcal{R}=\varnothing$?

\mathcal{R} is an abstraction of \mathcal{L} that is a certificate for $\mathcal{L} \cap \mathcal{K}=\varnothing$.
Only makes sense if \mathcal{R} is from a simpler class!

Regular separability

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems e.g. Petri nets with coverability

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly separable.

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly separable.

Consequences I:

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly separable.

Consequences I:

- Separability is decidable under mild assumptions

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly separable.

Consequences I:

- Separability is decidable under mild assumptions (Just check whether the languages are disjoint)

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly separable.

Consequences I:

- Separability is decidable under mild assumptions (Just check whether the languages are disjoint)
- Separator can be constructed under mild assumptions

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly separable.

Consequences II:

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly separable.

Consequences II:

Corollary

If a language and its complement are WSTS languages, they are necessarily regular.

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems e.g. Petri nets with coverability
Theorem
If two WSTS languages are disjoint, then they are regularly separable.

Consequences II:

Corollary

If a language and its complement are WSTS languages, they are necessarily regular.

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly separable.

Consequences II:

Corollary

If a language and its complement are WSTS languages, they are necessarily regular.

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems e.g. Petri nets with coverability

Theorem
If two WSTS languages are disjoint, then they are regularly separable.

Proof:
Given $\mathcal{L}\left(A_{1}\right), \mathcal{L}\left(A_{2}\right)$ disjoint wSTS languages.

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems e.g. Petri nets with coverability
Theorem
If two WSTS languages are disjoint, then they are regularly separable.

Proof:

Given $\mathcal{L}\left(A_{1}\right), \mathcal{L}\left(A_{2}\right)$ disjoint WSTS languages.

1. Show that we can assume wlog. that A_{2} is deterministic.

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems e.g. Petri nets with coverability
Theorem
If two WSTS languages are disjoint, then they are regularly separable.

Proof:

Given $\mathcal{L}\left(A_{1}\right), \mathcal{L}\left(A_{2}\right)$ disjoint WSTS languages.

1. Show that we can assume wlog. that A_{2} is deterministic.
2. Find safe inductive invariant for $A_{1} \times A_{2}$.

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems e.g. Petri nets with coverability
Theorem
If two WSTS languages are disjoint, then they are regularly separable.

Proof:

Given $\mathcal{L}\left(A_{1}\right), \mathcal{L}\left(A_{2}\right)$ disjoint WSTS languages.

1. Show that we can assume wlog. that A_{2} is deterministic.
2. Find safe inductive invariant for $A_{1} \times A_{2}$.
3. Find a finite representation of the invariant using ideals.

Regular separability

WSTS = class of languages of finitely branching well-structured transition systems e.g. Petri nets with coverability
Theorem
If two WSTS languages are disjoint, then they are regularly separable.

Proof:

Given $\mathcal{L}\left(A_{1}\right), \mathcal{L}\left(A_{2}\right)$ disjoint WSTS languages.

1. Show that we can assume wlog. that A_{2} is deterministic.
2. Find safe inductive invariant for $A_{1} \times A_{2}$.
3. Find a finite representation of the invariant using ideals.
4. Convert this representation into an NFA defining a regular separator.

Closures

Part IV. of the thesis

Publication:

W. Czerwiński, S. Lasota, R. Meyer, S. M, K N. Kumar, and P. Saivasan Regular separability of well-structured transition Systems
In: CONCUR 2018, volume 118 of LIPIcs, pages 35:1-35:18
$3^{\text {rd }}$ example:
Synthesis
\& Games

Synthesis

Verification: Checking whether program is correct

Synthesis

Synthesis: Constructing a correct program

Synthesis

Synthesis: Constructing a correct program from program template

Synthesis

Synthesis: Constructing a correct program from program template

Two player game:
Environment player: Non-determinism in the program Synthesis player: Replacing wildcards

Synthesis

Synthesis: Constructing a correct program from program template

Two player game:

Environment player: Non-determinism in the program Synthesis player: Replacing wildcards

$$
\text { if }(x==0)
$$

code $_{1}$
else code $_{2}$

Synthesis

Synthesis: Constructing a correct program from program template

Two player game:

Environment player: Non-determinism in the program Synthesis player: Replacing wildcards

```
if (x == 0)
```

code $_{1}$
else
code $_{2}$
$\operatorname{assert}(x=0) \cdot \operatorname{code}_{1} \wedge$
$\operatorname{assert}(x \neq 0)$. code $_{2}$

Synthesis

Synthesis: Constructing a correct program from program template
Two player game:
Environment player: Non-determinism in the program Synthesis player: Replacing wildcards

$$
\begin{aligned}
& \text { if }(x==0) \\
& \operatorname{code}_{1} \\
& \text { else } \\
& \text { code }_{2}
\end{aligned}
$$

$$
\begin{gathered}
\text { if (???) } \\
\text { code }_{1} \\
\text { else } \\
\text { code }_{2}
\end{gathered}
$$

$\operatorname{assert}(x=0) \cdot \operatorname{code}_{1} \wedge$
$\operatorname{assert}(x \neq 0)$. code $_{2}$

Synthesis

Synthesis: Constructing a correct program from program template
Two player game:
Environment player: Non-determinism in the program
Synthesis player: Replacing wildcards

$$
\begin{aligned}
& \text { if }(x==0) \\
& \operatorname{code}_{1} \\
& \text { else } \\
& \text { code }_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{assert}(x=0) \cdot \operatorname{code}_{1} \wedge \\
& \operatorname{assert}(x \neq 0) \cdot \operatorname{code}_{2}
\end{aligned}
$$

if (???)
code_{1}
else
code_{2}
$\operatorname{code}_{1} \vee$
code 2

Synthesis

Synthesis: Constructing a correct program from program template
Two player game:
Environment player: Non-determinism in the program Synthesis player: Replacing wildcards

if $(x==0)$	if (???)
code_{1}	code_{1}
else	else
code_{2}	code_{2}
assert $(x=0) \cdot \operatorname{code}_{1} \wedge$	$\operatorname{code}_{1} \vee$
$\operatorname{assert}(x \neq 0) \cdot \operatorname{code}_{2}$	code_{2}

Certificate: Winning strategy $\hat{=}$ Instantiation of the template

Games

Solving a game
Given: Game system, specification Spec
Question: Has the synthesis player a strategy so that Game @ sk Spec?

Games

Solving an inclusion game
Given: Game system, specification Spec
Question: Has the synthesis player a strategy so that $\mathcal{L}($ Game @ s) $\subseteq \mathcal{L}($ Spec $)$?

Games

Solving an inclusion game
Given: Game system, specification Spec
Question: Has the synthesis player a strategy so that $\mathcal{L}($ CF-Game @ s $) \subseteq \mathcal{L}($ NFA $)$?

Problem 1: Game is context-free
(it models the control flow of a program)

Games

Solving an inclusion game
Given: Game system, specification Spec
Question: Has the synthesis player a strategy s so that $\mathcal{L}($ CF-Game @ s $) \subseteq \mathcal{L}($ NFA $)$?

Problem 1: Game is context-free
(it models the control flow of a program)
Solution: Various algorithms for games on context-free systems

- Guess-and-check [Walukiewicz 1996]
- Alternating two-way automata [KV 2000]
- Saturation [Cachat 2002]

Games

Solving an inclusion game
Given: Game system, specification Spec
Question: Has the synthesis player a strategy so that $\mathcal{L}($ CF-Game @ $s) \subseteq \mathcal{L}($ NFA $)$?

Problem 2: Specification is given as NFA

Games

Solving an inclusion game

Given: Game system, specification Spec
Question: Has the synthesis player a strategy s so that $\mathcal{L}($ CF-Game @ s $) \subseteq \mathcal{L}($ NFA $)$?

Problem 2: Specification is given as NFA
Three entities make decisions:

1) System player chooses (a part of) the behavior of Game
2) Environment player chooses (a part of) the behavior of Game
3) NFA chooses the behavior of the automaton for Spec the choices are invisible to the other players!

Games

Solving an inclusion game
Given: Game system, specification Spec
Question: Has the synthesis player a strategy so that $\mathcal{L}($ CF-Game @ s $) \subseteq \mathcal{L}($ NFA $)$?

Succinct context-free inclusion game

Left-hand side: Context-free game grammar
Right-hand side: Non-deterministic automaton

Games

Solving an inclusion game
Given: Game system, specification Spec
Question: Has the synthesis player a strategy so that $\mathcal{L}($ CF-Game @ s $) \subseteq \mathcal{L}($ NFA $)$?

Succinct context-free inclusion game

Left-hand side: Context-free game grammar
Right-hand side: Non-deterministic automaton

Existing techniques require an upfront determinization:
Construct DFA with $\mathcal{L}($ DFA $)=\mathcal{L}(N F A)$ and consider CF-Game \times DFA
Upfront determinization, leading to an exponential blowup

Games

Given:
Context-free game grammar (representing the game), NFA (representing the Spec)

Effective denotational semantics

Games

Given:
Context-free game grammar (representing the game), NFA (representing the Spec)

Effective denotational semantics

1. See grammar as a system of equations using three operations

- choices of the system player
- choices of the environment player
- concatenation

Games

Given:
Context-free game grammar (representing the game), NFA (representing the Spec)

Effective denotational semantics

1. See grammar as a system of equations
2. Solve the system of equations using Boolean formulas over the transition monoid

- represent terminals by their effect on the automaton
- represent choices of the system by conjunction
- represent choices of the environment by disjunction
- represent concatenation by formula composition

Games

Given:
Context-free game grammar (representing the game), NFA (representing the Spec)

Effective denotational semantics

1. See grammar as a system of equations
2. Solve the system of equations
3. Least solution associates to each non-terminal a formula

- represents the effect of the game on the automaton
- winning regions can be read-off
- winning strategies can be read-off

Games

Given:
Context-free game grammar (representing the game), NFA (representing the Spec)

Effective denotational semantics

1. See grammar as a system of equations
2. Solve the system of equations
3. Least solution associates to each non-terminal a formula

Advantages:

- On-the-fly determinization
- Reduce to a well-understood subproblem
- Prototype implementation performs better than competitors (Problem is 2EXPTIME-complete!)

Games

Example:

$$
\begin{aligned}
X_{\text {Synth }} & \rightarrow a . Y \mid \varepsilon \\
Y_{\text {Env }} & \rightarrow b . X
\end{aligned}
$$

$$
\rightarrow a_{0}=\frac{\mathrm{a}}{\mathrm{~b}}
$$

Games

Example:

$$
\begin{aligned}
X_{\text {Synth }} & \rightarrow a . Y \mid \varepsilon \\
Y_{\text {Env }} & \rightarrow b . X
\end{aligned}
$$

System of equations:

$$
\begin{aligned}
& X=a .\left.Y\right|_{\text {Synth }} \varepsilon \\
& Y=b . X
\end{aligned}
$$

Games

Example:

$$
\begin{aligned}
X_{\text {Synth }} & \rightarrow a . Y \mid \varepsilon \\
Y_{\text {Env }} & \rightarrow b . X
\end{aligned}
$$

System of equations:

$$
\begin{aligned}
X & =[a] ; Y \vee[\varepsilon] \\
Y & =[b] ; X
\end{aligned}
$$

Games

Example:

$$
\begin{aligned}
X_{\text {Synth }} & \rightarrow a . Y \mid \varepsilon \\
Y_{\text {Env }} & \rightarrow b . X
\end{aligned}
$$

Iteration:

Nr.	X	Y

System of equations:

$$
\begin{aligned}
& X=[a] ; Y \vee[\varepsilon] \\
& Y=[b] ; X
\end{aligned}
$$

Games

Example:

$$
\begin{aligned}
X_{\text {Synth }} & \rightarrow a . Y \mid \varepsilon \\
Y_{\text {Env }} & \rightarrow b . X
\end{aligned}
$$

Iteration:

Nr.	X	Y
0	false	false

System of equations:

$$
\begin{aligned}
& X=[a] ; Y \vee[\varepsilon] \\
& Y=[b] ; X
\end{aligned}
$$

Games

Example:

Iteration:

Nr.	X	Y
0	false	false
1	$[\varepsilon]$	false

System of equations:

$$
\begin{aligned}
& X=[a] ; Y \vee[\varepsilon] \\
& Y=[b] ; X
\end{aligned}
$$

Games

Example:

Iteration:

Nr.	X	Y
0	false	false
1	$[\varepsilon]$	false
2	$[\varepsilon]$	$[b] ;[\varepsilon]=[b]$

System of equations:

$$
\begin{aligned}
& X=[a] ; Y \vee[\varepsilon] \\
& Y=[b] ; X
\end{aligned}
$$

Games

Example:

Iteration:

Nr.	X	Y
0	false	false
1	$[\varepsilon]$	false
2	$[\varepsilon]$	$[b] ;[\varepsilon]=[b]$
3	$[a b] \vee[\varepsilon]$	$[b]$

System of equations:

$$
\begin{aligned}
& X=[a] ; Y \vee[\varepsilon] \\
& Y=[b] ; X
\end{aligned}
$$

Games

Example:

Iteration:

Nr.	X	Y
0	false	false
1	$[\varepsilon]$	false
2	$[\varepsilon]$	$[b] ;[\varepsilon]=[b]$
3	$[a b] \vee[\varepsilon]$	$[b]$
4	$[a b] \vee[\varepsilon]$	$[b] ;([a b] \vee[\varepsilon])$

System of equations:

$$
\begin{aligned}
& X=[a] ; Y \vee[\varepsilon] \\
& Y=[b] ; X
\end{aligned}
$$

Games

Example:

System of equations:

Iteration:

Nr.	X	Y
0	false	false
1	$[\varepsilon]$	false
2	$[\varepsilon]$	$[b] ;[\varepsilon]=[b]$
3	$[a b] \vee[\varepsilon]$	$[b]$
4	$[a b] \vee[\varepsilon]$	$[b] ;([a b] \vee[\varepsilon])$ $=[b a b] \vee[b]$

$$
\begin{aligned}
& X=[a] ; Y \vee[\varepsilon] \\
& Y=[b] ; X
\end{aligned}
$$

Games

Example:

System of equations:

$$
\begin{aligned}
& X=[a] ; Y \vee[\varepsilon] \\
& Y=[b] ; X
\end{aligned}
$$

Iteration:

Nr.	X	Y
0	false	false
1	$[\varepsilon]$	false
2	$[\varepsilon]$	$[b] ;[\varepsilon]=[b]$
3	$[a b] \vee[\varepsilon]$	$[b]$
4	$[a b] \vee[\varepsilon]$	$[b] ;([a b] \vee[\varepsilon])$ $=[b a b] \vee[b]$
		(b]

Games

Part V. of the thesis

Effective denotational semantics for context-free games

Publication:

L. Holík, R. Meyer, and S. M.

Summaries for context-free games
In: FSTTCS 2016, volume 65 of LIPIcs, pages 41:1-41:16

Games

Games

Games

Part V. of the thesis

Extensions to games with infinite executions (ω-languages)

Publication:

R. Meyer, S. M., and E. Neumann

Liveness verification and synthesis:
New algorithms for recursive programs
Unpublished preprint (available on arXiv)

Games

Part V. of the thesis

Extensions to higher-order recursion schemes (HORSes)

Publication:

M. Hague, R. Meyer, and S. M.

Domains for higher-order games
In: MFCS 2017, volume 83 of LIPIcs, pages 59:1-59:15

Games

Games

Part V. of the thesis

The frontier of the decidability of games

Publication:

R. Meyer, S. M., and G. Zetzsche

Bounded context switching for valence systems
In: CONCUR 2018, volume 118 of LIPIcs, pages 12:1-12:18

+ unpublished work

Games

Conclusion

Conclusion

In the thesis

Certificates for automata in a hostile environment

we have presented certificate-producing procedures
(1) for computing the closures of Petri net languages modeling the visible behavior under lossiness/gaininess,
(2) for the regular separability of WSTS languages with applications in compositional verification,
(3) solving inclusion games using effective denotational semantics with applications in program synthesis.

Conclusion

The work constituting the thesis has resulted in

- 5 peer-reviewed conference publications,
- 1 unpublished preprints,
- ongoing work on these subjects.

Thank you!

