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Abstract

The automated verification of the runtime behavior of a programwith respect to a specification

is a difficult problem, as demonstrated by undecidability results due to Turing, Rice, and others.

The automata-theoretic approach to verification consists of abstracting the program into an au-

tomaton, a restricted model of computation, while preserving the part of the program behav-

ior that is relevant to the specification. The field of automata theory provides various classes of

such automata and studies the trade-off between their expressiveness and the decidability and

computational complexity of their algorithmic problems. When taking a language-theoretic

approach, one associates to an automaton the sets of words it can generate and studies algo-

rithmic problems in which the task is to decide properties of these languages.

Decision procedures for automata resp. their languages can be used in verification by seeing

the input automaton in isolation as a perfect model of the system that should be verified. This

view, however, has two shortcomings. The first one is that because an automaton is an abstrac-

tion of the real system, one call to a decision procedure is oftentimes insufficient. Typically, a

multitude of such procedure calls is needed, e.g. when using a refinement loop that improves

the abstraction in each iteration, or when dealing with the verification of a concurrent system

in which each component is considered separately. Overcoming this deficiency requires proce-

dures that in addition to the Boolean answer to a decision problem also return a certificate, an

easily verifiable proof justifying the yes/no answer. In a setting in which a decision procedure

is invoked multiple times, the certificates produced by earlier calls can serve as an additional

input for subsequent calls of the procedure, facilitating the verification process. The second

shortcoming is that in many cases, the automaton under consideration is not isolated. It inter-

acts with an environment that is hostile with respect to our goal of verifying the system. This

hostile environment may stem from user input, communication with components not mod-

eled as part of the system, unreliable network communication, or it may simply be the result of

discarding some parts of the system when abstracting it into an automaton.

Our claim is that in order to enable the automata-theoretic approach to verification, decision

procedures for automata should provide certificates and take the hostile environment into ac-

count. This thesis provides such procedures for three different settings.

In the first setting, we assume that communicationwith the systemunder consideration is done

using an unreliable network that is either lossy or gainy. The observable output of the system

is a subsequence resp. supersequence of the real output, which can be modeled as the down-

ward resp. upwardof the languageof the system. It is known that sucha languageclosure always

stems from the simple class of regular languages, which in particular means that a representa-

tion for it can serve as a certificate. However, computing this representation is not trivial de-

pending on the class of automata the initial system stems from. In this thesis, we consider Petri
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nets with coverability as the acceptance condition, a model that is well-known to be suitable

as a representation for concurrent systems. We prove a collection of results that show how to

construct representations of the downward and upward closures with optimal size and within

optimal time for both Petri nets and restrictions thereof.

The second setting is the compositional verification of a concurrent system. This approach tries

to verify each component of the system on its own, avoiding the state explosion problem that

plagues the verification of concurrent systems. When focusing on a single component, the rest

of the components form an environment that has to be taken into account. We argue that the

assume-guarantee approach to compositional verification is closely related to the problem of

regular separability. Two languages are regularly separable if there is a regular language con-

taining one and being disjoint from the other. This regular separator serves as a certificate for

intersection-emptiness and it can be used as an overapproximation of the language it contains.

We show that in the case of languages of well-structured transition system (WSTSes), a general-

ization of the aforementioned class of Petri net coverability languages, any two disjoint WSTS

languages are regularly separable. From our proof, we obtain a construction of the separator.

Finally, we consider games played on game arenas induced by automata. These games model

situations in which two kinds of nondeterminism influence the behavior of the system. Usually,

one type of nondeterminism is favorable to the goal of verifying the system, while the other

type represents the hostile environment. This situation comes up e.g.when verifying branching

systems or when solving synthesis problems. We present an approach to solving such games

that is based on effective denotational semantics. That is, we turn the automaton into a system

of equations whose least solution provides the winner of the game. Additionally, the winning

strategy for the game, which can be seen as a certificate, can also be read off from the least

solution. We design algorithms that are based on effective denotational semantics for various

kinds of games induced by automata, including games defined by context-free grammars and

higher-order recursion schemes. Lastly, we study the frontier of the decidability of games on

arenas induced by valence systems over graphmonoids and establish that context-free games

are the only type of these games that can be solved.
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Zusammenfassung

Die automatisierte Verifikation des Laufzeitverhaltens eines Programms entsprechend einer

Spezifikation ist ein kompliziertes Problem, wie durch die Unentscheidbarkeitsresultate von Tu-

ring, Riceundanderengezeigtwurde.Die automatentheoretischeHerangehensweise andieses

Problem besteht darin, das Programm zu einem Automaten, einem eingeschränkten Berech-

nungsmodell, zu abstrahieren, dabei allerdings den Teil des Programmverhaltens, der für die

Spezifikation relevant ist, zu erhalten.DasGebiet derAutomatentheorie stellt eineReihe solcher

Automaten zur Verfügung und untersucht den Zielkonflikt zwischen dem Erreichen möglichst

hoher Ausdruckskraft und der Entscheidbarkeit und Berechnungskomplexität ihrer algorithmi-

schen Probleme. Wenn ein sprachtheoretischer Ansatz gewählt wird, assoziiert man zu einem

Automaten die Menge der von ihm generierten Wörter und untersucht algorithmische Proble-

me, bei denen es das Ziel ist, Eigenschaften dieser Sprachen zu entscheiden.

Entscheidungsverfahren für Automaten bzw. für ihre Sprachen können in der Verifikation ge-

nutzt werden, indem man den gegebenen Automaten als ein perfektes Modell für das System

sieht, welches verifiziert werden soll. Dieser Ansatz hat jedoch zwei Unzulänglichkeiten. Die

Erste ist, dass ein einzelner Aufruf einer Entscheidungsprozedur meist nicht ausreicht, da ein

Automat lediglich eine Abstraktion des zu verifizierenden Systems ist. Typischerweise ist eine

Vielzahl von Prozeduraufrufen nötig, z.B. wenn eine Schleife genutzt wird, die die Abstraktion

in jeder Iteration verfeinert, oder wenn ein nebenläufiges System verifiziert wird, bei dem jede

Komponente einzeln betrachtet wird. Das Überwinden dieser Unzulänglichkeit erfordert Proze-

duren, die zusätzlich zu ihrem Bool’schen Ergebnis auch ein Zertifikat liefern, also einen leicht

überprüfbaren Beweis als Begründung für die Ja/Nein-Antwort. In einem Szenario, in dem ei-

ne Entscheidungsprozedur mehrfach aufgerufen wird, können die Zertifikate, die von früheren

Aufrufen generiert werden, als zusätzliches Argument für weitere Aufrufe genutzt werden, um

den Verifikationsprozess zu erleichtern. Die zweite Schwäche ist, dass der Automat meist nicht

isoliert betrachtet werden kann. Er interagiert möglicherweise mit einer Umgebung, die sich

gegenüber dem Verifikationsziel feindlich verhält. Diese Umgebung kann aus Benutzereinga-

ben, der Kommunikation mit externen Komponenten, die im System nicht modelliert sind, un-

zuverlässiger Kommunikation über ein Netzwerk oder einfach daraus resultieren, dass bei der

Abstraktion des Systems in einen Automaten manche Aspekte verloren gegangen sind.

Unsere These ist, dass die Ermöglichung der automatentheoretischen Herangehensweise an

die Verifikation von Programmen Entscheidungsprozeduren für Automaten benötigt, die Zerti-

fikate liefern unddie die feindlicheUmgebungberücksichtigen. Die hier vorliegendeArbeit stellt

solche Prozeduren für drei verschiedenen Szenarien zur Verfügung.

Im ersten Szenario gehen wir davon aus, dass die Kommunikation mit dem zu betrachtenden

System über ein unzuverlässiges Netzwerk abgewickelt wird, welches verlustbehaftet ist. Die
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beobachtbare Ausgabe des Systems ist eine Teilsequenz der tatsächlichen Ausgabe, was als Ab-

schluss der Sprache des Systems nach unten modelliert werden kann. Analog dazu kann man

eine Situation betrachten, in der die beobachtbare Ausgabe des Systems die tatsächliche Aus-

gabe als eine Teilsequenz enthält, was dem Abschluss der Sprache nach oben entspricht. Es ist

bekannt, dass diese Sprachabschlüsse immer aus der einfachen Klasse der regulären Sprachen

stammen, was insbesondere bedeutet, dass ein sie repräsentierender Automat als Zertifikat ge-

eignet ist. Einen solchen Automaten zu berechnen ist jedoch ein nicht-triviales Problem, abhän-

gig davon, auswelcher Klasse die ursprüngliche Sprache kommt. In dieser Arbeit betrachtenwir

Petri-Netze mit Überdeckbarkeit als Akzeptanzbedingung, eine Klasse von Automaten, welche

bekannt dafür ist, für die Modellierung nebenläufiger Systeme geeignet zu sein. Wir beweisen

eine Reihe von Resultaten, durch die wir zeigen, wie im Fall von Petri-Netzen Automaten opti-

maler Größe, die den Sprachabschluss nach unten bzw. oben repräsentieren, mit optimalem

Zeitverbrauch berechnet werden können.

Das zweite Szenario ist die kompositionelle Verifikation nebenläufiger Systeme. Diese Heran-

gehensweise besteht darin, jede Komponente eines solchen Systems isoliert zu verifizieren,

um damit das Problem der Zustandsraumexplosion zu vermeiden. Beim Betrachten einer ein-

zelnen Komponente bilden die anderen Komponenten eine feindliche Umgebung, die be-

rücksichtigt werdenmuss.Wir argumentieren, dass der sogenannte Assume-Guarantee-Ansatz

für kompositionelle Verifikation mit dem regulären Separierbarkeitsproblem verwandt ist. Zwei

Sprachen sind regulär separierbar, wenn es eine reguläre Sprache gibt, die eine der Sprachen

beinhaltet, aber von der anderen disjunkt ist. Dieser reguläre Separator dient als Zertifikat

für die Leerheit des Schnitts der Sprachen und er kann als Überapproximation für die Spra-

che, die er beinhaltet, verwendet werden. Wir zeigen, dass für die Sprachen von wohlstruktu-

rierten Transitionssystemen (WSTS), eine Verallgemeinerung der oben genannten Petri-Netz-

Überdeckbarkeitssprachen, gilt, dass zwei disjunkteWSTS-Sprachen immer regulär separierbar

sind. Aus unserem Beweis resultiert eine Konstruktion für den Separator.

Im letzten Szenario betrachten wir Spiele, die auf von Automaten induzierten Spielbrettern ge-

spielt werden. Diese Spiele modellieren Situationen, in denen zwei Arten von Nichtdeterminis-

mus das Verhalten des Systems beeinflussen. Typischerweise ist dabei eine Art des Nichtdeter-

minismus hilfreich bei der Verifizierung des Systems, während die andere die feindliche Um-

gebung repräsentiert. Diese Situation entsteht z.B. bei der Verifikation verzweigender Systeme

und bei Syntheseproblemen. Wir stellen eine Herangehensweise zum Lösen solcher Spiele vor,

die auf effektiver denotationeller Semantik beruht. Das bedeutet, dass wir den Automaten in

ein Gleichungssystem übersetzen, dessen kleinste Lösung den Gewinner des Spiels liefert. Zu-

sätzlich kann die Gewinnstrategie, welche als Zertifikat dient, auch von dieser kleinsten Lösung

abgelesen werden. Wir entwerfen auf effektiver denotationeller Semantik basierende Algorith-

men für mehrere durch Automaten induzierte Spiele, darunter Spiele, die durch kontextfreie

Systeme sowie durch Rekursionsschemata höherer Ordnung definiert werden. Schlussendlich

untersuchen wir die Grenze der Entscheidbarkeit von Spielen, die von Valenzsystemen über

Graphmonoiden induziert sind, und zeigen, dass nur bei kontextfreien Spielen der Gewinner

berechnet werden kann.
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Which problems can be solved by computers – and how? This question lies at the heart of

computer science. Theoretical computer science studies which problems can be solved in prin-

ciple. To approach this difficult question, we start from the related area of verification. Verifica-

tion problems consist of checking whether a given system – usually a program, specified by its

source code – is correct with respect to a certain specification. Interest in verification is alsomo-

tivated by its practical importance, given the ubiquity of computers, in particular their usage in

applications like aviationwhere failuremay lead to lethal accidents. The deep link between ver-

ification and theoretical computer science comes from the theme of self-application: To under-

standwhich problems can be solved by computers, one tries to understandwhich properties of

computers can be decided by other computers. The principle of self-application has a history

reachingback to the beginning of the axiomatization ofmathematics and theoretical computer

science, demonstrating the usefulness of the approach. It is used in Russel’s paradox [Rus03],

in the proof of Gödel’s incompleteness theorem [Göd31], and in the proof of Turing’s famous

result that the halting problem is undecidable [Tur36].

In fact, Turing’s result can be understood as a contribution to the area of verification. He es-

sentially has shown that it is impossible to algorithmically check the termination of a given

(imperative) program. Similarly, Church’s earlier undecidability result [Chu36] for checking the

equivalence of λ-calculus terms can be understood in terms of functional programs: It is not de-

cidable if two given programs have the same runtime behavior. Finally, Rice’s theorem [Ric53]

shows that the problems studied by Church and Turing are not undecidable because of their

exceptional hardness. Rather, these are problems for which the proof of undecidability is not

too difficult. Any other problem in the area of verification is just as undecidable: A computer

cannot decide non-trivial properties of other computer systems in general.

This undecidability conflicts with the practical interest in verification, caused by the need for

correct programs in safety-critical applications. A number of workarounds have risen to fame,

including the unit tests and path coverage tests that are the current industry standard [Bei90;

MSB12]. However, these tests only show the absence of incorrect behavior in certain executions

selected by a human. In order to prove the absence of bugs in all executions, researchers in

theoretical computer science have developed models that make it easier for humans to prove

correctness by hand, like abstract statemachines [Gur00; Bör97], and they have also developed

13



1 Introduction

Program P

Specification S

yes, P ⊧ S (P satisfies S)

no, P /⊧ S (P does not satisfy S)

Verifier

Figure 1.0.a: An ideal verifier.

methods for computer-aided verification. For example, amethod based onHoare logic [Hoa69]

may complete aproof of correctness after certainparts of it, so-called loop invariants, havebeen

specified by a human.

Regardless of the advances in these areas, the fully automatic verification of programs remains

the ultimate goal: A computer system that checks all executions of a program for correctness

within finite time, without requiring the time investment by or the ingenuity of a human. Fig-

ure 1.0.a depicts such an ideal verifier. The undecidability results by Church, Turing, and Rice

prove that it cannot exist, but luckily, they leave two loopholes that one canexploit. Thefirst one

is that the results state that verification cannot be solved in general, i.e. for all input programs.

The second loophole is that the undecidability results apply to a scenario that is symmetric:

Both the input and the solver come from the class of general computer programs.

The first loophole means that it may be possible to construct an algorithm that is able to deter-

mine the correctness of some input programs in finite time, while it may fail to do so for others.

In fact, many verification problems are semi-decidable, e.g. for some verification problem, it

may be possible to always find a violation of the specification within finite time if the input pro-

gram is indeed incorrect. An algorithm for the problem that can always disprove correctness in

finite time while also being able to prove correctness for some programs does not violate the

aforementioned undecidability results while potentially being very useful in practice.

The second loophole means that if we assume that we want to solve a verification problem

using a general computer, but the input programs come from a restricted class of programs,

the undecidability results do not apply. This has led to various classes of systems, so-called

automata, being studied in the context of verification.

Automata

We use automata as a broad term for all kinds of computational devices that have a finite de-

scription. This includes both models for general computers or computer programs, like Turing

machines, and weaker models. If we study verification problems for weaker models, i.e. with

the assumption that the program that is the input to the verification problem is from a certain

class of automata, we can hope for the problem to be decidable. Automata theory, the subarea

of theoretical computer science which studies automata, provides a long list of these models

that differ from each other mainly in two ways. The first is how expressive they are, i.e. how

close they are to being able to model a real computer. The second is how amenable they are

to automatic verification, i.e. which verification problems can be solved algorithmically if we

14



P

S

Automaton A
from class C

yes, A ⊧ S

no, A /⊧ SAbstraction
Decision
procedure
for class C

⟹ yes, P ⊧ S

⟹ no, P /⊧ S
Figure 1.0.b: An ideal verifier using the automata-theoretic approach.

assume the input programs come from that class, and if they can be solved, how efficiently. As

expected, there is a tradeoff between the two aspects: Instances of a very simplemodel can be

analyzed easily, but they are not very expressive. Turingmachines, a complex type of automata,

are able to model any real-world computer program, but the undecidability results apply and

automatic verification is impossible. We will providemore examples for automata models later.

Combined, the two aforementioned loopholes enable the automata-theoretic approach to ver-

ification. Given a verification problem, one constructs an algorithm that works in two steps.

The first step is an abstraction step that transforms the input program into an instance of an

automata model. In the second step, one invokes an algorithm for the equivalent verification

problem for that class of automata. The hope is that the output of the algorithm deciding the

verification problem for the automaton coincides with the desired answer to the verification

problem for the given input program.

A schematic ideal verifier using this automata-theoretic approach is depicted in Figure 1.0.b.

Unfortunately, just like themore general ideal verifier, it cannot exist. Assumewe choose a class

of automata that is expressive enough to capture thebehavior of real computer programsas the

target of the abstraction. Then the decision problem for this class of automata that corresponds

to the undecidable verification problem that wewant to solve is also undecidable. If we choose

a strictly weaker class, the corresponding decision problemmight becomedecidable. However,

in that case, the abstraction will lead to a loss of information. We cannot guarantee that the

answer to the decision problem, i.e. whether the automaton satisfies the specification, is equal

to the answer to the verification problem, i.e. whether the program satisfies the specification.

One way to circumvent this problem is to choose the abstraction carefully. This includes choos-

ing the right class of automata as the target for the abstraction. Wewill comeback to this aspect

at the endof this sectionwhenwemention variousmodels of automata and their strengths and

weaknesses. For now, we focus on a more general approach that works for various classes of

automata. The idea is to choose the abstraction so that it either underapproximates or overap-

proximates the given program. These are ways to abstract a program into an automaton from

a restricted class, thus avoiding undecidability, while still retaining some information.

An underapproximation yields an automaton so that any execution of the automaton represents

a valid executionof theprogram, but not every executionof theprogram is necessarily reflected

in the behavior of the automaton. Consequently, an execution of the automaton violating the

specification is also an execution of the program violating it. In summary, we obtain that if

15
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P

S

A
Overapprox.

A ⊧ S ⇒ P ⊧ S

A /⊧ SAbstr.
Decision

proc.

i) Using overapproximation.

P

S

A
Underapprox.

A ⊧ S

A /⊧ S ⇒ P /⊧ SAbstr.
Decision

proc.

ii) Using underapproximation.

Figure 1.0.c: Verifiers using the automata-theoretic approach as in Figure 1.0.b, but the abstrac-
tion approximates the behavior of the input program. We may avoid undecidabil-
ity, but only in oneof the two cases, the answer providedby thedecisionprocedure
has mandatory implications for the correctness of the input program.

the automaton violates the specification, so does the program. If the automaton satisfies the

specification, we do not know whether the initial program is indeed correct or whether it was

incorrect, but the abstraction has led to losing the violating executions. Hence, underapproxi-

mations are useful for finding bugs, but a priori they are not suitable for proving correctness.

An overapproximation leads to an automaton with a larger set of possible executions: Any ex-

ecution of the program is represented by an execution of the automaton, but the automaton

may have additional spurious executions. If the automaton is then shown to be correct, all its

executions – including all executions of the original program – satisfy the specification. If the

automaton is incorrect, we do not knowwhether this comes from the program being incorrect

or whether it is caused by a spurious execution introduced by the abstraction. Hence, overap-

proximations are suitable for proving correctness, but in order to handle incorrect input pro-

grams, we would need some way to deal with spurious violations of the specification. Both

concepts – underapproximations and overapproximations – are depicted in Figure 1.0.c. In the

rest of this chapter, we will focus on examples using overapproximations.

One way to obtain an overapproximation of a program is by using a control flow abstraction.

This means we abstract a program into an automaton that just models the control flow, while

we discard the data values. Conditional branching in the program that jumps to one of several

branches depending on a data value is replaced by the nondeterministic choice among these

branches in the automaton. Consequently, even if the input programwas deterministic, the re-

sult of the control-flow abstraction is typically a nondeterministic automaton whose behavior

is an overapproximation of the program. The overapproximation can be made more precise

using predicate abstraction [GS97]. We assume that we have a finite collection of predicates,

functions that map the state space of the program (including the data values) to Boolean val-

ues. In addition to the control flow of the program, the automaton that is the result of applying

predicate abstraction also keeps track of the values of these predicates. We can resolve condi-

tional branching deterministically whenever the description of the data values provided by the

predicates is sufficiently precise. Otherwise, we still rely on nondeterminism.¹ The result is still

¹ For example, consider a program storing an integer n. Instead of storing n, a predicate abstraction may just store
the parity of n. When the program branches depending on whether n is even, we can resolve this choice. When
it branches depending on whether n equals 0, we have to use nondeterminism. Similarly, when an instruction
increments n by one, we can update the state of automaton deterministically because an increment will flip the
parity of n. When an instruction halves n, we have to use nondeterminism as we do not know the resulting parity.
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an overapproximation, but depending on the choice of the predicates, it can be much more

precise than a simple control flow abstraction.

The concept of approximations gives us a template for the construction of verification proce-

dures that are useful, although not very sophisticated. (Wewill discussmore involved concepts

that can deal with e.g. the shortcomings of overapproximations later.) In order to instantiate

this template, one needs abstractions and decision procedures for automata models. Practi-

cal research in verification has come up with a wide selection of abstractions that transform

programs into instances of various automata models. While we mention a few of them below,

abstractions are not the focus of this thesis.

The goal of this thesis is to enrich the toolkit of automata theory by providing procedures that

solve decision problems related to automata with optimal resource consumption. We observe

that in order to be useful in practice, a verification procedure that uses automata often needs to

produceanduse certificates and to interactwith theenvironment. Hence, the decisionprocedures

that we contribute should take these aspects into account. In the rest of this section, we will

explain what we mean by certificates and the environment. We will then give an introductory

example, demonstrating the usefulness of these concepts.

Certificates

Before discussingwhy certificates are useful in the context of the automata-theoretic approach

to verification, we will give a general definition. Assume we have an instance of a decision

problem and the information whether it is a yes- or a no-instance. A certificate is additional

information that proves that the Boolean yes/no answer is indeed correct. Typically, it is easier

to verify the answer using the certificate than to compute the answer without prior knowledge.

An easy example is intersection-emptiness problems. Assume we are given two (representa-

tions of ) sets. It is usually easier to verify that a given element is contained in both sets than to

compute that the two sets have a non-empty intersection. Hence, an element of the intersec-

tion can serve as a certificate for the non-emptiness of the intersection of two sets. Verification

problems can often be seen as intersection-emptiness problems: A program represents a set of

possible executions while a specification gives rise to a set of executions that violate the speci-

fication. If the two sets are disjoint, all possible executions are valid and the program is correct.

If the two sets have a non-empty intersection, the program is incorrect. An element of the in-

tersection as a certificate for non-emptiness is an execution of the program that violates the

specification. Hence, it is indeed a certificate for the incorrectness of the program. Producing

certificates in the case of an empty intersection resp. a program that is correct is amore involved

problem that we will discuss in the next section of this chapter, Section 1.1.

It is noteworthy that the modern definition of the important complexity class NP [Coo00] also

uses certificates. Traditionally, NP has been defined as the problems solvable by nondetermin-

istic Turing machines (NTMs) in polynomial time. NTMs are a model that is often perceived to
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be hard to understand, in particular because NTMs cannot be implemented in practice. To cir-

cumvent this problem, NP can equivalently be defined as the class of decision problems such

that each yes-instance has a certificate that allows a deterministic algorithm to verify that it is

indeed a yes-instance (with the constraint that the size of the certificate and the running time

of the verifier are polynomial).

There aremultiple reasons for being interested in algorithms that do not only compute a yes/no

answer for a decision problem that they solve, but also a certificate. Firstly, it makes the algo-

rithms accountable: Instead of blindly trusting the result produced by a procedure, the certifi-

cate can be used to check its correctness. This makes it easier to develop advanced and highly

optimizedalgorithms that are correct byusingawell-understoodand less-optimizedprocedure

to check the certificates during the development process. For example, in the SAT competition,

a competition inwhich state-of-the-art algorithms for the satisfiability problemof propositional

logic are benchmarked, the algorithms are required to provide certificates both for yes- and for

no-instances [HIJSB18].

Secondly, there are cases in which it is not the Boolean answer to the decision problem that is

relevant in practice, but the certificate for that answer. This is true in particular for verification

problems: If the answer to a verification problem is negative and the program is incorrect, the

developers of the program will most likely require a violating execution to be able to find, un-

derstand, and resolve a bug in the program. In the last section of this chapter, we will briefly

discuss decision problems related to synthesis for which a certificate for the answer, a so-called

strategy, is needed in order to actually perform the synthesis task.

Verification procedures that use the automata-theoretic approachmay invoke a decision proce-

dure not once, but multiple times. For example, each invocation may correspond to a different

part of the system that should be verified. The first call produces a certificate and subsequent

calls will take the certificates produced by earlier calls as additional inputs. Wewill discuss com-

positional verification as an example for this concept in detail later. Alternatively, a procedure

may work with a sequence of refinements of the abstraction of the system, calling the decision

procedure once for each refinement. To refine an abstraction in that sequence in order to ob-

tain the next one, one calls the decision procedure and then uses the resulting certificate. We

briefly discuss the CEGAR loop as an example.

Counter-example guided abstraction refinement (CEGAR) [CGJLV00] is a technique that was first

developed in the context of abstract interpretation. Abstract interpretation [CC77] is an ap-

proach to verification that is in a certain sense the antithesis to the automata-theoretic ap-

proach. The automata-theoretic approach takes the input program, abstracts it, and then com-

putes precise information about the abstraction. Abstract interpretation takes the unmodified

programand computes imprecise or abstract information about it, in thehope that this informa-

tion is sufficient to settle the answer to the verification problem. In spite of this contrast, many

techniques can be brought fromoneworld to the other. For example, the CEGAR approachwas

brought to the world of automata theory by Podelski and his coauthors, see e.g. [HHP10]. We
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have previously mentioned that an overapproximation of a program is useful for verification in

the sense that if the overapproximation is correct, then so is the initial program. If the overap-

proximation is incorrect, we will have to determine whether this is due to an execution of the

initial program that violates the specification, or just due to a spurious execution introduced by

the overapproximation. The CEGAR approach consists of constructing an initial overapproxima-

tion, and then executing the following steps in a loop: We verify the current overapproximation

by calling an automata-theoretic decision procedure. If the overapproximation is correct, then

so is the programand the procedure terminates. Otherwise, we assume that the decision proce-

dure yields an incorrect execution as the certificate. We check whether the violating execution

is indeed an execution of the given program. In contrast to the verification problem, this is a

decidable question. If the violating execution is a real execution of the program, the program is

incorrect and the procedure terminates. Otherwise, the violating execution is a spurious coun-

terexample, and we can obtain a proof for its spuriousness as a second certificate. We then use

this proof as a guide to construct the description of a set of spurious counterexamples that in-

cludes the one that we obtained earlier. We construct a new overapproximation whose set of

possible executions is the old set of possible executions minus this set, then restart the loop.

Discussing the details of the procedure, e.g. how we check whether an execution is spurious

and how the refinement works in detail, is beyond our scope. If the basic CEGAR principle out-

lined here is combined with some implementation tricks, one ends up with a procedure that

has been shown to perform well in practice [HCDGN+17]. The loop is not guaranteed to termi-

nate, meaning that the CEGAR approach does not solve the verification problem within finite

time in all cases and hence its existence does not contradict the undecidability results. Even if

the program is correct, wemay not be able to find an overapproximation that is precise enough

to prove correctness within finite time. Similarly, even an incorrect program that actually has a

violating execution may still cause us to consider spurious executions in the loop ad infinitum.

However, for many programs of practical interest, the procedure will within finite time either

prove that the program is correct by finding a suitable overapproximation or prove incorrect-

ness by finding a violating execution. Certificates are crucial in two steps of the loop in order to

deal with spurious counterexamples: We need a certificate to decide whether a violation that

we have found is spurious, and we need a certificate for the refinement of the approximation.

Hence, certificates are absolutely essential to make the CEGAR approach work.

The environment

When we apply an automata-theoretic decision procedure to an abstraction of a system, there

is a part of the system that is not reflected in the automaton because it has been lost during

the abstraction. We call this part of the system the environment. It is hostile to the verification

process because it is the essence of whatmay prevent the result of the decision procedure from

coinciding with the desired answer to the original verification problem. In order to succeed at

verification, an algorithm has to interact with the hostile environment at some point. Only if
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we make sure that every possible behavior of the environment is taken into account, we can

guarantee that the output of the decision procedure is correct.

In an algorithm that is based on overapproximation, the environment corresponds to the set

of spurious executions. These are the executions that are present in the automaton but not in

the initial program. If the abstraction that is obtained by overapproximating is correct, one can

deduce the correctness of the program; the environment has been taken care of by the overap-

proximation. But if the abstraction is incorrect, interacting with the environment is necessary

in order to have a chance at completing the verification task. In the aforementioned CEGAR

approach, if the algorithm finds that the current overapproximation violates the specification,

it queries the environment in order to check whether the violating execution is spurious. If it is,

we also obtain from the environment a proof of spuriousness that is then used for refinement.

Only by using the environment, we can obtain a powerful tool that can deal with real programs

even if the initial overapproximation is not correct.

The initial system that the verificationprocedure is startingwith is usually not living in a vacuum,

but also inwhat is often called an environment. For example, a programmay accept user inputs

or it may communicate with a reactive system like a database server. These external dependen-

cies are typically not fully specified in a description of the system. Our notion of environment

may seem to be in conflict with this type of environment. However, we argue in the following

that the two notions of environment are essentially the same.

Firstly, the two types of environments play the same role. In both cases, we are interested

in the correctness of a system, but our algorithm has to work with an abstract description of

the system that is missing some parts. It does not matter whether the description is incom-

plete because we have applied an abstraction to a more comprehensive model of the system,

or whether the description is missing some external dependencies that were never explicitly

modeled to begin with.

Secondly, the two types of environments usually manifest themselves in the same way in the

abstraction. Hence, they can also be dealt with in the same way. For example, it is common to

model external dependencies using nondeterministic branching: A program location at which

the program queries a database server can be seen a nondeterministic choice between various

transitions, one for each possible result. Nondeterminism also comes into play when we apply

an abstraction. As we have explained earlier, an abstraction that removes a data value means

that conditional branching in theprogram that depends on this data value has to be turned into

nondeterministic branching in the automaton. In both cases, the abstractionoverapproximates

the behavior of the original program. This imprecision is handled by seeing the nondetermin-

ism as hostile to the verification task. A nondeterministic system is usually only considered to

be correct if all of its executions that may result from resolving the nondeterminism at runtime

are correct. When we find a violating execution, we may interact with the environment to find

out whether the execution is spurious. If the nondeterminism comes from an external depen-

dency like a database server, wemight check a specification of the database server to find out if
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the behavior in the spurious execution is actually possible. If the nondeterminism comes from

the abstraction that we had applied earlier, we might check whether the execution is a valid

execution of the original program, like in the CEGAR loop. In the rest of this thesis, we will not

conceptually distinguish the two types of environment.

We give some additional examples on how a verification algorithm may take the environment

into account. Each of these examples corresponds to one of the three main topics that this

thesis is concerned with. In each example, the way in which the environment is specified and

hence also the way in which it is interacted with is different.

The first example is the case of a systemwithwhichwe interact through unreliable communica-

tion. We have a description of the system, but what we are actually interested in is its visible be-

havior. Hence, we may see the unreliability of the communication channel as an environment

that has to be taken into account. We do not have a precise description of the environment

and will assume that it is either lossy, i.e. it only removes messages from the communication

channel, or gainy, i.e. it only adds messages. This allows us to compute a description of the be-

havior of the overall system (i.e. after taking the communication into account) that is larger but

conceptually simpler than the descriptionwe startedwith. We discuss the details in the second

section of this chapter, Section 1.2, and the corresponding theory in Part III. of this thesis.

In our second example, we consider games, i.e. systems with two types of nondeterminism.

One type of nondeterminism is uncontrollable demonic nondeterminism which corresponds

to the environment and is hostile to the verification task. Additionally, there is controllable

angelic nondeterminism. The latter can be instantiated at runtime to react to the nondetermin-

istic choices of the environment in order to obtain an execution satisfying a specification. The

goal is to find an instantiation that always reacts correctly. This setting appears in some verifi-

cation tasks, e.g. when both the system and the specification are modeled as nondeterministic

automata. Such a system is correct if for each of its branches, there is a matching branch of the

specification. Additionally, two types of nondeterminism are needed tomodel program synthe-

sis. Wediscuss the details in the third section of this chapter, Section 1.3, and the corresponding

theory in Part V. of this thesis.

Our final example is concernedwith a compositional approach to the verification of concurrent

systems. The goal is to verify the system component-wise. When focusing on a single compo-

nent, the rest of the components become an environment that has to be taken into account.

We explain the details in the following.

Compositional verification

We consider concurrent systems, systems that consist of multiple components that run concur-

rently andmay communicate with each other during runtime. The verification of such systems

is one of the most challenging tasks in the area of verification. At the same time, the ubiquity

of e.g. distributed systems means that this task is of the utmost importance.

21



1 Introduction

For the sake of simplicity, we will in the following consider a concurrent system whose compo-

nents are given as finite(-state) automata. Finite automata are among the simplest and most

restricted types of automata. A finite automaton consists of a list of finitely many states and a

list of the transitions between these states. At each point during runtime, the automaton is in

a specific state. Other than that, it has no storage that it can manipulate. With this set of fea-

tures, a finite automaton can model a program that only uses bounded storage by encoding

the stored data as part of the state. Finite automata support neither recursion nor concurrency.

The advantage of using such a simple model is that the undecidability results do not apply. For

input programs modeled by finite automata, virtually all verification problems are decidable.

While a single finite automaton is simple, a concurrent system whose components are finite

automata is not. Just as other problems in the area of verification of concurrent systems, veri-

fying such a system suffers from the so-called state explosion problem. It would be possible to

construct a single finite automaton as a representation for the whole system. However, since

finite automata lack inherent support for concurrency, this leads to an automaton with a huge

state space. Each global state of that automaton is a combination of local states, one for each

component, and the global state space is the set of all such combinations. Assumewe add com-

ponents to the system or enlarge existing ones. The effect on the size of its description, given

as a collection of automata, is additive. The size of the global state space, however, grows mul-

tiplicatively. Any verification procedure that explicitly explores this global state space usually

has a worst-case running time that is exponential in the number of components.

Results in computational complexity theory have led us to believe that it is highly unlikely that

this worst-case lower bound can be improved. In particular, algorithms that do not construct a

single finite automaton as a representation of the system, but instead use a model that has in-

herent support for concurrency like Petri nets, are not anymore efficient. This brings us back to

the first loophole that we considered when we wanted to solve undecidable verification prob-

lems. An undecidable problem cannot be solved in full generality, but a proceduremay be able

to determine the status of some instances within finite time. Similarly, a problem with a high

computational complexity cannot be solved efficiently in the worst case. However, an algo-

rithm may be able to deal with a large class of inputs that are relevant in practice quickly. This

hope is fueled by advances with respect to similar problems. For example, satisfiability check-

ing for propositional logic is strongly believed to be impossible with less than exponential time

consumption in general. Nevertheless, there are state-of-the-art tools that can solve instances

of practical interest with millions of variables within minutes, see e.g. [LFLMLL18].

Several approaches that try to enable efficient verification procedures for concurrent systems

are collectively referred to as compositional verification [OG76; Lam77; MC81; Pnu84]. They all

try to verify each component of a concurrent systemon its own, without ever fully exploring the

global state space. If this succeeds, the running time should scale polynomially with the size of

the description of the system (including the number of components), instead of exponentially.
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Under the presence of some form of communication between the components, however, it is

typically impossible to simply consider each component individually.

When we focus on a single component of a concurrent system, the rest of the components

turn into an environment. The effect of the environment on that component usually cannot

be disregarded, it has to be taken into account. In order to avoid the aforementioned state

explosionproblem,wedonotwant toexplicitly construct adescriptionof theenvironment. The

hope is that an abstraction of the environment is sufficient to capture the interference caused

by it with respect to the verification of the single component that we consider. When we verify

that component, the abstraction is a specification for the behavior of the hostile environment

thatwe can rely on. However, this results in an additional proof obligation: We have to establish

that the environment indeed satisfies its specification.

We argue that the specification of the environment plays the role of a certificate. If the system

at hand consists of two components, we start by focusing on one component. The goal is to es-

tablish a specification that is satisfied by any system containing that component, independent

of the interference caused by the other component. Then, one shows that the whole system

is correct by considering the other component. In order to deal with communication between

components, we rely on the specification that has already been established. For a system with

multiple components, one can use an iterative approach. One considers the components one

by one, often starting with the component that is influenced the least by the others. The algo-

rithm produces a sequence of certificates in the form of specifications for parts of the system

until it is finally able to prove the desired property of the whole system.

There is a clear trade-off between the size of the abstraction and the ease of using it to establish

correctness. A precise abstraction resembles the systemmore closely, which canmake it easier

to both establish its correctness and to use it to complete the verification of the system. How-

ever, the size heavily impacts the running time of the verification procedure. In general, there

is no guarantee that there is an abstraction of a component that is precise enough to prove

correctness while having a substantially smaller description. Hence, the existing approaches

for compositional verification do not contradict the belief that the efficient verification of con-

current systems is impossible in general. However, the method has been shown to work well

in practice. On the theoretical side, when the components are finite automata, there are algo-

rithms that can find the smallest abstraction of a component that is sufficient to prove correct-

ness based on Angluin’s L∗ algorithm [Ang87; PGBCB08]. When the components are modeled

as automata from a less restrictive class, the problem becomes more involved. We will discuss

the details in the next section of this chapter, Section 1.1.

Automata theory

Weconclude this sectionby comingback to the areaof automata theory. Wename someclasses

of automataandexplain their strengths andweaknesses. Thiswill also explainhowanautomata
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model that is suitable as the target of the abstraction in the automata-theoretic approach to

verification can be chosen.

We have already mentioned that there are types of automata that are able to model the be-

havior of a general program, with Turing machines being the most important example. One

believes that these Turing-complete models are at the frontier of computability: Each automa-

ton from such a model can be simulated by a real computer, and every algorithm that can be

implemented in the physical word, e.g. in the form of a computer program, can be modeled

as such an automaton. Unfortunately, each of these models suffers from the undecidability re-

sults mentioned at the beginning of this section. This means that every verification problem in

which the goal is deciding a non-trivial property of the behavior of an automaton from a Turing-

complete class is undecidable and hence cannot be solved algorithmically in full generality.

We have already briefly discussed finite automata. This model is very restricted and hence un-

able to model most real computer programs. At the same time, virtually all verification prob-

lems which take finite automata as inputs are decidable. Between finite automata and Turing

machines, there is a whole hierarchy of models that are more expressive than finite automata

while still allowing for some verification problems to be decidable. We mostly focus on two

branchesof this hierarchy in the rest of the thesis: Context-freemodels likepushdownautomata

and their extended and restricted variants, and Petri nets and related models.

Pushdown automata are essentially finite automata that maintain a stack to store information

during runtime. To avoid Turing-completeness, this stack can only be accessed in a LIFO (last

in, first out) manner. It is well-understood that pushdown automata are suitable to model pro-

grams with recursion by using the stack as a call-stack. However, pushdown automata can-

not model unbounded storage and they have no inherent support for concurrency. The stack

makes them suitable to model the control flow of programs in many classical imperative pro-

gramming languages, e.g. C [ISO90], while lacking support for modern features like generics

and templates [Ale01] and higher-order functions [Pey03].

For pushdown automata, many verification problems like safety, i.e. whether a certain error

state can be avoided, or liveness, i.e. whether a certain good state can be reached indefinitely

often, are decidable. However, some problems that are decidable for finite automata are un-

decidable for pushdown automata. For example, it is not decidable whether two pushdown

automata can be synchronized in a way such that an error state is reached in both automata.

This corresponds to the fact that pushdown automata cannot deal with concurrency; the com-

bination of two pushdown automata, or alternatively, a pushdown automaton that maintains

two stacks, is a Turing-complete model.

In contrast to pushdown automata, Petri nets can deal with concurrency but not with recursion

(and neither of the two models can deal with unbounded storage). A Petri net is essentially

a finite automaton in which a potentially unbounded number of threads run simultaneously.

These threads can spawn, terminate, and synchronize during runtime. Similar to pushdown
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automata, basic verification problems like safety verification are decidable for Petri nets. Unlike

pushdown automata however, for which safety verification can be done in polynomial time,

coverability, the algorithmic problem for Petri nets corresponding to safety verification, is much

more expensive and needs at least exponential time in general.¹

At the beginning of this section, we have argued that the ultimate goal is to design a verifica-

tion algorithm that works without human input. The automata-theoretic approach seems to

miss that goal, since it appears that we have to choose an automata model as the target of the

abstraction by hand. However, as we just have discussed, each class of automata has a general

set of strengths and weaknesses, e.g. Petri nets are useful to model concurrency. This allows us

to pick an automata model for a verification task based on the type of program and the type of

specification, without actually looking at the details of the implementation. It also means that

a verification tool using the automata-theoretic approach that has been developed with a spe-

cific program in mind is typically also useful for a wide class of similar programs. If the chosen

automata model is not suitable to model certain features of the original program (e.g. neither

Petri nets nor pushdown automata can deal with unbounded storage), using an iterative ap-

proach like the CEGAR loop may help to alleviate the problem.

In addition to the automata-theoretic approach to verification, there is another noteworthy link

between automata theory and verification. The verification problems for various automata are

important examples of problems that are complete for certain classes of computational com-

plexity. This essentially means that a certain type of automaton with unrestricted resource con-

sumption typically corresponds to an unrestricted program with a certain bounded resource

consumption. For example, whether a pushdown automaton reaches a certain error state can

be decided in polynomial time. In turn, any Turing-machine that has a polynomially bounded

time consumption can be turned into a pushdown automaton so that the Turing-machine can

reach an error state if and only if the pushdown automaton can. When we introduce a decision

problem that is based on automata in the rest of thesis, we will generally also provide a lower

bound for the computational complexity of solving that problem. When we propose an algo-

rithm solving the problem, we will analyze its resource consumption and determine whether it

matches the lower bound.

The language-theoretic approach

Automata theory is closely connected to taking a language-theoretic approach to verification.

The basic idea is to associate to a program or system a finite set of atomic actions that the pro-

grammay execute. An execution of the system corresponds to a sequence of such actions, and

the system itself gives rise to a set of sequences, one for each possible execution. In the fol-

lowing, we will call the actions letters, the set of possible actions an alphabet, the sequences of

actions words, and sets of sequences languages. How we translate actions into letters depends

¹ In fact the problem is EXPSPACE-complete [Lip76], meaning that solving it in full generality needs at least exponen-
tial space in the worst case. If the commonly held beliefs about the relations between various complexity classes
are true (EXPSPACE ≠ EXP), this means an algorithm solving it will need at least super-exponential time.
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on the verification task at hand. For example, letters may correspond to assembly commands,

packages sent over a network, or read and write accesses to memory locations.

In the same way that a program gives rise to a language, a specification defines a language of

legal executions and its complement, the language of illegal executions. Verifying a program

typically amounts to checking an inclusion: The set of possible executions should be a subset of

the set of legal executions. Equivalently, the intersection between the possible and the illegal

executions should be empty.

The crucial advantage provided by the language-theoretic approach is a layer of abstraction on

top of the internal workings of a system. For example, it allows us to consider specifications

that are independent of the internal design of a system, e.g. the reachability of a special error

state. Instead, the specification talks just about the visible behavior of the system. This allows

us to specify the behavior that wewant to consider illegal and then verify that it does not occur,

without relying on the implementation of the error handling inside the system being correct.

In the following, we will use the operator L(−) to associate a language to a system or specifi-

cation. The verification problem for a system A and a specification ϕ is typically equivalent to

the question of whether the inclusion L(A) ⊆ L(ϕ) holds. We assume that there is a common

alphabet Σ so that bothL(A) andL(ϕ) are subsets of Σ∗, the set of all finite words formed using

letters from Σ. Note that in principle, it is possible to also consider languages of infinite words,

corresponding to non-terminating executions, as well as languages of trees, corresponding to

executions that incorporate branching behavior. However, for the sake of simplicity, we will

focus on language of finite words, corresponding to terminating executions, for now.

We have argued before that automata models are useful to represent classes of systems with

restricted expressiveness. Combining an automata model with a notion of acceptance yields

the notion of the language of an automaton, the set of all words generated by the accepting

executions of that automaton. Each class of automata gives rise to a class of languages that they

describe. Properties of the automata typically correspond to properties of their languages. The

aforementioned finite automata lead to a class of languages called the regular languages. As

we pointed out earlier, deciding properties of finite automata is simple. Correspondingly, the

same applies to regular languages, assuming they are given in the form of finite automata gen-

erating them. Additionally, regular languages are very well-behaved when it comes to closure

properties, e.g. the intersection of regular languages is again a regular language.

Other classes of automata that are more expressive define classes of languages that are larger

but for which it ismore difficult to decide their properties. Pushdown automata define the class

of context-free languages, a class of languages that is particularly useful tomodel the syntax of

programming languages. For Petri nets, different acceptance conditions will lead to different

classes of languages. In this thesis, we almost exclusively consider so-called coverability as the

condition for when an execution is accepting; we will refer to the class of languages associated
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to coverability as Petri net languages. Both the context-free and the Petri net languages are

superclasses of the regular languages.

Certificates for automata in a hostile environment

The rest of this introductory chapter is concerned with discussing each of the three aforemen-

tioned examples in more detail: Compositional verification, unreliable communication, and

games. In each case, we will give more information on why the environment is important and

on the role that certificates play. It turns out that each example is associatedwith an interesting

class of automata-theoretic decisions problems. The Parts III. to V. of this thesis are concerned

with studying the theory behind these decision problems. Whenever these problems have al-

ready been studied and solved for certain classes of automata, e.g. finite automata, our goal is

to provide a solution for more expressive classes of automata. For each problem, we develop

a rich theory, provide lower bounds for the computational complexity, present an algorithm

solving it, and show that our algorithm has optimal resource consumption.
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1.1 Compositional verification and separability

In this section, we continue to consider the compositional verification of concurrent systems.

Wehave already explainedwhy the verification of concurrent system is essential, but also rather

difficult. We came to the conclusion that in order to tame the complexity of the problem, a com-

positional approach is necessary. In the following, we make our explanation more formal. We

will then explain how separability problems are related to the theoretic foundations of compo-

sitional verification.

A language-theoretic approach to compositional verification

We start by explaining how the language of a concurrent system can be constructed, given the

languages of its components. Let A = A1 ∥ A2 ∥ . . . ∥ Ak be a concurrent system that is ob-

tained as the result of the parallel composition of the components A1 to Ak . We assume that

each component Ai has an associated alphabet Σi , a set of letters or atomic commands that

this component may execute. We consider a simple model in which two components Ai , A j
synchronize on the actions in the shared alphabet Σi ∩ Σ j, while actions that are not shared

can be executed independently. We mimic this model by defining the parallel composition

Li ∥ L j of two languages Li and L j over Σi and Σ j as the set of words over Σi ∪ Σ j such that

if we project a word to one of the alphabets (by removing all letters not contained in that al-

phabet), we obtain a word in the corresponding language. With this definition, the language

of the parallel composition of components is the parallel composition of the languages of the

components, L(A1 ∥ A2) = L(A1) ∥ L(A2). Given that the parallel composition operator is

both associative and commutative, extending this to systemswithmore than two components

is straightforward.

There are two special cases of the parallel composition of languages that are noteworthy. The

first is the case that the alphabets are equal, Σ1 = Σ2. In this case, theprojections leave thewords

unchanged, and the parallel composition is equal to the intersectionL1 ∩L2. The second inter-

esting case is that the two alphabets are disjoint, Σ1 ∩ Σ2 = ∅. Then, the parallel composition

is equal to the so-called shuffle of the languages, the set of all interleavings of words from L1

and L2, where two words from each of the languages are interleaved in an arbitrary order, but

the order of letters within each of the two words is preserved.

One popular approach to composition verification is assume-guarantee reasoning [Lam77;

Jon83]. Our presentation follows [GNP18], but we have adapted it to take a more language-

theoretic approach. Assume-guarantee reasoning isbasedon triplesof the form ⟨ψ⟩A⟨ϕ⟩, where

A is a system and ψ and ϕ are specifications. Such a triple is valid if any concurrent system con-

taining A as a component that satisfies ψ also satisfies ϕ. The name comes from the fact that

under the assumption of ψ, one can guarantee ϕ.

To express an assume-guarantee triple on the level of languages, we make use of the fact that

the language of a system containing A as a component can be written as L ∥ L(A) for some
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1.1 Compositional verification and separability

suitable language L. As explained above, satisfying a specification can be expressed as an in-

clusion. We have to deal with the problem that the specification and the system may not use

the same alphabet. Under the assumption that Σϕ ⊆ ΣA, i.e. the alphabet associated to the sys-

tem is an extension of the alphabet used by the specification, we write L(A) ⊑ L(ϕ) to denote

the inclusion πΣϕ (L(A)) ⊆ L(ϕ), where πΣϕ (−) is the projection that removes from a word all

letters not contained in Σϕ With this notation at hand, we obtain that the triple ⟨ψ⟩A⟨ϕ⟩ is valid
if and only if for every language L, L ∥ L(A) ⊑ L(ψ) implies L ∥ L(A) ⊑ L(ϕ).
One can check whether a triple ⟨ψ⟩A⟨ϕ⟩ is valid by checking if the languageL(ψ) ∥ L(A) ∥ L(ϕ)
is empty [PGBCB08]. Here, L(ϕ) is the complement of L(ϕ), i.e. the set of all words over Σϕ
not contained in L(ϕ). As a start, we will assume that both the specifications and the systems

under consideration are given as finite-state automata resp. regular languages. For specifica-

tions, this makes sense: Regular languages are not only the class of languages associated to

finite automata, but also expressive enough to model common specification logics like MSO

and LTL [Pnu77]. For systems, limiting ourselves to finite automata is a heavy restriction. Wewill

come back to this aspect later. Under the assumption that all components of a triple ⟨ψ⟩A⟨ϕ⟩
are given as finite-state automata, checking the validity of a triple can be automated. To this

end, one can compute an automaton for L(ψ) ∥ L(A) ∥ L(ϕ) and verify that its language is

empty by conducting a reachability check. However, computing this automaton may be very

expensive. Recall that the system A is typically a concurrent system that is not given explicitly,

but as a collection of its components. If we construct a finite automaton representing A, the

whole procedure will suffer from the state explosion problem detailed in the previous section.

A proof rule for compositional verification

This iswhere compositional verification comes toour aid. The compositional approach to check-

ing the validity of assume-guarantee triples is based on proof rules. The goal is to establish the

validity of an assume-guarantee triple for a complex system under the premise that the validity

of assume-guarantee triples for simpler systems have already been shown. Here, we focus on

the following simple but powerful proof rule:

⟨true⟩A⟨ψ⟩⟨ψ⟩B⟨ϕ⟩⟨true⟩A ∥ B⟨ϕ⟩ .
This rule states that if the twopremises, namely the validity of the triples ⟨true⟩A⟨ψ⟩ and ⟨ψ⟩B⟨ϕ⟩
have been proven, then we obtain the validity of the triple ⟨true⟩A ∥ B⟨ϕ⟩. Phrased differently,

in order to establish that A ∥ B satisfies ϕ in any environment and without precondition¹, it is

sufficient to show that A satisfiesψ in any environment and that B satisfiesϕ in any environment

in which it satisfiesψ. The rule enables compositional verification: It decomposes checking the

¹ We see true as the specificationwith respect to which every execution is legal, i.e. as the language of all words over
a suitable alphabet resp. a finite automaton generating this language.
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validity of a triple for a parallel composition into two triples, one for each of the two compo-

nents. It is not hard to see that the rule is sound, meaning that the premises indeed imply the

conclusion. Assume that the two premises hold, and let L be any language. We have to show

that L ∥ L(A ∥ B) ⊑ L(ϕ). We use the first premise, instantiating the environment for Awith

L ∥ L(B), and obtain that the composition satisfies ψ, (L ∥ L(B)) ∥ L(A) ⊑ L(ψ). Using the

associativity and commutativity of parallel composition, the language (L ∥ L(B)) ∥ L(A) can
be rewritten as (L ∥ L(A)) ∥ L(B). We may see L ∥ L(A) as an environment for B with which

together it satisfiesψ. This allows us to apply the secondpremise, yielding that the composition

also satisfies ϕ. Finally, we rewrite (L ∥ L(A)) ∥ L(B) as L ∥ L(A ∥ B), using commutativity and

the correspondence between the parallel composition of languages and the parallel composi-

tion of automata. We obtain L ∥ L(A ∥ B) ⊑ L(ϕ) as desired.
Surprisingly, the rule is not just sound, but also complete. Tomake this notion precise, note that

the specificationψ occurring in thepremises does not occur in the conclusion. Hence, if we start

with the goal of proving ⟨true⟩A ∥ B⟨ϕ⟩, we are free to choose the specification ψ. As long as

our choice ofψ leads to the triples in the premises being valid, it is suitable for instantiating the

proof rule. This means that ψ plays the role of a certificate. Given an appropriate ψ, it is easier

to check ⟨true⟩A ∥ B⟨ϕ⟩ by using the proof rule and checking the triples ⟨true⟩A⟨ψ⟩ and ⟨ψ⟩B⟨ϕ⟩
than itwouldbe to check the triple for the composition itself. Alsonote that conceptually,ψ is an

abstraction of the behavior of A in an arbitrary environment. On the one hand, this abstraction

should be coarse in the sense that the finite automaton representing it is smaller than A. The

difficulty of automatically checking the validity of a triple as explainedabovedoesnot only scale

with the size of the system, but also with the size of the two specifications. Hence, the smaller

the representation of ψ is, the easier it will be to check the triples ⟨true⟩A⟨ψ⟩ and ⟨ψ⟩B⟨ϕ⟩. On

the other hand, the abstraction has to be precise enough so that the two triples are actually

valid. In a sense, ψ is the abstract description of A that we use to verify B. If it is too imprecise,

we will not be able to complete our goal of establishing the property ϕ.

When we say that a proof rule is complete, wemean that whenever the conclusion is true, then

there is an instantiation of the premises that allows us to apply the rule. In our example, this

means that if ⟨true⟩A ∥ B⟨ϕ⟩ is true, then there is a specification ψ so that the triples ⟨true⟩A⟨ψ⟩
and ⟨ψ⟩B⟨ϕ⟩ from the premises are valid. In fact, this specification can be chosen to be simply A.¹

Note that this completeness only applies under the assumption that both the components and

the specifications are given in the form of finite automata. The fact that our simple proof rule

is complete means that conceptually, compositional verification is always possible. However,

the existence of an appropriate specification ψ does not mean that it is easy to find one that is

not unsuitably large. Recall that the validity of a triple ⟨ψ⟩B⟨ϕ⟩ is equivalent to the emptiness

of L(ψ) ∥ L(B) ∥ L(ϕ). Instantiating this result for ⟨ψ⟩B⟨ϕ⟩ and for ⟨true⟩A ∥ B⟨ϕ⟩ yields that

¹ Assume that ⟨true⟩A ∥ B⟨ϕ⟩ is valid. We claim that then ⟨true⟩A⟨A⟩ and ⟨A⟩B⟨ϕ⟩ are valid. For the validity of⟨true⟩A⟨A⟩, note that the composition L ∥ L(A) of A with any language L will satisfy L ∥ L(A) ⊑ L(A) by the
definition of the parallel composition. For the validity of ⟨A⟩B⟨ϕ⟩, let L be any language so that L ∥ L(B) ⊑ L(A).
Take any wordw ∈ L ∥ L(B) and note that we have both πΣB (w) ∈ L(B) and πΣA (w) ∈ L(A). Hence, πΣB∪ΣA (w) is an
element of L(A ∥ B). Since we assumed ⟨true⟩A ∥ B⟨ϕ⟩ to be valid, this implies πΣϕ (πΣB∪ΣA (w)) = πΣϕ (w) ∈ L(ϕ).
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if ψ is similar in size to A, then checking ⟨ψ⟩B⟨ϕ⟩ is not easier than checking ⟨true⟩A ∥ B⟨ϕ⟩.
Hence, the proof rule only leads to a substantial reduction in running time if we are able to find

a specification ψ that is substantially smaller than A. While the existence of a specification ψ

that leads to the premises becoming true is guaranteed, the existence of a small representation

for a suitable ψ is not guaranteed. In fact, complexity-theoretic reasons have led us to believe

that it cannot exist in some cases.

The commonly held belief is that themore loosely two components are coupled in a concurrent

system, the easier it is to find a specification for their interface that is sufficient for verification. In

the literature, numerous approaches to compositional verification based on assume-guarantee

reasoning have been developed. Notably, there is a learning algorithm that tries to compute

the certificate ψ on the fly [CGP03; PGBCB08]. If the triple that should ultimately be proved is

indeed valid, this algorithm is guaranteed to terminate with the smallest deterministic automa-

ton representing ψ so that the above proof rule can be applied. Additionally, there is research

on proof rules that work e.g. for more than just two components [PGBCB08].

Compositional verification and separability

All the aforementioned results focus on the simple case that the components and specifications

are given as finite automata. Our goal in the followingwill be to go beyond finite automata and

regular languages. Fundamentally, the question we want to answer is whether compositional

verification is possible for more general types of systems. To this end, we apply a sequence of

simplifications to the problem at hand. The result is a theory that allows us to clearly formulate

the question of whether compositional verification is possible. While the resulting theory will

not immediately lead to an approach to compositional verification that is usable in practice, it

can hopefully be extended towards one in the future.

We focus on a triple ⟨true⟩A ∥ B⟨ϕ⟩. The first simplification that we apply is that we discard the

idea of having an arbitrary environment. We are interested in the system A ∥ B, and whenever

we focus on one of the two components, the other one will be the environment. Consequently,

we can discard the universal quantification over a language in the definition of the validity of a

triple. Instead of asking whether L ∥ L(A) ∥ L(B) ⊑ L(ϕ) for all languages L, we simply want

to check L(A) ∥ L(B) ⊑ L(ϕ).
The second simplification is that we assume that A, B, and ϕ all use the same alphabet Σ. This

means that A and B synchronize on every action, and not just on the actions represented by

letters in a subset of their alphabets. Luckily, this property can usually be enforced rather easily

without changing the behavior of the system. For each letter of B that was not in the shared al-

phabet, we introduce appropriate transitions in A that correspond to this letter without actually

changing the internal state of A. The resulting systembehaves as Adoes, evenwhen composed

with B, but uses an extended alphabet. We apply the same procedure to B and ϕ to make sure

that all three objects use the same alphabet. As mentioned before, the parallel composition
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of the languages of systems that use the same alphabet is simply the intersection of these lan-

guages. Hence, L(A) ∥ L(B) equals L(A) ∩ L(B). Additionally, we can replace our variant ⊑ of

the subset relation that involves a projection by the normal inclusion relation ⊆. In total, our

goal is now checking L(A) ∩ L(B) ⊆ L(ϕ).
Finally, we transform this expression into a form that is even simpler. The inclusion

L(A) ∩L(B) ⊆ L(ϕ) holds if and only if (L(A) ∩L(B)) ∩L(ϕ) is empty, whereL(ϕ) is the comple-

ment language of L(ϕ). We rewrite this to (L(A) ∩ L(ϕ)) ∩ L(B). Recall that the language L(ϕ)
is regular – while we are interested in systems that are more expressive than finite automata,

regular languages are usually sufficient to represent the specifications we are interested in. By

the closure properties of regular languages, also the complement languageL(ϕ) is regular. Ad-
ditionally, most other language classes are well-behaved when it comes to intersections with

regular languages: Intersecting a language from such a class with a regular language leads to

a language that is again in that class.¹ For example, given a pushdown automaton and a finite

automaton, it is easy to construct a pushdown automaton whose language is the intersection

of the two associated languages. The same is true for Petri nets. Ultimately, this means that

we can construct a system A′ whose language is L(A) ∩ L(ϕ). After applying this construction,

checking L(A) ∩ L(B) ⊆ L(ϕ) amounts to checking L(A′) ∩ L(B) = ∅.

We have argued before that checking whether a system satisfies a specification means check-

ing whether the intersection of the possible and the illegal executions is empty. In that case,

we usually consider the intersection of a complicated language, the language of possible exe-

cutions of a system, with a simple language, the language of illegal executions according to a

specification. In the case of checkingL(A′)∩L(B) = ∅, we are dealingwith a setting that ismore

involved. The language of A′ is the set of executions that are possible with respect to compo-

nent Awhile being illegal with respect to specification ϕ. Both L(A′) and L(B) are languages of

systems that are more complicated than finite automata.

How can we checkL(A)∩L(B) = ∅? (Here and in the following, we drop the notation A′ for the

sake of simplicity, since L(A) and L(A′) come from the same class of languages.) Explicitly con-

structing an automatonwhose language isL(A)∩L(B) is not a good idea. In some cases, it may

not even be possible. For example, the intersection of two languages of pushdown automata is

not the language of a pushdown automaton in general. Even if it is possible, it will suffer from

the same state explosion problem that we have explained in the case of finite automata. To

solve this problem, we need a compositional approach.

We propose the following separability proof rule as a possible solution:

L(A) ⊆ R
R ∩ L(B) = ∅
L(A) ∩ L(B) = ∅ .

¹ Using thenomenclature from the theory of abstract families of languages (AFLs) [Ber79],many classes of languages
are trios, which in particular means that they are closed under intersection with regular languages. This applies to
both the context-free [Ber79] and the Petri net languages [Jan87].

32



1.1 Compositional verification and separability

Let us first argue that this rule is analogous to the compositional proof rule for assume-

guarantee triples. In the conclusion, the validity of the triple ⟨true⟩A ∥ B⟨ϕ⟩ has been replaced

by L(A) ∩ L(B) = ∅ as explained. Similarly, in the second premise the property of satisfying a

specification ϕ has been replaced with the emptiness of a language. The most interesting part

is the languageR, which replaces the specification ψ in both the first and the second premise.

In order to understand the role ofR, we prove the soundness of the proof rule. Assume there is

a language R so that both premises are true. This means that by the first premise, R is bigger

than L(A). Additionally, R and L(B) are disjoint by the second premises. But if L(B) has an

empty intersection with a language that is bigger than L(A), then also L(A) and L(B) need to

be disjoint and the conclusion is true. A language R that makes the premises become true is

called a separator. It is a certificate for the disjointness of L(A) and L(B).
The question that remains is whether the separability proof rule is complete. Is it true that

whenever two languages are disjoint, a separator has to exist? The answer to this question

depends on the language classes that we consider. If L(A), L(B), and R come from the same

class of languages, completeness obviously holds. If L(A) and L(B) are disjoint, then L(A) itself
is a separator. However, in that case, we have gained nothing. While the first premise trivially

holds, checking the second premise simply amounts to checking the desired conclusion. Even

in the case that all languages come from the same class, however, it would be interesting to ask

whether there is a separator that has a smaller description than A. This is closely related to the

observations we made in the case of finite automata.

Regular separability

We will focus on the case that the separator is required to come from a class that is less ex-

pressive than the languages L(A) and L(B). To be precise, we will exclusively consider regular

separators in this thesis. This is motivated by two facts. The first fact is the aforementioned

correspondence of regular languages to specification logics. Secondly, regular languages are

very well-behaved when it comes to closure properties and algorithmics. This means that for

a candidate separator that is a regular language, it is highly likely that the two premises of the

separability proof rule can indeed be automatically checked. This goes along with our theme

of being interested in certificates that are easier to verify than the initial problem is to solve.

In the following, we consider regular separability. Is it true for a class of languages that when-

ever two languages are disjoint, a regular separator exists? If that is not true, can one decide

whether a separator exists? If a separator exists, can it be computed? For context-free lan-

guages, the class of languages defined by pushdown automata, it turns out that separability

is difficult. Given two languages and a regular candidate separator, we can automatically check

whether the two premises of the separability proof rule hold. In that case, the soundness of the

rules implies that the two given context-free languages are disjoint. However, it is easy to con-

struct two disjoint context-free languages so that no regular separator can exist. Additionally,

the problem of deciding whether a separator exists has turned out to be undecidable [SW76].
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In the literature, it has been established that this behavior does not only apply to context-free

languages, but also to restricted versions of context-free languages that are only minor exten-

sions of the regular languages, e.g. the languages of one-counter automata [CL17] and visibly

pushdown automata [Kop16].

Outlook

In Part IV. of this thesis, we focus on languages of well-structured transition systems (WSTSes).

This class of languages is a superclass of the class of Petri net languages. We will show that

under mild conditions, the separability proof rule is complete for WSTS languages. Whenever

twoWSTS languages are disjoint, there is a regular separator as a certificate for this disjointness.

To be more precise, our main result is that any two disjoint WSTS languages, one of them the

language of a deterministic WSTS, are regularly separable. Requiring one of the WSTSes to be

deterministic seems like a substantial restriction. However, we will establish a hierarchy of sub-

classes of languages within the class of WSTS languages and show that anyWSTS whose transi-

tion relation is finitely branching or whose underlying order is ω2 can be determinized. Almost

all WSTSes that are of practical relevance satisfy at least one of these two requirements. Hence,

our result on the separability of WSTS languages can be applied to almost all WSTSes.

Additionally, one can extract from the proof of the main result an algorithm for computing a

finite automaton representing the regular separator. We will demonstrate this in the case of

Petri net languages, obtaining a construction for the separator and an upper bound on its size,

which we will accompany by a lower bound.
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1.2 Unreliable communication and language closures

In this section, we pick up one of our earlier examples and discuss it in detail. The setting we

consider is the verification of a system that we communicate with over an unreliable communi-

cation channel. Firstly, we elaborate onwhat wemean by unreliable communication. Secondly,

we present a theoretical model that allows us to make this notion precise. This will lead us to

formalizing two computational problems that are crucial for the verification tasks. Finally, we

also explain how the environment and certificates come into play.

Examples of gainy and lossy communication

Assumewehave a system S thatwe are communicatingwith. The communication is conducted

via a communication channel C , e.g. a network connection. What we observe is not the mes-

sages sent by system S, but the messages we receive via channel C . If we assume that C is

perfect, these two things coincide and we can simply omit C . The case that we are interested in

is that C is unreliable. We consider two settings: a lossy channel and a gainy channel.

If the channel is lossy, a message that is sent by S may not appear at the other end of C . The

visible behavior of S that we observe through C is only a fragment of the real behavior of S. This

setting can occur under various circumstances. The most obvious case is communication via

network infrastructure. Assume that C is a network connection over which S sends messages

in the form of packets. It is common that packets can be lost, e.g. as the result of an outage in

the network infrastructure. This infrastructure is typically not part of ourmodel of S. We assume

that we are dealing with a system that is so low-level that we cannot simply rely on a protocol

like TCP [Pos81] to ensure that all packets arrive at the destination eventually. In other words,

we verify the transportation layer of the system and not just the application layer. In our model,

each packet sent by S either arrives or it does not. (Note that themodel we present here cannot

deal with packets not being received in the correct order. Wewill comment on this aspect later.)

We may want to verify that the behavior of S is correct, even under the assumption that some

packets are lost.

In the following, we give a second example in which lossiness plays a role even though the

communication is perfect. Assume that S is a component of a concurrent system that writes

to shared memory. We assume that the memory accesses are perfect: All write accesses to

memory executed by S actually take place, and they do so in the correct order. However, we

assume that we observe this memory location from the perspective of another component of

the concurrent system. If we poll the memory location without synchronizing with S in some

way, wemaynot see allwrites that havebeenexecutedby S. If twowrite accesses of S takeplace

between reading the memory location twice, we will only see the second write access; the first

onewill be lost. Similarly, if we start and stop polling thememory at some point in time, wewill

not see any write accesses by S that happen outside this time interval. In summary, this type of

communication shows the same lossy behavior as in the first example.
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Gainy communicationworks in the oppositeway: Instead of just seeing themessages sent by S,

we potentially observe more messages. We observe a sequence of messages that contains the

messages sent by S, but also additional ones. Such a setting can occur if we observe a network

endpoint with which several systems communicate. Usually, these systems are distinguishable,

but they may not be, e.g. if an attacker tries to impersonate S. Similarly, we might observe a

memory location to which several other threads write, but we are only provided with a model

for one of these threads. Note that in order to avoid having both lossy and gainy effects at the

same time, we will have to assume that we synchronize with the writing threads so that we are

notified of every write access.

In all of these examples, we face the same challenge: We are given a description of S which

allows us to deduce properties of the behavior of S. But the goal is to verify the behavior of S

that is visible through C , i.e. we should decide a property of the behavior of C . For now, we will

assume that the only information about C that is available to us is whether C is lossy or gainy.

Language closures

Our goal is to devise a method to compute a description of the behavior of C given a descrip-

tion of S. In order to tackle this problem, we start by presenting a theoretical model for lossy

and gainy behavior. We use a language-theoretic approach. We assume that all messages that

we observe are from somemessage alphabet Σ. The sequence of messages sent by S in an exe-

cution corresponds to a wordw ∈ Σ∗ ofmessages, and there is a languageL(S) ⊆ Σ∗ of all such

possible sequences. What we observe is not L(S), but rather L(C), the possible sequences of

messages we receive via the communication channel C . In the case of lossiness, we have that

every sequence in L(C) is obtained from a sequence in L(S) by losing messages. To formalize

this, we introduce thewell-known subword ordering: Aword v is a subword ofw if v is obtained

fromw by deleting letters. For example, radar is a subword of abracadabra.

If C is a lossy communication channel, then everyword inL(C) is a subword of aword fromL(S).
To obtain the behavior of C , one can form the language closure of L(S)with respect to the sub-

word ordering. This means we consider all words that are subwords of words from L(S). The

resulting set is denoted as the downward closure L(S)↓. Note that as the notion of closure sug-

gests, this set is indeed a superset of L(S), L(S) ⊆ L(S)↓, because every word is a subword of

itself. Under the assumption of lossy communication, this set L(S)↓ is exactly L(C), the set of

possible sequences of messages that we observe via the communication channel.

In a gainy setting, we simply flip the direction of the subword order: Wordw is a superword of v

if v is a subword of w, or equivalently, if w is obtained from v by inserting letters. The upward

closure L(S)↑ of L(S) is obtained as the set of words that are a superword of a word from L(S).
As with the downward closure, we have that the upward closure is a superset, L(S) ⊆ L(S)↑. If
the communication is gainy, L(S)↑ is exactly the set of possible channel contents of C .

Note that we cannot deal with a channel that is both lossy and gainy at the same time. Both

the downward closure of the upward closure L(S)↑↓ and the upward closure of the downward
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closure L(S)↓↑ equal the set Σ∗ of all possible sequences of messages if L(S) is non-empty. We

also require that themessages appear in the communication channel in the sameorder inwhich

theyhavebeen sentby S. Ifweassume that themessages appear in anarbitrary order, wewould

need to modify the model. One possibility would be to apply a commutative closure to S, an

operation that we will briefly discuss in Section 6.4.

The theoretical model leads to two computational problems that can be formalized easily:

Given S (and hence a description of L(S)), compute a description of L(S)↓ resp. L(S)↑. In order

to decide a property of the visible behavior of S through C , solving one of these two problems

should be the first step. After a description of the appropriate language closure has been ob-

tained, it can serve as the input for decision procedures that settle the answer to the original

verification problem. The latter is beyond our scope here, we focus on the computation of the

language closures.

There is a well-known theoretical result that comes to our aid with respect to these language

closures: For any language L(S), both the downward and the upward closure are always regu-

lar [Hai69],meaning they canbe representedbyafinite automaton. Notonly arefinite automata

a very simple way of representing a language, but that also means that once we obtain a de-

scription, it is easy to apply decision procedures. Also, regular languages are very well-behaved

with respect to closure properties, e.g. intersections. This means if we have more information

about C beyond the property of it being lossy or gainy, it should be easy to incorporate this in-

formation after a finite automaton representing the closure has been computed. In summary,

if we are able to obtain a finite automaton as a description for a language closure, we will have

a good basis for the rest of the verification task.

The fact that the closures are always regular means that closures also have another use case:

The downward resp. upward closure of a language is a regular overapproximation of that lan-

guage. This means when we want to abstract a system (resp. its language) to a simpler class of

automata (resp. the corresponding class of languages), then choosing these closures as abstrac-

tion is a possibility. For example, approximations based on the downward closure have been

used in [LCMM12] to design an iterative procedure that can solve the undecidable problem of

intersection-emptiness for context-free languages in some cases.

The approach of abstracting a system into its downward or upward closure is particularly useful

if the system that we start with already incorporates lossy or gainy aspects as detailed in the

earlier examples. In this case, we can hope that the closure is either equal to the language of the

system itself or at least the difference is rather small. The lattermeans that if the original system

is indeed correct, then it should be very likely that proving the correctness by considering a

language closure as overapproximation will succeed.

Unfortunately, the proof of the regularity of the language closures is non-constructive. This

means that we know that a finite automaton representing the closure exists, but we do not
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have a way to compute it in general. Given the undecidability results that we mentioned ear-

lier, this should not be surprising. By Rice’s theorem [Ric53], deciding any non-trivial property

of Turing machine languages is impossible, including their emptiness. Assume we start with a

system S that is given as a Turing machine. The language of S is empty if and only if its down-

ward closure is. If therewere away to compute a finite automaton representingL(S)↓, we could

check the emptiness ofL(S)by checkingwhetherL(S)↓ is empty. The latter boils down to check-

ing the emptiness of the language of a finite automaton, which is a simple task. This approach

would decide the emptiness problem for Turing-machine languages, a contradiction to Rice’s

undecidability result. The same line of argumentation works for any Turing-complete model.

Luckily, for many types of automata that are not Turing-complete, effective procedures for the

computability of the upward and downward closures have been found. For example, it is pos-

sible to transform a given pushdown automaton into finite automata whose languages are the

downward resp. upward closures of the pushdown automaton. However, there are alsomodels

that are not Turing-complete and for which e.g. safety verification is decidable, but the closures

cannot be computed [May03]. We will give an overview of the related work in Section 7.2.

Outlook

In this thesis, we will focus on Petri nets and BPP nets, a restricted subclass thereof. As men-

tioned earlier, these models are very useful when it comes to modelling concurrent systems.

Given a Petri net S, it is obvious how to construct Petri nets whose languages are the down-

ward resp. upward closures ofL(S). However, we would like to obtain not a Petri net, but rather

a finite automaton as a representation for the downward resp. upward closure. The computa-

tion of the language closures for Petri nets has not receivedmuch attention in the literature yet.

There has been work by Habermehl, Meyer, andWimmel [HMW10] that resulted in a procedure

that computes the downward closure. We will present algorithms for the computation of the

upward closure of Petri net languages as well as for the computation of both the upward and

thedownward closure of BPPnet languages. While the general algorithm for Petri nets could be

applied to compute the closures of BPP nets, our specialized procedures exploit the properties

of BPP nets to achieve a much better running time.

Our proposed algorithms for the computation of the closures extend various well-known tech-

niques from the literature. For example, we tweak the definitions used by Rackoff [Rac78] in

his proof that Petri net coverability is EXPSPACE-hard in order to obtain a bound on the length

of the computations that are needed to generate all minimal words in the language of the net.

With this bound at hand, we can construct an automaton whose language is equal to the up-

ward closure of the Petri net language. In the case of BPP nets, we use a similar approach, but

the required bound on the length of computations results from using unfoldings [EH08]. On

the one hand, the results in Part III. of the thesis often rely on the versatility of results from the

literature. On the other hand, in order to be able to use these results for the computation of the

closures, we have to extend them and incorporate fresh ideas.

38



1.2 Unreliable communication and language closures

We conclude this section by explaining how both the environment and certificates come into

play in the setting that we consider. At the beginning, we have argued that the challenging

aspect is that we are given a description of just the system, but our goal is to decide a property

of the behavior of the system including the communication channel. This means that the com-

munication channel itself forms an environment according to our definition: It is the difference

between the real system behavior that we should verify and the model of the system that we

are given. The theory that we have presented allows us to deal with this environment, even

with no information about the channel beyond the fact that it is lossy or gainy.

It remains to show which role certificates play. As we have seen, deciding a property of the be-

havior of a system thatwe interact with via an unreliable communication channel boils down to

deciding a property of a downward or upward closure. For a downward- or upward-closed lan-

guage having or not having a certain property, the finite automaton representing that regular

language can serve as a certificate. Finite automata are indeed good certificates in principle, as

it is typically rather simple to check properties of their languages. Unfortunately, the latter task

scaleswith the sizeof theautomaton, i.e. it becomesharder the larger theautomaton is. Thepro-

cedures that we will provide later to compute automata describing the language closures can

result in very large automata, e.g. automata that are doubly exponentially larger than the initial

system. Unfortunately, this cannotbeavoided: Wewill prove results in the areasof descriptional

complexity showing that the size of the automata yielded by our algorithms is optimal. To cir-

cumvent this problem, we suggest an approach that is based on using so-called simple-regular

expressions (SREs) as certificates for properties of the language closures. SREs are particularly

simple representations for certain regular languages. While not every regular language can

be represented by an SRE, SREs are expressive enough to represent downward- and upward-

closed languages [ACBJ04]. It turns our that proving that the language of an SRE is included in

the downward or upward closure of a Petri net language is much easier than computing a rep-

resentation of the language closure itself. Hence, SREs can serve as a certificate for properties

of downward- or upward-closed languages, since both checking that the SRE is included in the

language closure and checking properties of the SRE is relatively easy. The latter comes from

the fact that SREs represent regular languages, but an SRE representing just a part of the down-

ward or upward closure is hopefully much smaller than a full representation of the closure.

Finally, wewill also consider the problem of checkingwhether the language of a given Petri net

is downward or upward closed. To settle this problem, we will in particular show how to check

whether the language of a Petri net contains the language of a finite automaton. The decidabil-

ity of this regular containmentproblem is not only of independent interest, but it alsomeans that

we can solve the following task: Given a Petri net and an automaton whose language should

be equal to the language of the net, we can check that this equality indeed holds. In particu-

lar, when we are given a Petri net modelling a system that incorporates gainy or lossy aspects

and wewant to verify that its language is downward or upward closed, then we can compute a

finite automaton representing the language closure using the aforementioned results and use

the decidability of regular containment to verify that the two languages are equal.
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1.3 Games

The last part of this thesis is concerned with games. In this section, we start by giving a brief

introduction. We thenpresent three examples for games that are useful in theoretical computer

science. We discuss the resulted presented in this thesis that allow us to solve such games.

Games with perfect information

A game is a system in which several independent entities influence the behavior. The system

constitutes a game arena, the entities are called players, and an execution of the system is re-

ferred to as a play. As the name suggests, what is colloquially referred to as a game can be seen

as a game according to this definition. This applies to team sports like soccer, board games

like chess, and video games of all kinds. The interest in games in science mostly comes from

their applications that are less obvious. In mathematics, there is interest in properties like the

determinacy of games, and the most-famous result in this area, the Borel determinacy theo-

rem [Mar75], has applications in set theory. In economics, games are used to model capitalist

systems, with the players representing the participants in a free market [LR94].

We will focus on explaining why games are studied in the context of theoretical computer

science. In both this explanation and the rest of this thesis, we will focus on games with per-

fect information. In these games, the players know the rules of the game (including the game

arena, i.e. the system the game is played on) and whenever they have to make a decision, they

are aware of the history, the sequence of decisions that have been made by themselves and

the other players up to this point. Perfect information also means that the players make their

choices one after another instead of concurrently. We consider games with a winning condi-

tion, a special type of zero-sum games [Rag94]. This means the set of maximal plays, the plays

that cannot be extended anymore, is partitioned into those that satisfy the condition and those

that do not. There is a coalition of players that tries to influence the play so that it satisfies the

winning condition, while the rest of the players, the opposition, works against that goal. In a

perfect-informationgame, it is sufficient to consider twoplayerswith exactly oneof them trying

to satisfy the winning condition.

Strategies, parity tree automata, and game semantics

We give three examples of perfect-information games that are important in computer science.

We start by considering systems with multiple types of nondeterminism. At the beginning of

this chapter, we have already mentioned that many system models feature nondeterminism.

This nondeterminism is typically not a genuine part of the system at hand, but it has been in-

troduced to simplify behavior that should not or cannot bemodelled explicitly. If just one type

of nondeterminism is present, we usually assume that the nondeterminism works in our favor,

or that all of it works against us. A reachability problem for a nondeterministic system can be

phrased as “Can the nondeterminism be resolved in a way that leads to reaching the target?”,
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seeing the nondeterminism as angelic. The complement problem of unreachability can be for-

mulated as “Can the target be avoided, nomatter how nondeterminism is resolved?”, using the

opposite concept of demonic nondeterminism. However, a system may have multiple types of

nondeterminism with some of them being angelic, i.e. working in favor of a property we are

trying to establish, while others are demonic and work against it. In such a case, it is natural to

see the system as a game with the various types of nondeterminism being the players.

We consider the acceptance problem of parity tree automata [Zie98] as an example. A tree is

an object whose branches represent various executions of a system. The branching behavior

can be seen as one type of nondeterminism. The automaton provides a second type of nonde-

terminism that works in the opposite way. To be precise, a parity tree automaton accepts an

infinite binary tree if there is a run of the automaton so that a so-called parity condition is sat-

isfied for all branches of the tree. The nondeterminism coming from the branching of the tree

is demonic in the context of the acceptance problem, because to achieve acceptance, the run

needs to satisfy the parity condition on every single branch of the tree. The nondeterministic

automaton itself provides a second type of nondeterminism that is angelic, because the exis-

tence of one valid run is sufficient to prove acceptance. Given an infinite tree and an automaton,

the question of whether the tree is accepted can be seen as a game [Zie98]. One of the players

represents the branching in the tree; her job is to pick a branch of the tree. The other player

represents the automaton and picks a run. The two players alternate in making their choices,

resulting in a branch of the tree and a run of the automaton on that branch. The goal of the

player representing the automaton is to pick a run so that it satisfies the parity condition.

To be able to continue our explanation, we need to make clear what it means to solve a game.

We ask whether one of the players has a systematic way of playing that guarantees that any

resulting play will satisfy (resp. not satisfy) the winning condition, no matter which choices the

other player makes. A systematic way of playing is called a strategy, and if it achieves the afore-

mentioned objective, it is called a winning strategy. A player is the winner of a game if she has

a winning strategy, and solving a game means computing which player wins.¹

In the game we described above, the player representing the automaton wins the game if and

only if the tree is accepted by the automaton, and her winning strategy corresponds to a run of

the automaton that satisfies the parity condition on all branches. This has three consequences:

Firstly, assuming we are given a finite description of a tree, we can decide whether the three is

accepted by a parity tree automaton by solving a game. Secondly, the game can be modified

so that instead of checking whether a given tree is accepted, it checks whether there is a tree

that is accepted, thus solving the language-emptiness problem for parity tree automata. Finally,

one can use games in order to prove Rabin’s tree theorem [Rab68; Zie98], a deep and important

¹ It is easy to see that it is impossible for both players to have a winning strategy for a given game: If both players
follow their strategy, the result is a unique play that either satisfies the winning condition or it does not – at most
one of the two strategies is a winning strategy. However, it is not clear at all that at least one player has a winning
strategy. We call games with the property that exactly one player has a winning strategy determined. For now, it
shall suffice to say that all games that we consider in the following have been proven to be determined.
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result in automata theory showing that the languages of parity tree automata are closed under

complementation. To this end, one constructs an automaton that accepts the complement of

the language of a given parity tree automaton by checking that the player representing the

automaton does not have a winning strategy in the game corresponding to a given tree.

Our second example is game semantics [LL78]. In many verification problems, the specification

is given as a formula in a certain type of logic. For some of these types of logic, it is instructive

to see the logical formulas themselves as games. For example, the modal µ-calculus [BW18]

features fixed-point operators. These operators can be used together with a subformula to as-

sign to a variable the greatest or least set of system states that satisfy the subformula. When

checking whether a system satisfies a specification expressed in the modal µ-calculus, these

fixed points have to be computed. Instead of using a deterministic up-front computation of

the sets, game semantics provides an elegant alternative. One can construct a game that fea-

tures a guess-and-check mechanism. Whenever a fixed-point quantifier is encountered, one of

the players suggests the value of the set. Then the other player can either verify the suggestion,

or she can use the suggested value. This mechanism is designed so that the player suggesting

the sets loses the game if she makes an incorrect suggestion. Hence, computing her winning

strategy means implicitly computing the values for the fixed points.

Game semantics for µ-calculus on finite structures can be extended to show deep results for

automata-theoretic games aswewill consider them in this thesis. For example,Walukiewicz’s re-

duction [Wal01] is a famous result thatwasdeveloped in the context of showing thedecidability

of satisfiability of µ-calculus formulas on pushdown systems. It proves that games on infinite

game arenas defined by pushdown automata can be reduced to games on finite arenas with

an exponential blowup. We will come back to this result in Section 17.6.

Synthesis

Our final example is the area of synthesis. Wehave argued that the verification of programs is an

important subject. It seems canonical to ask whether instead of verifying a given program that

has beenwritten by humans, one can let a computer generate a correct program from the given

specification. This idea is known under the name of (program) synthesis [Chu63; MW80]. If one

could implement it in practice, not onlywould it allow for the automatic generationof programs

with very little time investments by humans, but it would also solve the problem of verification.

If the synthesis tool is correct, i.e. given a specification, it always returns a program that indeed

satisfies the specification, the programs that it produces can be assumed to be correct and no

effort has to be put into verifying them.

For certain types of systems, like Boolean circuits, synthesis tools have been developed with

moderate success [JP21]. Unfortunately, the synthesis of complex programs suffers from vari-

ous problems. One conceptual problem is that synthesis does not save as much human time

investment as it may seem. The effort is simply shifted fromwriting the program to writing the

formal specification. Each aspect of the desired systemhas to be specified extensively to ensure
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that the resulting programhas the expectedbehavior. If amistake has beenmadewhenwriting

the specification, the resulting flaw of the programmay be hard to identify. Another fundamen-

tal problem of synthesis is the computational complexity of synthesis problems. Firstly, many

of these problems are in high complexity classes, e.g. synthesizing a program from a specifica-

tion may take time doubly exponential in the size of the specification and the programmay be

just as large [MSS06]. Secondly, unlike for other problemswhere the worst-case behavior rarely

occurs in practice, synthesis problems are known to actually show this terrible complexity on

practical examples [Var18].

We try to circumvent bothproblemsby considering syntax-guided synthesis [ABDFG+15; Pad21].

In addition to a specification, a syntax-guided synthesis problem also consists of a program tem-

plate, which is essentially a program with missing parts, e.g. it may be a collection of modules

that need to be connected appropriately. The goal is to fill in the missing parts of the program

template such that the resultingprogramsatisfies the specification. Thehope is that this version

of the synthesis problem is simpler to handle. The synthesis tool having less freedom because

it only has to generate code at specified locations in the program means that there is a better

chance of obtaining a manageable running time. The fact that a large part of the desired pro-

gram is given in the form of the program template means that we are not as heavily reliant on

providing a detailed specification for all aspects of the program as in the version of the synthe-

sis problem that takes no program template. Note that the synthesis task will only succeed if

it is in fact possible to instantiate the program template so that the resulting program satisfies

the specification. This means that conceptually, the synthesis task includes the verification of

the given program template.

Synthesis as a game

In the following, we model a synthesis problem as a game. The game has two players, one for

the environment andone for theprogramsynthesizer. In theparts of theprogram template that

are fully specified, the environment is in control. This means for any nondeterministic choice in

that part of the program, the player representing the environment resolves it. We have argued

earlier how such nondeterministic choicesmay be introduced tomodel dependencies on exter-

nal resources or as the result of applying an abstraction. When the program arrives at a part of

the template that should be filled in by the synthesis tool, the other player is in control. A play is

won by the player representing the program synthesis if and only if it satisfies the specification.

In that case, her winning strategy corresponds to the solution to the synthesis problem.

In order to make this explanation more precise, we will give a more concrete example.

We focus on a simple case of program templates in which the task is to synthesize condi-

tional expressions. This means our template may contain conditionals that are of the form

if (???) then { ... } else { ... }. The goal is to replace ??? so that the result-

ing program satisfies the specification. We present context-free games as a model for this syn-

thesis task. In a context-free game, the game arena is potentially infinite, but it is given by a
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finite description in the form of a context-free system. We have already brieflymentioned push-

down automata as one example for context-free systems. Here, it will be easier to consider

context-free grammars, an equivalent model. In the derivation of a word using a context-free

grammar, nonterminals are replaced using production rules until we obtain a word that only

contains non-replaceable terminal symbols. As mentioned before, context-free grammars are

sufficient to model the control-flow of recursive programs. This will make it easy to translate

the given program template into a context-free game.

As in the other two sections, we prefer to take a language-theoretic approach. This means that

our specification is given in the form of a language, and the plays of the game produce words

thatmay ormay not be in that language. The language defines thewinning condition: The goal

of the environment player is obtaining a play, i.e. an execution of the program, that corresponds

to a word not in that language. The goal of the synthesis player representing the environment

is the opposite, she wants to enforce that if the play of the game produces a word, then that

word is contained in the language. Here, we consider regular languages of finite words, rep-

resented by finite automata, as target languages. Note that by choosing a larger class of lan-

guages, e.g. the context-free languages, the problem would become undecidable.

Assume in the program template, some procedure p() is specified by the source code

if (x) then { f(); } else { g(); }. Note that in this case, the conditional ex-

pression is explicitly given and no synthesis has to be performed. In the context-free gram-

mar, we would introduce nonterminal symbols for every program location, e.g. for p(), f(),
and g(). In the concrete example, we would translate the program code into the two

rules p() → read(x, true).f() and p() → read(x, false).g(). Note that read(x, true) and
read(x, false) are terminal symbols, symbols that cannotbe replaced, that signal that the current

value of variable x should be true resp. false. Finally, we give ownership of p() to the environ-

ment player. Thismeans thatwhen the nonterminalg() has to be replaced during a play of the

game, this player can choose whether to apply the first or the second rule, replacing p()with

the right-hand side of the chosen rule. This is an example for a concept thatwehavementioned

earlier: We have replaced a deterministic choice in the programby nondeterministic branching.

On the one hand, this allows us to simply model the control flow of the program in the context-

free grammar without having to keep track of the data values. On the other hand, it means that

we need to somehow enforce that the environment player cannot simply create an invalid ex-

ecution by picking the wrong branch, e.g. by picking the rule p() → read(x, false).g() when

the current value of x is actually true.

Here, the language-theoretic approach comes in handy. Recall that our specification is given

as a target language of valid executions. In order to solve the above problem, we can assume

that the executions that are impossible to occur in reality because they violate the consistency

of data values are added to the target language. Technically, this means we construct a finite

automaton that uses two states to keep track of whether the value of x is true or false. The au-

tomaton accepts an execution if it contains an invalid data access, e.g. if we have an occurrence
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of read(x, false) even though in the current state, the valueof x is true. Theoriginal specification

can be extended by joining the corresponding automata. Let us consider again the choice that

the environment player has to make in the game when replacing nonterminal p() in a play. If

she deliberately picks the wrong rule, i.e. the rule that does not correspond to the current value

of variable x, the automaton will definitely accept any finite word that is produced by the play.

Hence, such a word is in the target language and the environment player loses the play. Hence,

her only chance to win will be to pick the rule that corresponds to the current value of x.

Note that the above concept only works for variables that can only take a small range of val-

ues, e.g. a Boolean variable as in our example. For a data value that is e.g. a 32-bit integer,

the automaton we need to keep track of all possible values would have 232 states. In such a

case, it would be better to initially not keep track of the data value at all. We can then use an

iterative process like the CEGAR-loop [CGJLV00; HHP10] to make sure that if the synthesis al-

gorithm comes up with a program, that program is indeed correct with respect to handling

this data value.

We have extensively discussed the environment and the corresponding player. Note that in

contrast to the other two main topics of this thesis, this time, the behavior of the environment

is explicitly specified in our model. The difference here is that we are able to react to it. Let us

now consider the player representing the program synthesis. When discussing her behavior in

the game, we will also see how certificates come into play.

Assume that the source code for p() is if (???) then { f(); } else { g(); }.
Note that this time, the conditional expression is not given; it should be filled in by the synthe-

sis algorithm. Wemodel this by giving ownership of p() to the synthesis player and by having

the rules p() → f() and p() → g(). This means whenever in a play nonterminal p() has

to be replaced, the synthesis player can choose freely between replacing it by f() or replacing

it by g(). Correspondingly, in an execution of the system, whenever procedure p() is called,

the synthesis tool can decidewhether to go to the if-branch and call proceduref() orwhether

to go to the else branch and call procedure g(). The absence of any kind of conditional expres-

sion in the rules that we have designed tomodel the source code of p()may be surprising. We

will come back to this aspect soon.

After translating a program template and a specification into a context-free gamewith a regular

target language, one can solve that game. The synthesis problem can be solved if and only if

the synthesis playerwins thegame. However, this information is insufficient: In order to actually

solve the synthesis task, we need to come upwith an instantiation of the program template. To

this end, we consider a winning strategy for the synthesis player. This strategy is a description

of how she has to behave in order to ensure that she wins the game. The strategy also acts

as a certificate for the fact that she is the winner. Verifying that a given strategy is winning is

usually much simpler than computing a winning strategy. For example, for context-free games

with membership in a regular target language as the winning condition, a given strategy can

be used to transform the context-free game into a normal context-free grammar. Checking that

45



1 Introduction

the strategy is winning amounts to checking that the resulting grammar produces a language

that is a subset of the regular target language. Hence, we also say that the winning condition

of the game is regular inclusion and call this type of game an inclusion game.

Let us come back to the instantiation of the template, i.e. synthesizing the conditional expres-

sion in the source code for p(). Note that the goal here is not to make a static choice be-

tween the if- and the else-branch, which would amount to either putting true or false as the

conditional. Instead, every time procedure p() is encountered, the synthesis player can de-

cide which branch to pick. This means that a winning strategy for her will pick one of the two

rules depending on the history of the play, i.e. what has happened so far in the execution of

the system. For context-free games, one can prove that if a winning strategy exists, then there

is one that can be implemented by a so-called strategy automaton. If we have this automaton

available at runtime, we can query its state to decide which rule to pick.

In order to implement this, we have to compute a strategy automaton that represents a

winning strategy for the synthesis player. Afterwards, the program template is modified to

keep track of the state of the strategy automaton. Assume the automaton has states from

the set {1, . . . , n}. The program is modified by introducing corresponding Boolean variables

a1 , . . . , an so that during runtime, ai is true if and only if the strategy automaton is cur-

rently in state i. When we encounter procedure p(), the strategy will tell us whether to use

the if- or the else-branch. Correspondingly, there is a list of states i1 , i2 , . . . , ik ∈ {1, . . . , n}
of that automaton in which the if-branch should be taken, while the else branch should

be taken in all other states. The conditional expression that we need to synthesize is

ai1 or ai2 or . . . or aik , and hence the completed source-code for procedure p() is

if (ai1 or ai2 or . . . or aik) then { f(); } else { g(); }. Note that even

if the program template contains multiple conditional expressions that should be synthesized,

one strategy automaton is sufficient to represent the solution to the synthesis problem. But for

each conditional expression that has to be generated, the states of the automaton that corre-

spond to taking the if-branch may differ.

In summary,wehave translatedaprogramtemplate anda specification into a context-free inclu-

sion game. One player represents the environment. Whenever the program template contains

a conditionalwith agiven conditional expression, she is allowed to resolvewhichbranch topick,

but thewinning condition of the gamewill force her to respect the actual data values of the vari-

ables. The other player represents the synthesis task. By solving the game, we check whether

it is possible to complete the synthesis task or whether any instantiation of the template will re-

sult in a program that violates the specification. If the synthesis player wins the game, synthesis

is possible. We compute a winning strategy for that player as a certificate for the fact that she

wins. This winning strategy can be represented in the form of a strategy automaton which in

turn allows us to actually complete the synthesis task.
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Outlook

Ourmain goal in Part V. of this thesis will be finding a procedure efficiently solving context-free

inclusion games. Before we do so, we explain effective denotational semantics [Aeh07; Sum77;

SW15b], the approach that wewill take to solve context-free inclusion games and several other

problems in that part of the thesis. This technique is based on translating a verification problem

into a system of equations and then computing its least solution, fromwhich the answer to the

verification problem can be read off. We show how this method can be applied to the regular

inclusion problem for context-free grammars as demonstrated by Holík andMeyer [HM15] and

we extend that work to the case of languages of infinite words.

Then, we use the same approach in amore complex setting by considering context-free games

with membership in a regular language of finite words as the winning condition. With the help

of a novel composition operator, these games can be translated into a system of equations.

Their least solutions do not only provide the winner of the game, they can also be used to con-

struct strategy automata for the winning strategies as certificates. We compare our method to

existingmethods from the literature that could be adapted to solve this type of game, including

Walukiewicz’s aforementioned reduction [Wal01]. Additionally, we consider two extensions of

our method. The first one consists of having a regular language of infinite words as the target

language, which is useful to model reactive systems with non-terminating executions.

The secondextension is consideringgamearenasdescribedbyhigher-order recursion schemes,

a generalization of context-free grammars. Solving these games using effective denotational

semantics requires amajor amountofwork, but leads to several interestingby-products. Wewill

establish both a template model for interpreting systems of equations defined by higher-order

recursion schemes and a framework that can be used to transfer properties of the least solution

with respect to one model to the least solution with respect to another model. The template

model mechanism and the framework then enable us to solve games defined by higher-order

recursion schemes.

Finally, we will study the frontier of the decidability of games. Synthesis problems based on

program templates can be seen as a generalization of verification. Indeed, if the given program

template actually is a complete program, then synthesis simply amounts to verifying that pro-

gram. Correspondingly, solving a game is more involved than solving e.g. a reachability prob-

lem for a nondeterministic system. Hence, for any model that is Turing-complete, solving the

associated type of games is certainly just as undecidable as verification is. However, there are

models like Petri nets forwhich reachability problems canbe solved, but it turns out that the cor-

responding games are undecidable, i.e. we cannot compute their winner in general. Wewill use

valence systems over graph monoids, a model of automata that generalizes many well-known

models including both Petri nets and pushdown automata, to give a complete classification

of the models for which games are decidable. We show that among all automata models that

can be represented as a valence systemover graphmonoids, reachability games can essentially

only be solved in the aforementioned case of context-free games.
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2 Outline

We give a brief overview of the structure of this thesis. The thesis is partitioned into six parts,

the first of which is the introduction that this chapter concludes.

Part II. consists of preliminaries. It introduces the models of computation on which the results

in the rest of the thesis are based. It mostly presents results that have been established in the

literature without contributions from the author of this thesis.

Part III. presents our results on the closures of Petri net coverability languages. These corre-

spond to Section 1.2 of the introduction. We study the computation of both the downward

and the upward closure of Petri net languages as well as restricted versions of these problems.

We establish upper bounds on the size of the closures by providing algorithms, typically match-

ing the lower bounds that we also present and prove. The content of this part is based on the

publication [AMMS17].

Part IV. is concerned with results related to the regular separability of WSTS languages. We

have given a brief introduction to this topic and highlighted its relevance in Section 1.1 of the

introduction. We first establish some basic results on various classes of WSTS languages. Then,

we prove themain result, showing that disjoint WSTS languages are always regularly separable

under certain mild conditions. Finally, we give an upper bound and lower bound for the size

of the construction in the case of Petri net coverability languages. The content of this part is

based on the publication [CLMMKS18].

Part V. presents our results on solving games. We have explained how games are related to

problems in verification and synthesis in Section 1.3 of the introduction. After providing basic

definitions for games, we describe a fixed-point based approach to solving verification prob-

lems. This approach will be our vehicle for solving games defined by context-free grammars

and higher-order recursion schemes afterwards. We conclude the part by exploring the bound-

aries of the decidability of games. To this end, we use valence systems over graph monoids as

a model that provides a unified theory for various types of automata. The content of this part

is based on the publications [HMM16; HMM17; MMZ18; MMN17].

Part VI. forms the conclusion. Firstly, we summarize the contributions of this thesis. We make

clear for each of the results whether it has been published before. We also detail who, in addi-

tion to the author of this thesis, has contributed to establishing the results. Secondly, we give

an outlook on potential future work. This includes extensions of the theoretical results as well

as a brief discussion on how the results in this thesis could be applied in practice.

We will give a more detailed overview at the beginning of each part of the thesis.
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Part II.
Models of computation

This part contains some preliminaries: We formally define themodels of computation onwhich

the problems that we will study in the rest of this thesis are based.

Outline

We start by introducing some basic notation. Then, we define Turingmachines and formulas in

propositional logic and Presburger arithmetic; while they are not a main object of study in this

thesis, they are needed for proving some complexity results.

In Chapter 4, we define labeled transition systems as state-based language-generating mecha-

nisms. In particular, we focus on the class of finite automata.

Chapter 5 is concerned with context-free grammars and higher-order recursion schemes as

grammar-based language-generating mechanisms.

Finally, Chapter 6 introduces Petri nets, a model for concurrent systems, and an extension

thereof in the form of well-structured transition systems.

Someconcepts that are only used in a singlepart of the thesiswill bedefined later: boardgames

with perfect information in Chapter 15, fixed-point based techniques for systems of equations

in Chapter 16, and valence systems in Chapter 19.

Sources and publications

This part contains almost no contributions by the author of the thesis; it merely presents

commonly used models following standard textbooks. References will be given in the main

text. There are two exceptions: In Section 5.2, we present a novel way in which context-free

grammars can be used to define languages of infinite words. This is taken from the publica-

tion [MMN17]. In Section 6.4, we show that theword problem for BPP nets isNP-complete. This

result is not contained in the publication [AMMS17], but its proof is an adaption of the proof of

Theorem 24 from the full version [AMMS17a] of the paper. We will discuss the contributions to

these publications by the author of the thesis in more detail in Chapter 20.
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3 Preliminaries

Contents

3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 (Alternating) Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Classes of computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Formulas in propositional logic and Presburger arithmetic . . . . . . . . . . . . . . 69

After defining somebasic notation,wegive abrief introduction to (alternating) Turingmachines

and the robust complexity classes derived from them. We introduce formulas in propositional

logic and Presburger arithmetic and discuss the complexity of their satisfiability problems.

3.1 Basics

We start by fixing some notation that will be used throughout the thesis. Whenever we use

a symbol in the definition of a class of objects, e.g. Σ for alphabets, all later occurrences of

that symbol shall denote an arbitrary object from that class, even if it is not explicitly stated,

e.g. Σ always denotes some alphabet in the rest of this thesis. We provide additional explana-

tion whenever it is needed to avoid ambiguity.

Sets and functions

For a set X , we denote by P(X) = {Y ∣ Y ⊆ X} its powerset, the set of its subsets. Its cardinality is∣P(X)∣ = 2∣X ∣. We useM∪⋅ N to denote the disjoint union ofM and N, i.e. its value isM∪N, but we

additionally express that the sets are disjoint (M ∩ N = ∅ holds). For sets X , Y , we see X → Y as

the set of functions from X to Y . Nevertheless, wewrite f ∶ X → Y as usual to denote f ∈ (X → Y).
If f ∶ X → Y is a function and X ′ ⊆ X is a subset, we denote by f↾X ′ ∶ X

′
→ Y its restriction to X ′.

Numbers

We use Z = {. . . ,−2,−1, 0, 1, 2, . . .} to denote the integers and N = {0, 1, 2, . . .} to de-

note the natural numbers, the non-negative integers (including 0). For numbers i , j ∈ Z,[i , j] = {k ∈ Z ∣ k ⩾ i , k ⩽ j} is the (closed) interval from i to j.

Whenever convenient, we see n ∈ N as the set {0, . . . , n − 1} of cardinality n. For the set with

two elements, we also write B = {0, 1} and identify its elements 0 and 1 with the truth val-

ues false and true, respectively. We may see an element of the powerset P(X) as a function

with signature X → B, the so-called characteristic function that specifies for each element of X

whether it is contained in the subset.
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3 Preliminaries

For a set X and k ∈ N, X k is the k-fold Cartesian product of X with itself, and its element are

tuples (x1 , . . . , xk) of dimension k. The special case of k = 0 yields the singleton set X0 = {()}
that only consists of the empty tuple. We call such tuples vectors (of dimension k), even if X k is

not a vector space. We sometimes write v⃗ to make clear that symbol v denotes a vector. In par-

ticular, we use 0⃗ ∈ Z
k for the vector of suitable dimension with all components 0. We may see

vectors v ∈ N
k as functions v∶ [1, k] → N. Similarly, we may denote by XY the set of functions

with signature Y → X whenever we want to see such functions as vectors.

For a finite set M ⊆ Z of numbers, we use ∥M∥∞ = maxm∈M∣m∣ for the infinity norm of M,

the maximum of the absolute values of the numbers in M. We extend this notation to vec-

tors by seeing them as a set of their entries. Similarly, if f ∶ N → Z is a function whose

range f (N) = {f (n) ∣ n ∈ N} ⊆ Z is a finite set of numbers, we use ∥f∥∞ to denote ∥f (N)∥∞.

For a finite setM ⊆ Z of numbers, we use ∥M∥1 = ∑m∈M∣m∣ for the l1-norm ofM, the sumof the

absolute values of its elements. Similarly, the l1-norm of a vector v ∈ Z
k is ∥v∥1 = ∑i∈[1,k]∣vi∣.

Orders

For a relation ⩽ ⊆ X × X we denote by ⩽−1 its opposite, the relation with x ⩽−1 y iff y ⩽ x .

Whenever suitable, we simply use the inverted symbol for the opposite, e.g. ⩾ and > for the

opposites of ⩽ and <, respectively.

For a relation ⩽ ⊆ X × X , its reflexive-transitive closure ⩽∗ is the smallest relation on X containing

⩽ that is reflexive and transitive.

Recall that a quasi-order ⩽ on some set X is a relation ⩽ ⊆ X × X that is reflexive and transitive. It

is called a partial order if it also is antisymmetric.

For a quasi-order⩽weuse< to denote the irreflexive order defined by x < y iff x ⩽ y and y /⩽ x .
Note that if ⩽ is a partial order, this definition of < coincides with the usual one: x < y iff x ⩽ y

and x ≠ y.

Given two ordered sets (X1 , ⩽1), (X2 , ⩽2), we denote by ⩽× the product order on X1 × X2 in which

a tuple is bigger if it is bigger in each component:

(x1 , x2) ⩽× (y1 , y2) iff x1 ⩽1 y1 and x2 ⩽ y2 .

If ⩽1 and ⩽2 are quasi-orders resp. partial orders, then so is ⩽×.

The most common use case will be that we take the product of multiple copies of the same

ordered set (X , ⩽), e.g. in the case ofNk . In this case, we simply denote the product order by ⩽.
This means we implicitly generalize the order on a set to vectors over that set. We do the same

for other operations on the set, e.g. we generalize the addition and subtraction of numbers to

(component-wise) addition and subtraction of vectors.
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A subset Y of a quasi-ordered set (X , ⩽) is a chain if its elements are pairwise comparable.

It is an antichain if its elements are pairwise incomparable. An infinite ascending chain is a

sequence (xi)i∈N of elements of X such that xi ⩽ xi+1 for all i ∈ N. As the name suggests,

the set of elements {xi ∣ i ∈ N} occurring in such a sequence is indeed a chain. Infinite strictly as-

cending, infinite descending, and infinite strictly descending chains as well as their finite versions

are defined similarly in the expected way.

Finite words

An alphabet Σ is a finite set, its elements are called letters or symbols. In the case of an alphabet,

we write tuples w ∈ Σk as w1 . . .wk and call them (finite) words of length ∣w∣ = k. The empty

tuple is called the emptyword ε ∈ Σ0; it is theuniquewordof length ∣ε∣ = 0. The set Σ∗ = ⋃i∈N Σ
i

is the set of all finite words. A (formal) language (of finite words) is a subset L ⊆ Σ∗.

Finite words w , v can be concatenated in the expected way, which we denote by w .v or sim-

ply wv. Concatenation is lifted to languages by applying it element-wise. For a language L,

we inductively define L0 = {ε}, Li+1 = L.Li . The Kleene star L∗ = ⋃i∈N Li , the positive hull

L+ = ⋃i>0 L
i , and the complement (relative to Σ∗) L = Σ∗ \ L are defined as usual.

Infinite words

We define ω = (N, ⩽) as the standard order ⩽ on the natural numbers N. The set Σω is the set

of all functions f ∶N → Σ. We represent such a function by the infinite sequence of its function

values, i.e. we writew = w1w2w3 . . . to denote the function f defined by i ↦ wi−1. Accordingly,

we call such functions infinite words and subsets of Σω (formal) languages of infinite words, or

ω-languages for short.

A finite word on the left and an infinite word on the right can be concatenated to obtain an

infinite word, similar for the corresponding types of languages. For a language L ⊆ Σ∗ of finite

words, we define its ω-iteration Lω to be the set of all infinite concatenationsw(1) .w(2) . . . ∈ Σω
withw(i) ∈ L\{ε} for all i ∈ N. Note thatwe exclude ε to ensure that the result is an infiniteword.

Notation

We mostly use w = w1 . . .wn for the decomposition of a word into its letters, i.e. wi ∈ Σ; we

resort to using different notation, e.g.w = w(1) . . .w(n) withw(n) ∈ Σ∗, for a decomposition into

infixes. We often usew to denote the singleton language {w}, and write e.g.wω for {w}ω.
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3.2 (Alternating) Turing machines

We define alternating Turing machines as a general form of computational device and nonde-

terministic and deterministic Turing machines as special cases. The presentation loosely fol-

lows [Koz06]. In contrast to the restrictedmodels of computation that wewill define later, a Tur-

ing machine [Tur36] is a computational device that has unrestricted access to an unbounded

storage. Alternating Turing machines [CKS81] additionally provide both universal and existen-

tial nondeterminism.

Formally, an alternating Turing machine (ATM) is a tuple M = (Q∀ , Q∃ , qfinal , qinit , Σ, δ) where

Q = Q∀ ∪⋅ Q∃ ∪⋅ {qfinal} is a finite set of control states, partitioned into the universal states Q∀, the

existential states Q∃, and the final state qfinal. The initial control state is qinit ∈ Q. The alphabet Σ

is the input alphabet of the machine. Finally, δ ⊆ Q × Γ × Q × Γ × {L, R} is the transition relation,

where Γ = Σ ∪⋅ { } is the tape alphabet of the machine, consisting of the input alphabet and a

special blank symbol /∈ Σ, and {L, R} is the set of directions. We write (q, a) → (p, b, d) instead
of (q, a, p, b, d) ∈ δ.
A configuration of an ATMhas the shape (w , q, a.v) ∈ Γ∗×Q × Γ+, oftentimes written asw q a.v.

It consists of a control state, a finite tape content, and the position of the read/write head on the

tape. To be precise, the tape content is infinite, but only finitely many cells are not filled with

the blank symbol ; we assume that symbols have been exhaustively removed from both

ends of the tape content, identifyingw q a.v with ω .w q a.v . ω.

The transition relation δ of an ATM induces a transition relation T on configurations in the ex-

pected way: We have w q a.v → w ′ q′ a′ .v ′ if either (q, a) → (q′ , b, L) and w = w ′ .a′, v ′ = b.v or(q, a) → (q′ , b, R) andw ′ = w .b, v ′ = a′ .v.

The semantics of alternating Turingmachines is defined in terms of trees. The unique computa-

tion tree of an ATMM for input x ∈ Σ∗ is a tree labeled by configurations, defined inductively as

follows: (1) The root node is labeled by ε qinit x , and (2) if the tree has a node labeled by w q v

with q ≠ qfinal, then for each configurationw ′ q′ v ′, with w q v → w ′ q′ v ′, this node has exactly

one child labeled with that configuration.

Note that a computation treemay be infinite. Leaves of the tree are either labeled by configura-

tions with control state qfinal, or by rejecting configurations in which no transition is applicable.

We say that ATM M halts on input x if the computation tree for x is finite. We say that ATM M is

a decider, or total, if it halts on all inputs.

To define the language of an ATM M, it remains to introduce the acceptance condition. A leaf

of the computation tree is accepting if the control state (of the configuration labeling it) is qfinal.

An inner node is accepting if its control state is from Q∃ and it has an accepting child, or if the

control state is from Q∀ and all its children are accepting. A computation tree is accepting if its

root node is accepting. In this case, input x is contained in the language L(M) ⊆ Σ∗. Phrased
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3.2 (Alternating) Turing machines

differently, the languageL(M) recognized by ATMM is the set of all words from Σ∗ for which the

computation tree is accepting. An ATM that is a total decides its language (or, more specifically,

the membership problem for that language) in that one can construct the computation tree

associated to an input in finite time and check whether it is accepting.

Remark
In the literature, e.g. in [Koz06], leaves of the tree are often considered to be accepting if they

are labeled by a universal control state. This is motivated by seeing these nodes as empty con-

junctions, and it simplifies some constructions for ATMs. As we do not need said constructions,

we forgo defining such leaves as accepting, which saves us from some case distinctions.

Decision problems and word problems

Theoretical computer science is often concernedwith studyingdecisionsproblems. Theseprob-

lems consist of a set of instances I and a partition I = Iyes ∪⋅ Ino into the yes-instances Iyes and

the no-instances Ino. Intuitively, the question is, given an instance i ∈ I of such a problem,

to determine whether it is a yes- or a no-instance. We often present decision problems in the

following form.

Decision problem for I = Iyes ∪⋅ Ino

Given: Instance i ∈ I .
Question: i ∈ Iyes?

When we talk about the decidability of such a problem, we are asking whether a computer can

solve it. In order to formalize this concept, one observes that for most decision problems of

practical interest, it is possible to encode instances i ∈ I as words over some suitable alphabet.

This means the set of instances is the set Σ∗ of words over the alphabet, and the set of yes-

instances is a language L ⊆ Σ∗. With this encoding, a decision problem can be seen as a word

problem, the problem of deciding whether a given word is in a language.

Word problem for L ⊆ Σ∗

Given: Wordw ∈ Σ∗.
Question: w ∈ L?

We call the word problem for a language L decidable if L is the language of an ATM that is a

decider. Intuitively, that ATM indeed decides the language. Given an input word, we can in

finite time construct the computation tree of the ATM for the input and then read off whether

it is accepting. If so, the input word is indeed a member of the language of the ATM.
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A general decision problem is called decidable if the word problem that results from choosing

an appropriate encoding is decidable. In particular, we can formalize decision problems that ex-

pect ATMs as inputs as word problems and study their decidability. Encoding an ATM into e.g. a

binary or number representation is a process called Gödel numbering, named after a similar

technique that was developed by Gödel for the proof of his incompleteness theorems [Göd31].

The halting problem is one such example for a problem that expects a Turingmachine as input.

Halting problem

Given: ATM M, input x for M.

Question: Does M halt on x , i.e. is the computation tree of M for input x finite?

A variant of this halting problem is the famous problem for which Turing [Tur36] showed that it

is undecidable. It is not too hard to obtain an ATM that recognize the language associated to a

suitable encoding of the halting problem: This ATM has to simulate the given ATM on the given

input. Our definition of acceptancemakes sure that if the input is accepted, then a finite subtree

of the computation tree is sufficient to prove acceptance. Hence, the simulation can accept all

yes-instances of the halting problem within finite time. No-instances are hard to detect within

finite time. If the givenmachineM does not halt on the given input, then the simulation of that

machine will not halt either. In fact, Turing’s result shows that it is impossible to construct a

decider for the halting problem.

Restricted variants of Turing machines

An ATM is called an (existentially) nondeterministic Turing machine (NTM) if Q∀ = ∅. In this case,

an input is accepted if the associated computation tree contains an accepting leaf.

An ATM is called a deterministic Turing machine (DTM) if δ is unique in that for each

tuple (q, a) ∈ Q × Γ , there is at most one transition (q, a) → (q′ , a′ , d) in δ. In this case, each

configuration has at most one successor, and the computation tree is actually a sequence of

configurations. Whether the control states are universal or existential does not matter in this

case; we may assume that every DTM is an NTM.

It iswell-known thatNTMs canbe converted inpolynomial-time into languageequivalentDTMs.

While the translation runs in polynomial time, the resulting DTM may have increased resource

consumption over the original NTM (a notion that we will make precise in the next section).

Similarly, ATMs that are deciders can be converted to DTMs, but this does not hold true for

arbitrary ATMs: The class of languages that can be recognized by ATMs is a strict superclass of

the class of recursively enumerable or semi-decidable languages RE, the languages recognized

by DTMs and NTMs. For example, RE is not closed under complement¹ while the class of ATM-

recognizable languages is.

¹ The famous halting problem [Tur36] is undecidable but semi-decidable. If REwere closed under complementation,
its complement would be semi-decidable too, implying that the problem itself is decidable.
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So far, we have seen Turingmachines as devices for deciding acceptance. Wemay see a decider

as a device that computes the (total) characteristic function of its language χL(M) ∶ Σ∗ → B

with χL(M)(x) = true iff x ∈ L(M). To conclude this section, we define Turing machines that

compute functions with non-Boolean function values. To this end, we restrict ourselves to the

class of deterministic Turingmachines that accept every input.¹ By our definition of acceptance,

this in particular means that they halt on every input after finitely many steps. Such a DTM

computes function f ∶ Σ∗ → Σ∗ if on input x , the (unique) leaf of the computation tree is labeled

by a configuration w qfinal v such that w .v = f (x) (with all occurrences of the blank symbol

removed on both ends of the tape content). A function f that is computed by somemachineM

is called computable.

Alternative models

There is a variety of other models that are equally powerful as Turing machines. Formally, a

model is called Turing-complete if each Turingmachine can be simulated by an instance of the

model and vice versa. All such models share the property of Turing-machines that any non-

trivial verification problem – like state reachability, configuration reachability or halting – are un-

decidable. Sometimes, it is technically easier to show the undecidability of a problem using

one of the alternativemodels. In this thesis, we will consider countermachines in several proofs.

However, we delay giving a formal definition to the end of Section 6.1 when we have more of

the required notation at hand.

¹ Note that it is not possible to algorithmically check whether a given DTM satisfies that condition.
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3.3 Classes of computational complexity

We define the complexity classes, classes of languages that are defined by having Turing ma-

chines deciding the membership problem for these languages within certain resource bounds.

The presentation loosely follows standard textbooks, e.g. [Koz06].

We are exclusively interested in the resources time and space. The space consumption of ATMM

on input x , SpaceM(x) is the maximum length of ∣w .v∣ in any configuration w q v occurring

in the configuration tree of M for x (with symbol truncated exhaustively on both ends of

the tape content). The time consumption TimeM(x) is the height of the computation tree, the

number of transitions from the initial configuration to the most distant leaf of the tree. Both

SpaceM(x) and TimeM(x)may be infinite, but wheneverM halts on x , they are guaranteed to be

finite: Indeed, SpaceM(x) ⩽ TimeM(x) + ∣x∣ holds. In the following, we only consider deciders,

which implies that SpaceM(x) and TimeM(x) are finite natural numbers for any input x . Hence,

SpaceM and TimeM are functions with signature Σ∗ → N in this case. We generalize SpaceM
and TimeM to functions with signatureN → N by considering the worst-case input: We define

SpaceM(n) = max{SpaceM(x) ∣ x ∈ Σ∗ , ∣x∣ = n}, similarly for TimeM(n).
For a function f ∶N → N, we define ASPACE(f ) to be the class of all languages L ⊆ Σ∗ such

that there is an alternating Turing machine deciding it with space consumption f , i.e. there

is an ATM M (with input alphabet Σ) that is a decider with SpaceM = f such that L(M) = L
holds. We generalize the definition to classes of languages F ⊆ N → N by taking the union,

i.e. ASPACE(F) = ⋃f∈F ASPACE(f ). We will mostly use this definition in the case F = O(f ) for
some function f , where O(f ) is the set of functions that are asymptotically bounded by f from

above, O(f ) = {g∶N → N ∣ ∃c ∈ N, ∃n0 ∈ N∶ ∀n ⩾ n0∶ g(n) ⩽ c ⋅ f (n)} . Similarly, we define

ATIME(f ) to be the class of languages that can be decided with a Turingmachine with time con-

sumption f . We defineNSPACE(f ) andNTIME(f ), as well asDSPACE(f ) andDTIME(f ) by replacing

ATM in the definition of ASPACE and ATIME by NTM resp. DTM.

3.3.1 Example
The class of decidable or recursive languages REC is

REC = ATIME(N → N) = NTIME(N → N) = DTIME(N → N) ,
the set of languages that can be decided by (alternating / nondeterministic / deterministic)

Turing machines with arbitrarily high but finite time consumption.
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With the notation at hand, we can now define the robust complexity classes,

P = PTIME = ⋃
k∈N

DTIME(O(nk)) PSPACE = ⋃
k∈N

NSPACE(O(nk))
EXP = EXPTIME = ⋃

k∈N
DTIME(2O(nk )) EXPSPACE = ⋃

k∈N
DTIME(2O(nk ))

the classes of languages decidable using polynomial time resp. polynomial space resp. ex-

ponential time resp. exponential space by deterministic Turing machines. The classes NP

(or NPTIME), NPSPACE, NEXP (or NEXPTIME), and NEXPSPACE are defined by replacing DTIME

and DSPACE by NTIME and NSPACE, respectively. Similarly, we can define APTIME, APSPACE,

AEXPTIME and AEXPSPACE using ATIME and ASPACE.

These classes are considered robust since they are invariant to minor changes of the computa-

tional model, e.g. equipping Turing machines with additional tapes. The Church-Turing thesis,

first stated in 1943 by Kleene [Kle43], claims that any decision problem that can be solved by

some (physically implementable)model of computation canbe solvedbyadeterministic Turing

machine. Its strong version additionally states that this deterministic Turing machine is slower

than the other model of computation only by a polynomial factor. There are two problems

with that thesis: The first are the recent advantages in quantum computing that have lead to

an ongoing discussion on whether the strong version of the Church-Turing thesis is true [BV93;

KML07]. The second is the problem of defining precisely what it means to be computable by

a physically implementable device. Different versions of the thesis use different wordings to

express this, but they share the problem that without a much deeper understanding of physics

than we have right now, it is impossible to prove any such thesis. Luckily, we can use that effec-

tive polynomial-time equivalence has been shown for many random access machines [CR72], a

model that is very close to sequential imperative programs. Hence, to show that a problem is in

a certain complexity class, it will be sufficient to provide pseudocode for an algorithm solving

the problem within that time. We then know that it is possible to construct a Turing machine

solving the problem that is slower only by a polynomial factor.

Relations between the complexity classes

Let us put the classes defined by alternating Turing machines aside for a bit. The following

relationships between the other complexity classes are known:

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE = NEXPSPACE .

We give a brief explanation for the inclusions: We have already observed that

SpaceM(x) ⩽ TimeM(x)+∣x∣; thus, P ⊆ PSPACE,NP ⊆ NPSPACE and so on. Savitch’s result [Sav70]

states that nondeterministicmachines can be converted to deterministicmachineswhile squar-

ing the space consumption, yielding PSPACE = NPSPACE and EXPSPACE = NEXPSPACE. This

also proves NP ⊆ PSPACE and NEXP ⊆ NEXPSPACE, but these inclusions could actually be

shown with a simpler proof that does not invoke Savitch’s theorem. If a machine defines a
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language in PSPACE, its computation tree can only contain configurations of bounded length.

The number of such configurations is at most exponential in the input, so it is possible to

deterministically simulate the machine with a time consumption that is exponentially higher.

We obtain the final relation PSPACE ⊆ EXP. One could state more general versions of these

results (in which some of them have additional prerequisites, e.g. time-constructability), but

doing so is beyond the scope of the thesis.

For all inclusions among neighbors in the above chain, it is unknown whether they are strict.¹

It is known that having exponentially more space or time strictly increases the computational

power, i.e. P ⊊ EXP, PSPACE ⊊ EXPSPACE and so on. The relationship between time and space

and between determinism and nondeterminism in the case of time, however, is not well under-

stood. In fact, answering these questions is universally considered to be the most important

open problem of computer science. This in particular holds true for P ⊆ NP, often phrased as

P
?= NP. Without going into any details, we briefly mention that P is considered the class of

tractable problems, problems that can be solved efficiently, while NP is the class of problems

where a proposed solution (a certificate) can be verified efficiently. Answering P
?= NP thus not

only has practical implications (sincemany important practical problems fromNP, e.g. optimiza-

tion problems, are not known to be in P), but also philosophical ones [For13].

Reductions and hardness

At the moment, it seems out of reach to show absolute hardness, i.e. proving that some com-

putational problems from NP or PSPACE are not in P. Instead, one defines a notion of relative

hardness: A problem is hard for a class if an efficient solution for that problem leads to an effi-

cient solution to all problems in the class.

To formalize the concept, we introduce polytime reductions. A polynomial-time computable

function f ∶ Σ∗ → Σ∗ is a function that is computed by a DTM running in time O(nk) for some

constant k. A polynomial-time or polytime reduction from some language L ⊆ Σ∗ to L′ ⊆ Σ′∗

is a polytime-computable function f ∶ Σ′′∗ → Σ′′∗ (with Σ, Σ′ ⊆ Σ′′) such that x ∈ L if and only

if f (x) ∈ L′. We write L ⩽poly L′ if such a reduction exists. Intuitively, this means L is eas-

ier to decide than L′: If L′ can be decided in time t∶N → N, then L can be decided in time

t ◦ O(nk) by first applying the reduction and then using the decider for L′. Formally, for any

of the classes C introduced above, the following robustness against polytime reductions holds: If

L ∈ C and L′ ⩽poly L, then L′ ∈ C.

With the notation at hand, we can formalize the concept of relative hardness. We say that a

problem L is hard for a class C if any problem from C can be reduced to it, i.e. for all L′ ∈ C,
L′ ⩽poly L holds. A problem is complete for a class C if it satisfies both membership (L ∈ C) and
hardness (L is hard for C).

¹ It seems that amajority of computer scientists believes that the inclusions are strict [Ros12], but theory has turned
out to be rather undemocratic in the past, demonstrated e.g. by the surprising equality of the complexity classes
NL and coNL, proven independently by Immerman [Imm88] and Szelepcsényi [Sze87].
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To show that a problemL is hard for a class, it is sufficient to show thatL′ ⩽poly L, whereL′ is a
problem for which we already have proven hardness. This is because ⩽poly can be easily shown

tobe transitive (the composition of polynomials is again a polynomial). This observationgreatly

simplifies proofs of hardness, andmotivates the study of canonical hard problems for each class.

Alternation versus determinism

In contrast to the relationship of time and space resp. nondeterminism, the relationship be-

tween the classes defined by alternating Turingmachines and the classes defined by determin-

istic Turingmachines is well understood: The paper that introduced ATMs contains the proof of

the following equalities [CKS81]:

APTIME = PSPACE, APSPACE = EXP, AEXPTIME = EXPSPACE .

For more general statements of the equalities, we refer to the literature.

Fast-growing functions

So far, we have restricted ourselves to classes defined by at most exponential resource con-

sumption. We now define fast-growing functions and their associated complexity classes.

Form ∈ N, them-fold exponential function expm∶N → N is inductively defined as follows:

exp0(n) = n expm+1(n) = 2expm (n) .
For example, exp2(n) = 22

n

. For each m ∈ N, we may define the associated complexity classes,

e.g.mEXPSPACE = ⋃k∈N DSPACE(expm(O(nk))), similar formEXP,mNEXP and so on.

The equalities and inclusions among complexity classes mentioned above carry over, for exam-

ple 1AEXPSPACE = AEXPSPACE = 2EXP.

We define ELEMENTARY to be the class of all problems that can be solved with some m-fold

exponential bounded resource consumption, e.g. ELEMENTARY = ⋃m∈NmEXP. Using the re-

sults mentioned above, the definition of ELEMENTARY remains the same, no matter whether

we define it using time or space. Note that while m is allowed to be arbitrarily high, it is in-

dependent of the input size. The class PR includes all languages that can be computed with

resources bounded by a primitive recursive function (where again it does not matter whether

we bound space or time). The precise definition of primitive recursion is irrelevant here; it can

be found e.g. in [Koz97]. The class PR includes for example TOWER = DTIME(O(Tower)), where

Tower∶N → N is the non-elementary function defined by

Tower(n) = expn(n) .
Note that the height of the tower of exponentials is depending on the input size.
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Beyond PR, there are the classes defined by non-primitive recursive functions, functions that

grow faster than any primitive recursive function. The most well-known example is the (two-

parameter version of the) Ackermann function [Ack28; Pét35], inductively defined by

Acker(0,m) = m + 1

Acker(n + 1, 0) = Acker(n, 1)
Acker(n + 1,m + 1) = Acker(n, Acker(n + 1,m)) .

Roughly spoken, the first parameter of the Ackermann function determines which operation

should be executed on the second parameter. We have Acker(2,m) ≈ 2m, Acker(3,m) ≈ 2m ,

and Acker(4,m) is approximately equal to a tower of exponentials 22
. . .

2

of heightm.

To get a one-parameter version, we may define A(n) = Acker(n, n). The complexity class

ACKERMANN can be defined by DTIME(O(A(n))).
Remark

a) One candefinehierarchies of fast-growing functions (and the associated complexity classes),

see e.g. [Sch16]. Within these hierarchies, Tower is a mildly fast-growing non-elementary

function, and Acker is a mildly fast-growing non-primitive recursive function. However, for

practical usage, such considerationsdonotmatter: Analgorithmwhoseworst-case resource

consumption is described by the Ackermann function is useless on inputs that trigger this

behavior.

b) Complexity classes defined by fast-growing functions allow for more freedom in the type

of reductions: For example, to show that a problem is in PR, it is sufficient to reduce it to a

problem already known to be in the class with a reduction that runs in time expm for some

constantm.

c) There is also interest in complexity classes that are defined by functions with sublinear

growth, e.g. L and NL, the problems solvable by deterministic resp. nondeterministic Turing

machines within logarithmic space consumption. To give a precise definition of the classes,

wewould need tomodify our definition of ATMs: With our definition, any ATMneeds at least∣x∣ space on input x . Polynomial-time reductions are too coarse to handle these classes, in-

stead, one needs to consider logarithmic-space reductions, the definition of which would

suffer from the same problem.

Since the classes L and NL do not play an important role in this thesis – we are mostly con-

cernedwith complexity classes that aremuch larger –we forgo giving the formal definitions.

Note that even for larger classes like P, it would actually make sense to define logarithmic-

space reductions: Since L ⊆ P (and the inclusion is believed to be strict), proving that a prob-

lem is hard for a class with respect to logarithmic-space reductions is potentially a stronger
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statement than showing that it is hard for the class with respect to polynomial-time reduc-

tions. We believe that for our purposes, showing hardness with respect to polytime reduc-

tions is fine-grained enough.

A generic hard problem

We present a general way to obtain for each complexity class a complete problem, an

approach that has for example been used by Meyer and Stockmeyer [MS72; SM73] and

Walukiewicz [Wal01]. For many of the small complexity classes, like P, NP, and PSPACE, there

is an abundance of well-known problems that are complete for each class. The same is not

true for the larger classes.¹ Luckily, each class has a generic problem that is complete for the

class, namely the acceptance problem for ATMs whose properties coincide with the properties

defining the class. The acceptance problem (without any restrictions) is the following.

Acceptance problem

Given: ATM M over Σ, input x ∈ Σ∗.
Question: x ∈ L(M)?

It is easy to show that the acceptance problem is a variant of the undecidable halting problem,

which we have discussed briefly in the previous section. If we restrict the machine M to only

uses bounded resources, however, it can be solved by simulating the machine. Consider for

example the following variant for AEXPSPACE.

Acceptance problem for AEXPSPACE (Promise version)

Given: ATM M over Σ that runs in SpaceM(2O(nk )) for some k ∈ N, input x ∈ Σ∗.
Question: x ∈ L(M)?

Intuitively, the problem should obviously be AEXPSPACE-complete. However, the problem is

not a proper decisionproblem, but a so-calledpromiseproblem: Wehave theguarantee that our

input is the encoding of a machine that runs in exponential space. Another minor annoyance

is the dependency on the constant k. We solve both issues and consider the following decision

problem instead.

Acceptance problem for AEXPSPACE

Given: ATM M over Σ, input x ∈ Σ∗.
Question: Is the computation tree for x accepting and uses space at most 2∣x∣?

¹ Since the classes are much larger, this is likely not because of an inherent property of these classes, but because
humans rarely try to solve such hard problems in practice.
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We see that we have replaced the promise thatM runs using exponential space for all inputs by

checking that M uses exponential space for the concrete input. We also replaced 2O(nk ) by 2n .
Now, we can prove that this problem indeed is AEXPSPACE-complete.

3.3.2 Lemma
The acceptance problem for AEXPSPACE is AEXPSPACE-complete.

Proof sketch:
We first show membership. We construct an ATM that simulates the given machine M on the

given input x . Should it encounter a configuration with space consumption larger than 2∣x∣,
it rejects. The overhead caused by the simulation and by checking the space consumption

is at most polynomial in 2∣x∣, so the resulting machine proves that the acceptance problem is

in AEXPSPACE.

We argue that the problem is AEXPSPACE-hard by following the definition: Let L be any prob-

lem from AEXPSPACE. There is an ATM M with L(M) = L and constants k , c such that M uses

space at most 2(c⋅n)k on an input of size n. Let Σ be the input alphabet of M, and let # /∈ Σ be a

fresh symbol. We define a newmachineM′ over Σ∪⋅ {#} that behaves asM does for the symbols

in Σ and that treats # as M treats . In particular, M′ will accept input x#l (with x ∈ Σ∗) for

any l ∈ N if and only if M accepts x . We define our reduction to take input (M, x) and yield

output (M′ , x#(c⋅∣x∣)k−∣x∣). We have thatM′ accepts x#(c⋅∣x∣)k−∣x∣ if and only ifM accepts x . Further-

more, M′ runs on x#(c⋅∣x∣)k−∣x∣ with space consumption at most 2∣x#(c⋅∣x∣)k−∣x∣∣ = 2(c⋅∣x∣)k , since M
runs on x with space consumption at most 2(c⋅∣x∣)k . ⬛

Remark
Making the proof sketch above precise requires techniques from complexity theory that are

beyond the scope of this thesis, e.g. encoding ATMs as strings, manipulating the encodings,

efficiently simulating given ATMs, and the padding technique to go from 2n
k

to 2n , see [Koz06].

We now have a problem that is complete for AEXPSPACE = 2EXP. We will reduce from it in

Section 17.5 to show that context-free inclusion games are 2EXP-hard. A similar construction

works for all the other complexity classes that are robust against polynomial-time reductions.
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3.4 Formulas in propositional logic and Presburger arithmetic

We introduce formulas in propositional logic and in (existential) Presburger arithmetic. Both

concepts are used in some complexity proofs throughout the thesis. Positive Boolean formulas

additionally play an important role as representations for the semantics of games. Both topics

are standard, see e.g. [End72].

Propositional logic

For a set V of variables, the formulas in propositional logic over V , also called Boolean formu-

las BF(V), are defined by the following grammar:

F ∶∶= true ∣ false ∣ x ∣ ¬F ∣ F ∧ F ∣ F ∨ F ,
where x ∈ V is a variable. Given a variable assignment M ⊆ V (which represents the func-

tion χM∶V → B that evaluates a variable x to true iff x ∈ M), we obtain a map −(M)∶ BF(V) → B

that assigns each formula F the truth value F(M) under evaluation at M. Evaluation is defined

inductively in the expected way. Vice versa, each formula defines a map F(−)∶P(V) → B that

evaluates it at the given variable assignment.

The most important algorithmic problem in this area is satisfiability, given a formula, is there a

variable assignment such that the formula evaluates to true. The well-known Cook-Levin theo-

rem, see e.g. [Koz06], states that this problem is NP-complete, even if we restrict the formulas

to be in conjunctive normal form.

A literal is a variable x or a negated variable¬x , a clause is a disjunction of literals K = L1∨ . . .∨Ln ,
and a formula in conjunctive normal form (CNF) is a conjunction of clauses, F = K1 ∧ . . . ∧ Km .

For any formula F ∈ BF(V), there is a satisfiability-equivalent formula F ′ in CNF that can be

computed in polynomial time using the Tseytin transformation [Tse68]. The problem SAT is the

task of checking whether a formula in CNF is satisfiable.

Satisfiability in propositional logic (SAT)

Given: Formula F ∈ BF(V).
Question: Is F satisfiable?

3.4.1 Theorem: Cook-Levin [Coo71; Lev73]
SAT is NP-complete.

For two formulas F ,G ∈ BF(V) we write F ⟹ G and say that F implies G if for any variable

assignment M ⊆ V such that F(M) = true, G(M) = true holds.
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A formula is positive if it does not contain negation. The set of positive Boolean formulas pBF(V)
consists of all positive formulas, including the constants true and false.

Sometimes, we may assume that true and false do not occur as operands of ∨ and ∧ by using

the syntactic elimination rules

F ∨ false = false ∨ F = F F ∧ false = false ∧ F = false

F ∨ true = true ∨ F = true F ∧ true = true ∧ F = F .

This leaves false as the unique unsatisfiable formula in pBF(V) and true as the unique tautology,

i.e. a formula that is satisfied by all variable assignments. Hence, satisfiability is trivial for posi-

tive Boolean formulas. We comment on the complexity of the implication problem (given two

formulas, does one imply the other) in Section 17.7.

Presburger arithmetic

Presburger arithmetic [Pre31] is the first-order logic over natural numbers with addition and

comparison. In contrast to (Peano) arithmetic, which also considers multiplication, Presburger

arithmetic enjoys numerous decidability results.

Formally, a Presburger term over the set of variables V is defined by the grammar

t ∶∶= n ∣ x ∣ t + t ,
where n ranges over the natural numbers and x ∈ V . Note that while multiplication is not

available, we may rewrite multiplication with constants as addition, e.g. 5 ⋅ t can be expressed

as t+t+t+t+t. Insteadof allowingall natural numbers as terms, itwouldbe sufficient to consider

0 and 1 as any other number can be constructed by repeated addition. While this restriction to

0 and 1 would not limit the expressiveness, the complexity results that we are going to state

below hold even if the formula contains arbitrary constant numbers (which are assumed to be

encoded in binary).

A quantifier-free Presburger formula is defined by the grammar

ψ ∶∶= t ⩽ t ∣ ¬ψ ∣ ψ ∧ ψ ∣ ψ ∨ ψ ,

where t ranges over the terms as defined above. A Presburger formula (in prenex normal form) is

of the shapeQ1x1 . . . Qk xk ∶ψ, whereQi ∈ {∀, ∃} for all i, the xi are variables andψ is a quantifier-

free formula. As usual, assuming prenex normal form does not limit the expressiveness. An exis-

tential Presburger formula is a Presburger formula in prenex normal form in which all quantifiers

are existential, i.e. a formula of the shape ∃x1 . . . ∃xk ∶ψ with ψ quantifier-free.

The variables that occur in a Presburger formula ϕ which are not bound by a preceding quanti-

fier (i.e., referencing the notation introduced above, are not among the x1 , . . . , xk), are called

the free variables of the formula. We sometimes write ϕ(y1 , . . . , ym) to highlight that the
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variables y1 , . . . , ym are free in a formula. Such a formula can be evaluated at a vector y⃗ ∈ N
m

to obtain the truth value ϕ(y⃗). The evaluation semantics of Presburger formulas is as expected.

To a formulaϕ(y1 , . . . , ym), we can associate its set of solutions Sol(ϕ) = {y⃗ ∈ N
m ∣ϕ(y⃗) = true} as

the set of all vectors for which the formula evaluates to true. We call a setM ⊆ N
k that occurs as

Sol(ϕ) for some Presburger formula semi-linear. The semi-linear sets enjoy a rich theory and ad-

mit several characterizations. For example, they occur as the Parikh images (sets of vectors that

count the occurrences of each symbol in a word) of regular and context-free languages [Par66].

Again, satisfiability is the crucial algorithmic problem. We state the satisfiability problem for

formulas in existential Presburger arithmetic (EPA).

Satisfiability in existential Presburger arithmetic (EPA-SAT)

Given: An existential Presburger formula ϕ.

Question: Is ϕ satisfiable?

3.4.2 Theorem (Scarpellini [Sca84])
EPA-SAT is NP-complete.

Surprisingly, satisfiability for the existential fragment of Presburger arithmetic is not harder than

satisfiability in propositional logic. When considering expressiveness, the restriction to EPA is

not problematic: For any Presburger formula, there is an existential one such that the solution

sets and satisfiability coincide. However, this quantifier elimination leads to a blowup in the for-

mula size. Indeed, the satisfiability problem for arbitrary Presburger formulas is in 2EXPSPACE

and 2NEXP-hard. Even if the number of alternation between universal and existential quanti-

fiers is bounded, the problem remains NEXP-hard, see [Haa14] for detailed information.
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We define labeled transition systems as a general type of language-generatingmechanism. We

discuss the theory of finite-state automata (labeled transition systems with only finitely many

configurations) over both finite and infinite words.

4.1 (Labeled) Transition systems

A transition system S = (Γ , T ) consists of a set of configurations Γ and a transition relation T ⊆ Γ×Γ .
One can say that the transition systems defined by hardware and software systems are themain

object of interest in computer science.

Instead of working directly on the configuration space Γ , we want to see transition systems

as language-generating devices. This additional level of indirection allow us to compare tran-

sition systems with different sets of configurations as long as they define languages over the

same alphabet.

Formally, a labeled transition system (LTS) over alphabet Σ is of the shape S = (Γ , T ) where

T ⊆ Γ ×Σ∗× Γ is a set of transitions labeled by finite words over Σ. Most of the time, we are inter-

ested in LTSes whose transitions are labeled by words of length exactly one (i.e. T ⊆ Γ × Σ × Γ),
or of length at most one. In the latter case, we get T ⊆ Γ × Σε × Γ where Σε = Σ ∪⋅ {ε}.
In the case of labeled transitions, we usually write c

a
−→ c′ instead of (c, a, c′) ∈ T . We ex-

tend the notations towards computations (also called runs) in the expected way and write

c
w
−−→ c′ where w ∈ Σ∗ is a word if there is a sequence of states c0 , . . . , c∣w∣ such that

c = c0
w1
−−→ c1

w2
−−→ . . .

w∣w∣
−−−−→ c∣w∣ = c′.

To see an LTS as a device that generates finite words, we equip it with sets of initial and final

configurations, respectively. This means we consider a tuple S = (Γ , T , Γinit , Γfinal), where (Γ , T ) is
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as before and Γinit , Γfinal ⊆ Γ . A run of such an LTS is accepting if it starts in an initial and ends in

a final configuration. The language L(S) ⊆ Σ∗ of an LTS is the set of all words that occur along

accepting runs,

L(S) = {w ∈ Σ∗
»»»»»» cinit w

−−→ cfinal for some cinit ∈ Γinit , cfinal ∈ Γfinal} .
Remark
Seeing an LTS as a device for generating languages of infinite words is more involved, and we

will not give a general definition on the level of LTSes. The acceptance condition (ending in a

final state) has to be replaced, and there are different ways to do so, each with its own sets of

drawbacks and advantages. A detailed discussion is given in Section 4.4.

Wedefine somenotation for LTSeswith Σ-labeled transitions. For a letter a anda configuration c

of some LTS S, we denote by

postS(a, c) = {c′ ∈ Γ »»»»»» c a
−→ c′} , preS(a, c) = {c′ ∈ Γ »»»»»» c′ a

−→ c}
the set of (direct) a-successors resp. predecessors. We extend the notation to sets of configu-

rations by taking the union, e.g. postS(a, C) = ⋃c∈C postS(a, c). Additionally, we extend the

notation to words by induction,

postS(ε, C) = preS(ε, C) = C ,

postS(w .a, C) = postS(a, postS(w , C)) , preS(w .a, C) = preS(w , preS(a, C)) .
We will be mostly interested in the configurations reached from the initial configurations and,

similarly, in the configurations from which a final configuration can be reached. We define

reachS(w) = postS(w , Γinit) , reach−1S (w) = preS(w , Γfinal) .
We generalize reach, reach−1 , post, and pre to set of words by taking the union. A particularly

interesting case is the case of all words, which we simply denote by

reachS = reachS(Σ∗) = ⋃
w∈Σ∗

reachS(w) , reach−1S = reach−1S (Σ∗) = ⋃
w∈Σ∗

reach−1S (w) ,
the set of all configurations reachable from the initial configurations respectively the set of all

configurations fromwhich a final configuration is reachable. It is clear from the definition of the

language of an LTS that we have L(S) ≠ ∅ if and only if one (or all) of the following equivalent

conditions is true:

reachS ∩ Γfinal ≠ ∅ , reach−1S ∩ Γinit ≠ ∅ , reachS ∩ reach−1S ≠ ∅ .
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If the system S we are considering is clear from the context, we omit the subscript and simply

write e.g. post(a, c).
The transition relation of an LTS is finitely branching if for each configuration c and each

symbol a ∈ Σ, there are at most finitely many successors c′ such that c
a
−→ c′. It is called unique

if there is at most one successor, complete if there is at least one successor, and deterministic if

there is exactly one successor. If the transition relation T of an LTS is deterministic, we may see

it as a function T ∶ Γ × Σ → Γ such that T (c, a) is the unique c′ with c
a
−→ c′.

An LTS is finitely branching if its transition relation is and it additionally has only finitely many

initial states. It is deterministic if its transition relation is and it has a unique initial state.

The synchronized product

We present a standard construction that, given two LTSes, yields an LTS whose language is the

intersection of the languages of the LTSes. Intuitively, the product of the LTSes tracks tuples

of configurations, simulating a run of one LTS per component. Transitions not labeled by ε

need to be applied synchronously to both components. Formally, the construction is as fol-

lows: Let S = (Γ , T , Γinit , Γfinal) and S′ = (Γ ′ , T ′ , Γ ′init , Γ ′final) be two LTSes with transition labeled by

Σε. Their synchronized product is S× S′ = (Γ × Γ ′ , T× , Γinit× Γ ′init , Γfinal× Γ ′final)where T× is defined by(c, c′) a
−→ (d , d ′) if (1) a = ε, and c

ε
−→ d in T and c′ = d ′, or (2) a = ε, and c′ ε

−→ d ′ in T ′ and c = d,
or (3) a ∈ Σ, and c a

−→ d in T and c′
a
−→ d ′ in T ′.

It is straightforward to showL(S × S′) = L(S)∩L(S′): For each wordw, a run of the product LTS

gives rise to a run in each LTS. Similarly, two runs on the same word, one for each system, can

be merged into a single run of the product system.

Automata

LTSes are a very general concept since we have not imposed any restriction on the set Γ ; in

particular, it may be infinite. The drawback is that we cannot treat them algorithmically in this

full generality. To solve the problem, we will focus on automata in the following. Automata are

LTSes of a special shape: Their set of configurations can be written as Γ = Q × M such that Q

is a small (typically finite) set of control states, and M is a potentially large (e.g. infinite) set of

memory values. The transitions T are allowed to depend arbitrarily on Q, but only locally on M.

The lattermeans for example that even ifM is infinite (whichnecessarilymeans that its elements

have unbounded size), the transitions should only depend on a bounded part of the current

value m ∈ M. More formally, one can require that there is a finite set of transition rules→ that

specify whether a transition (q,m) a
−→ (q′ ,m′) ∈ T exists. Hence, an automaton can usually be

represented by some finite syntax (the setQ, a representation of the shape of the elements ofM,

and→), although it gives rise to a potentially infinite semantics, the transition system (Q ×M, T ).
For example, sequential imperative programs can be seen as automata: The control states are

the lines of codewhile thememory stores the assignment of the variables. The transitions from

one line to another only depend on thememory as specified e.g. by a conditional in the source
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4 Labeled transition systems and finite-state automata

code. With this view, the source code is the syntax of the automaton, the transition system that

describes its runtime behavior is the semantics. The labeling that we consider for such a system

depends on what property we want to analyze. For example, it may be the atomic commands

that are executed by the program.

The above definition of automata is imprecise and fuzzy, but it captures the fundamental idea

behind automata theory: An infinite semantics is represented by a finite description that can

serve as input for algorithms. However, requiring a finite representation of the system is not suf-

ficient to get decidability results. For example, Turing machines also admit a finite description,

but by Rice’s theorem [Ric53] no non-trivial properties of the languages they define are decid-

able. Currently, there is no general theory that explains which types of systems admit which

decidability results. The model of valence systems over graph monoids [Zet15b; Cha07] that

we present in Chapter 19 can be seen as a step in that direction, but this model is not powerful

enough to capture all types of memories, and it has not (yet) gained wide-spread usage.

This leaves uswith having to define various classes of automata for which certain properties are

decidable. In the following, we define various types of state-based systems that are automata in

the above sense and for which some properties, e.g. membership in their language, are decid-

able. Finite automata, Petri nets, and well-structured transition systems fall into this category.

We will also consider rewriting-based systems like context-free grammars and higher-order re-

cursion schemes. These systems can also be seen as automata as we will explain in Section 5.2.
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q0 q1
a

b

Figure 4.2.a: An NFA with language (ab)∗.
4.2 Finite-state automata

We introduce finite-state automata, which are simply LTSes with finitely many configurations.

However, one usually uses modified notation in this case. We also follow the convention of

having a single initial state. The material is standard and can be found e.g. in [KN01; Koz97].

Formally, a (nondeterministic) finite(-state) automaton (NFA) over alphabet Σ is a tuple

A = (Q , δ, qinit , Qfinal), where Q is a finite set of control states, δ ⊆ Q × Σ × Q is the transition

relation, qinit ∈ Q is the unique initial state, and Qfinal ⊆ Q is a set of final states.

Apart from the different naming of the components, the notation anddefinitions for LTSes carry

over. For example, we call an NFA a deterministic finite automaton (DFA) if it is deterministic.

The size of an automaton A is ∣A∣ = ∣Q∣ + ∣δ∣. Since ∣δ∣ ⩽ ∣Q∣2 ⋅ ∣Σ∣, to show that an automaton

is e.g. of size polynomial in n, it is sufficient to show that ∣Q∣ is polynomial in n (assuming that

the alphabet is fixed).

A language L ⊆ Σ∗ is called regular if there is a finite automaton A over Σ with L(A) = L. The

class of all regular languages is denoted by REG.

To decide the word problem of a regular language, we do not need the capabilities of an unre-

stricted Turing machine, a finite automaton is sufficient.

4.2.1 Example
The language (ab)∗ ⊆ {a, b}∗ is regular: It is the language of the NFA given by Figure 4.2.a.

The class of regular languages can also be defined by regular expressions, finite expressions that

may contain the empty language∅, the singleton languages {ε} and {a} for each letter a of the

underlying alphabet and unions, concatenations, and the Kleene star. From this, we immedi-

ately obtain that every language consisting of finitely many words is regular, and if L,L′ ⊆ Σ∗

are regular, then so are their union L ∪ L′, their concatenation, L.L′, and the Kleene star L∗.
It can also be shown that the intersection L ∩ L′ of two regular languages and that the com-

plement L of a regular language are regular. All these closure properties are effective: Given

automata for L and L′, we can construct an automaton for each of the aforementioned lan-

guages. In the case of the intersection, we have explicitly stated the construction in Section 4.1.
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4 Labeled transition systems and finite-state automata

In addition to the definitions based on automata or closure properties, the regular languages

can also be characterized as the solution to closed formulas in the logic S1S, (weak) monadic

second-order logic with one successor, see e.g. [KN01]. Discussing the details is beyond the

scope of this thesis.
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4.3 Descriptional complexity

4.3 Descriptional complexity

We introduce somenotions regarding thedescriptional complexity of regular languages. Unlike

computational complexity (see Section 3.3) which studies the amount of resources needed to

decide membership in a language, descriptional complexity studies the size of descriptions of

languages. However, many interconnections between the two areas exist in the form of results

that show that languages for which the membership problem has a certain complexity admit

descriptions of a certain shape and size and vice versa [Imm98]. Descriptional complexity the-

ory considers several types of objects to represent languages, including logical formulas and

circuits. In this thesis, we are exclusively interested in the descriptional complexity of regular

languages, for which we use finite automata as descriptions.

The well-known fact that DFAs and NFAs are equally expressive results in twomeasures of com-

plexity for regular languages. We will introduce and use both in the following. For a regular

language L, its state complexity is the minimum number of states that an NFA Awith L(A) = L
has. Its index is the minimum number of states that a DFA A with L(A) = L has. The latter

notion comes from the fact that this number is indeed the index, the number of equivalence

classes, of the Nerode right-congruence [Ner58]. It is well-known that every regular language

has a unique minimum DFA defining it (up to isomorphism), see e.g. [HU79]; the same is not

true for NFAs [JR93].

There are languages for which state complexity and index coincide.

4.3.1 Example
For each k ∈ N, the language {ak} ⊆ a∗ has state complexity and index k + 1. Obviously, a

DFA with states q0 , q1 , . . . , qk and transitions qi
a
−→ qi+1 for all i accepts the language with the

desired number of states. Any smaller automatonwould necessarily see a state repetitionwhile

processing ak . This loop could be repeated to accept a word ak+l for l > 0, a contradiction to

the assumption that ak is the only word in the language.

The same is true for the languages

L⩽k = {al »»»»» l ⩽ k} , L⩾k = {al »»»»» l ⩾ k} .
In general, the index is at most exponentially higher than the state complexity. The Rabin-Scott

powerset construction [RS59] turns an NFA with states Q into a language-equivalent DFA with

states Qdet ⊆ P(Q), and ∣P(Q)∣ = 2∣Q∣. This is in fact also used when proving that regular lan-

guages are closed under complement: Given an NFA for a language, we transform it into a DFA,

which can be complemented by making the final states non-final and vice versa. In particular,

a regular language and its complement always have the same index. This method of comple-

mentation is not sound for NFAs, and we will see in Section 8.2 a language for which the state

complexity of its complement is exponentially larger than its state complexity.
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4 Labeled transition systems and finite-state automata

In the following, we consider an example for a family of languages in which the worst-case-

behavior of an exponential gap between state complexity and index occurs.

4.3.2 Example
For each k, the language {w ∈ B

⩾k ∣ the k-last letter ofw is 0} has state complexity k + 1 but

index 2k . It is not hard to construct automata with the desired number of states: An NFA can

guess when the k-last letter occurs, verify that it is 0 and then verify that it was indeed the k-last

letter. A DFA can store the k-last letters so that when the end of the word occurs, it can check

that the k-last letter is 0 as desired. Both constructions are optimal.

The example is mentioned without proof in [Koz97]. We give a proof in Section 14.2 when we

use the example to establish a lower bound on the descriptional complexity of separators.

Descriptional complexity for families of languages

As in the Examples 4.3.1 and 4.3.2, we are usually not interested in the state complexity of a sin-

gle language, but rather in the state complexity of a family of languages. In the case where we

have a family of languages (Lk)k∈N consisting of one language per natural number, the mean-

ing of a statement like “the state complexity is exponential” is obvious. It could be formalized

using the notation that we have introduced in Section 3.3: The state complexity of a family is

exponential if there is a constant l such that there is a function contained in 2O(nl) that maps

each number n to an upper bound for the state complexity of Ln . When we say that the state

complexity is exponential and that this is optimal, we mean that there is no such function that

can be bounded by a polynomial.

Sometimes, wewill consider families of languages that are not indexedby natural numbers, but

bymore complex objects. For example, whenwemake a statement like “the languages of NFAs

have polynomial state complexity”, we are considering the family of language {L(A) ∣ ANFA}. In
this family of languages, each language L(A) is indexed by the NFA A that generates it. By the

above statement, wemean that if wemeasure the size ∣A∣ as defined previously, we obtain that

the state complexity of each language L(A) is polynomial in ∣A∣. Luckily, we will only need to

consider examples where the index set and the size assignment is clear from the context.

The index of a family of languages – not to be confused with the indexing of languages men-

tioned above – can be defined similarly to the state complexity.

ε-Transitions

Wealso consider NFAswith internal transitions, i.e. NFAswherewe allow labels from Σε = Σ∪⋅ {ε}.
Intuitively, transitions labeled by ε can be taken without generating a letter. Sometimes it is

convenient to allow such transitions to be able to give easier and more intuitive constructions.
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It is well-known that given an automaton with ε-transitions, it is possible to compute an NFA

without such transitions that has the same set of states. Hence, wemay use NFAs andNFAswith

internal transitions interchangeably when talking about the state complexity of languages.

Multiple initial states

Similar to the case of ε-transitions, constructions may be simpler if we allow multiple initial

states. Such an NFA can be converted to an NFA with a unique initial state as follows: We insert

a fresh initial state, and ε-labeled transitions from the fresh state to all former initial states. As

mentioned above, this NFA with ε-transitions can be converted to a normal NFA. Hence, the

existence of an NFA with multiple initial states and k control states for a language proves that

the language has state complexity at most k + 1.

In this thesis, we will be exclusively interested in whether the state complexity of a family of

languages is polynomial, exponential, and so on. These classes of functions are closed under

the operation of adding 1, so we may freely use multiple initial states.

Note that both constructions – ε-transition and multiple initial states – can be seen as a form

of nondeterminism. For example, the language Lk from Example 4.3.2 can easily be expressed

using automata with k + 1 states that are deterministic but for the existence of ε-transitions or

multiple initial states. Hence, the state complexity is only preserved under these constructions

in the case of NFAs.
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4.4 ω-regular languages

We consider variants of finite-state automata that define ω-languages. Obviously, the accep-

tance condition of ending in a final state needs to be replaced. Simply requiring that a final

state occurs would limit us to so-called reachability conditions and the associated safety proper-

ties of programs. Reachability conditions are not expressive enough tomodel so-called liveness

properties [GTW02] like fair scheduling.

Büchi automata

The easiest way of making an NFA accept an ω-language is to require that final states occur re-

peatedly. On the syntactic level, nondeterministic Büchi automata (NBAs) are defined just like

NFAs. Their semantics, however, is defined in terms of infinite words. A run on an infinite

wordw ∈ Σω from state q ∈ Q is an infinite sequence of states and transitions

q = q0
w1
−−→ q1

w2
−−→ ⋯ .

A run of A on w is accepting if it starts in the initial state qinit and in its sequence of states, final

states from Qfinal occur infinitely often. As Qfinal is a finite set, this is equivalent to requiring

that some state from Qfinal occurs infinitely often. The language Lω(A) of an NBA A is the set

of all infinite words on which A has an accepting run. Note that we use the notation Lω(A) to
distinguish the language of A seen as Büchi automaton fromL(A), the language of finite words

of A seen as NFA. This should not be confused with the omega-iteration of a language.

Anω-languageL ⊆ Σω is calledω-regular if it is the language of anNBA A. The class ofω-regular

languages enjoys many of the effective closure properties that also hold for regular languages

of finite words: They are closed under union, intersection, and complementation. Furthermore,

the following characterization is well-known [Tho90]: A language L ⊆ Σω is ω-regular if and

only if it can be written as

L = ⋃
i∈[1,n]Ui .(Vi)ω

where n ∈ N, and for each i ∈ [1, n], Ui , Vi ⊆ Σ∗ are regular languages of finite words.

While ω-regular languages are closed under complement, the proof of this fact is much more

involved than in the case of NFAs. Recall that in the case of finite words, one uses that an NFA

can be determinized and DFAs are easy to complement. The same does not work for Büchi

automata: There are languages of NBAs that do not occur as languages of DBAs (deterministic

Büchi automata). The language (a ∪ b)∗bω of words that contain only finitely many as is one

such example. Figure 4.4.a.i) depicts an NBA accepting that language. It nondeterministically

guesses the occurrence of the last a.
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i) An NBA.
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a b

ii) A DPA.

Figure 4.4.a: Automata accepting the language (a ∪ b)∗bω.
Parity automata

To solve the above problem, one possibility is to consider an automata model with a more

involved acceptance condition. There are several choices, including the Rabin [Rab68],

Streett [Str81], Muller [Mul63], and parity [Mos84] acceptance conditions. We only consider

the parity acceptance condition throughout this thesis as it is widely used in theory and tools.

The idea is to allow the nesting of Büchi and co-Büchi conditions. The latter allow the

specification of states that should not be visited infinitely often. We partition the states

Q = Q1 ∪⋅ Q2 ∪⋅ . . . ∪⋅ Qm into several sets, where (1) there is a total order on these sets and

(2) each set is marked either as final or as non-final. A run is accepting if the maximal set Qi
(wrt. the total order) such that a state from Qi occurs infinitely often in the run is final.

We follow the usual convention to formalize the partition by a priority assignment Ω∶Q → N on

the states. Each set Qi is defined as the set of states that have priority i, Qi = {q ∈ Q ∣ Ω(q) = i}.
The total order is as indicated by the priority, where we fix the convention that higher priorities

are dominating. We consider even priorities as final and odd priorities as non-final.

Altogether, a (nondeterministic) parity automaton (NPA) is a tuple A = (Q , Σ, δ, qinit , Ω), where

all components but Ω are as for NFAs and NBAs and Ω∶Q → N is a priority assignment as in-

troduced above. A run of an NPA A on an infinite wordw is accepting if it starts with the initial

state qinit and the largest priority occurring infinitely often in the run is even. The notion of

language is again the set of all infinite words that have an accepting run.

AsQ is finite, so is the image ofΩ, andwemay speak of the largest priority that is used by a parity

automaton. Similarly, each infinite run has a largest priority that occurs infinitely often. Büchi

automata can be seen as special parity automata that only use two priorities, 1 for non-final

and 2 for final states.

Remark
For finite-state systems, choosing larger priorities to be dominating and even priorities to be

final is arbitrary, and in parts of the literature, other conventions are used.

In contrast to Büchi automata, parity automata are determinizable. Deterministic parity au-

tomata (DPAs) are defined as expected by requiring the transition relation to be determinis-
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tic. For any NPA, there is a language-equivalent DPA. However, there is a potential exponential

blowup in the number of states that is even worse than in the case of finite-state automata on

finite words.

4.4.1 Theorem (Safra [Saf88])
For any NPA Awith ∣Q∣ states, there is a language-equivalent DPA with 2O(∣Q∣⋅log∣Q∣) states. The
construction is optimal.

Figure 4.4.a.ii) depicts a deterministic parity automaton (where the names of the states indicate

thepriorities) that accepts the language (a ∪ b)∗bω forwhichnodeterministic Büchi automaton

exists.

Both NPAs and DPAs can be used to obtain an alternative but equivalent definition of the ω-

regular languages: A language is ω-regular iff it occurs as the language of an NBA/NPA/DPA.

Converting an NBA into an NPA is trivial, determinizability is Safra’s result, and to convert a DPA

to an NBA, we let the NBA guess the highest-occurring priority at the beginning of the run and

verify its guess later.
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id = ρε ρa ρb ρab ρba ρaa = ρbb

Figure 4.5.a: The boxes representing non-empty equivalence classes for the automaton for(ab)∗ from Example 4.2.1 resp. Figure 4.2.a.

4.5 The transition monoid

In Part V. of the thesis, itwill be important tohave a finite representationof the effect that a finite

(but unbounded) word w has on an automaton A. We want that if two finite words w andw ′

have the same representation, then the behavior they induce on A is the same, independent of

the context. More formally, for any word u.w .v that has w as infix, we want that u.w .v is in the

language of A if and only if u.w ′ .v is.

To this end, we introduce the transitionmonoid [Büc62; PP04] of an NFA A. We define an equiv-

alence relation ≡A on Σ∗ that identifies words that cause the same state changes:

w ≡A w
′ iff ∀q, q′ ∈ Q∶ q w

−−→ q′ ⟺ q
w ′

−−→ q′ .

Using ≡A, we can assign to eachwordw its equivalence class [w]A. Let the transitionmonoidMA

be the set of all equivalence classes, i.e.MA = Σ
∗/ ≡A.

We can define a composition operation onMA by [w]A ⋅ [w ′]A = [w .w ′]A . It is not hard to check

that this operation is well-defined and associative. To see that the transition monoid is indeed

a monoid, note that the equivalence class of ε is the identity with respect to this composition.

To be able to use the transition monoid algorithmically, we need a finite representation for

the equivalence classes. Instead of representing equivalence classes by a representative in

the classical sense, i.e. by a word that is in the class, we proceed as follows. Each equivalence

class ρ ∈ MA is uniquely determined by the state changes that the words in the class induce

on A. We may see ρ as a relation on Q, i.e. as an element of P(Q × Q) such that a tuple (q, q′)
is in ρ if and only if we have q

w
−−→ q′ for all words (or, equivalently, one word) w ∈ ρ. However,

not every element ofP(Q ×Q) represents a (non-empty) equivalence class: For some elements

of P(Q × Q), there may be no word that induces the specified state changes.

We can represent the elements ofP(Q ×Q) graphically as shown in Figure 4.5.a. Because of the

shape of the graphical representation, we usually call them boxes.

As mentioned above, elements ρ, τ ∈ P(Q × Q) are relations on Q. Hence, we may compose

them using the relational composition

ρ ⋅ τ = {(q, q′′) ∈ Q × Q ∣ ∃q′∶ (q, q′) ∈ ρ, (q′ , q′′) ∈ τ} .
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Onecan subsequently check that for elementsofP(Q×Q) representingnon-emptyequivalence

classes, the composition based on representatives coincideswith the relational composition. In

particular, we have that [ε]A is represented by the identity relation id = {(q, q) ∣ q ∈ Q}, which

is neutral with respect to relational composition.

Hence, we have that the transition monoid (MA, ⋅, [ε]A) is isomorphic to a submonoid of(P(Q × Q), ⋅, id), namely the submonoid of boxes representing non-empty equivalence classes.

This implies ∣MA∣ ⩽ ∣P(Q × Q)∣ = 2∣Q∣2 . In particular,MA is finite.

In the following, we usually work with boxes as a representation for elements of the transi-

tion monoid. Whenever it is important to take into account that not all boxes represent non-

empty equivalence classes, we will point this out. We write L(ρ) to denote the language

of a box (i.e. the equivalence class it represents, seen as a set of words). We define the

map ρ−∶ Σ
∗
→ P(Q × Q) that assigns each wordw the unique box ρw withw ∈ L(ρw).

4.5.1 Lemma
For all ρ ∈ P(Q × Q), L(ρ) is regular.
Proof:
For a tuple (q, q′) of states, we can define a modified version Aq,q′ of Awith q as the initial and

q′ as the unique final state such that L(Aq,q′) is the set of wordsw with q
w
−−→ q′. We obtain

L(ρ) = ⋂(q,q′)∈ρL(Aq,q′) ∩ ⋂(q,q′)/∈ρL(Aq,q′) ,
which is clearly regular. ⬛

Boxes have the desired property of characterizing the behavior of words in arbitrary contexts.

Membership in the language of A is invariant under the replacement of infixes by equivalent

words: Ifw ,w ′ such that ρw = ρw ′ , then for any u, v ∈ Σ∗, we have u.w .v ∈ L(A) iff u.w ′ .v ∈ L(A).
In particular, we can readoff from ρw whetherw is amemberof the language: Wehavew ∈ L(A)
if and only if ρw contains a transition from the initial to a final state, i.e. a tuple (q, q′) with

q = qinit and q
′ ∈ Qfinal. We call boxes ρ for which such a transition exists accepting; they satisfy

L(ρ) ⊆ L(A). Boxes ρ that do not have this property are rejecting and satisfyL(ρ)∩L(A) = ∅. In

particular, their language is contained in the complement of L(A).
Note that it is very simple to obtain the boxes associated to the single letters. For a ∈ Σ, ρa
contains all pairs (q, q′) such that there is an a-labeled transition q

a
−→ q′ between the states in

the automaton. The set of all boxes with non-empty equivalence classes can be obtained by

iteratively composing boxes; it is the least subset of P(Q × Q) that contains ρε, ρa for all a ∈ Σ,
and that is closed under composition.
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q0q1 q2

a

a

b

b

Figure 4.5.b: An NBA with ρaa = ρbb .

It is also noteworthy that the elements of the transition monoid of an NFA give rise to an al-

ternative construction for determinization. The automaton (P(Q × Q), δ′ , ρε , Q ′final), where the

deterministic transition relation δ′ is defined by δ(ρ, a) = ρ ⋅ ρa and Q ′final is the set of accepting

boxes, is a DFA whose language is L(A). In a sense, computing the boxes of an automaton is

an implicit determinization. However, it is not as succinct as the powerset construction: The

powerset constructions yields a DFA with at most 2∣Q∣ states, but there are at most 2∣Q∣2 boxes.

Nevertheless, boxes are useful. The box ρw for some NFA A contains more information than the

state reached in the powerset-based determinization of A when processing w from the initial

state: Words that reach the same state behave the same with respect to appending suffixes,

but they may show different behavior when prepending prefixes. As mentioned before, boxes

allow us to characterize the behavior of a word in all contexts. We will consider an algorithm

that makes use of this advantage in Chapter 17.

The transition monoid for Büchi automata

For Büchi and for parity automata, we could use an unchanged definition of the transition

monoid. We obtain that if u.w .v is an infinite word where w and w ′ are finite words that have

same box, then u.w .v is contained in the language of the automaton if and only if u.w ′ .v is. This

property can be lifted to finite sequences of replacements in a given word by induction. When

we consider infinite sequences of replacements, however, we see that the transitionmonoid de-

fined as before has undesiredproperties. Consider for example theNBAdepicted in Figure 4.5.b

whose language contains the word aω. For this automaton, we have ρaa = ρbb , but the inter-

mediary state after reading the first a is final, while the one after reading the first b is not. The

word bω = (bb)ω is obtained from aω = (aa)ω by an infinite sequence of replacements that

substitute a finite infix for another one with the same box. Unlike aω, the word bω is not in the

language of the automaton.

From the example, we see that we need to redefine the transition monoid for Büchi automata

such that equivalent words also exhibit the same behavior with respect to visiting final states.

Instead of boxes ρ ∈ P(Q × Q),which we can also see as functions with signature ρ∶Q × Q → 2,

we need to consider boxes of the shape ρ∶Q × Q → 3 that specify for each pair of states

whether a transition exists, and if it does, whether a final state is seen during the transition.
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More formally, for a Büchi automaton A = (Q , δ, qinit , Qfinal) we define for each letter a ∈ Σ the

box ρa∶Q × Q → 3 as the function with

ρa(q, q′) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if q /→ q′ in δ ,

1, if q → q′ in δ and q, q′ /∈ Qfinal ,

2, if q → q′ in δ and q ∈ Qfinal or q
′ ∈ Qfinal .

The composition of boxes is defined so that it propagates the value 2 if possible. For two

boxes ρ, τ∶Q × Q → 3, their composition ρ ⋅ τ is the function with

(ρ ⋅τ)(q, q′′) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
0, if ∀q′ ∈ Q∶ ρ(q, q′) = 0 or τ(q′ , q′′) = 0 ,

2, if ∃q′ ∈ Q∶ ρ(q, q′) = 2 and τ(q′ , q′′) > 0, or ρ(q, q′) > 0 and τ(q′ , q′′) = 2 ,

1, else, i.e. if ∃q′ ∈ Q∶ ρ(q, q′) = 1 and τ(q′ , q′′) = 1

and ∀q′ ∈ Q∶ ρ(q, q′) < 2 and τ(q′ , q′′) < 2 .

Note that this operation is associative.

For a non-empty word w1 . . .wn , we define ρw1 ...wn = ρw1⋯ ρwn . Informally, we have

ρw(q, q′) = 0 if the automaton has no path from q to q′ along w, we have ρw(q, q′) = 2 if it

has a path from q to q′ in which at least one state is final, and we have ρw(q, q′) = 1 if it has a

path from q to q′, but none in which a final state occurs.

It remains to associate a box to the empty word. It might seem sensible to define ρε(q, q′) = 1

if q = q′, ρε(q, q′) = 0 else. However, we should distinguish the empty word from any other

word that might induce this behavior in the automaton: For any non-empty word w, we have{w}ω = {wω}, but {ε}ω = ∅. To enable this distinction, we define a new element id and make it

the neutral element with respect to composition, id ⋅ ρ = ρ ⋅ id for all ρ ∈ (Q ×Q → 3)∪⋅ {id}. We

associate this new element to the empty word, ρε = id, and the empty word is the only word

whose box is id.

Altogether, we obtain that the transition monoid of a Büchi automaton B is (MNBA
B , ⋅), where

M
NBA
B = (Q × Q → 3) ∪⋅ {id} and the operation ⋅ is defined by the rules for id and the compo-

sition of boxes. The transition monoid of a Büchi automaton satisfies the same properties as

the transition monoid of a finite automaton. In particular, L(ρ) = {w ∈ Σ∗ ∣ ρw = ρ} is a regu-

lar language of finite words. Additionally, they have properties that allow us to use them as a

representation for infinite words. We will discuss these properties in Section 16.3.

The transition monoid for Büchi automata has been used successfully in algorithms, e.g. for

universality testing of Büchi automata in [FV10; ACCHH+10; ACCHH+11].

One could extend the concept of boxes to parity automata. Instead of tracking the occurrence

of final states, these boxes would need to track the priorities that have been visited. Since we

will not need the transition monoid for parity automata, we forgo giving the formal definition.
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We introduce grammars, a type of language-generating mechanisms whose underlying

principle is rewriting. We consider languages of finite words generated by context-free

grammars (CFGs), languages of infinitewords generatedbyCFGs, and languages of finitewords

generated by higher-order recursion schemes (HORSes).

5.1 Context-free grammars

We define context-free grammars, one of the simplest types of rewriting systems. The material

is standard and can be found e.g. in [Koz97]. In addition to the usual definition of the languages

they generate, we present a version that is based on prefix growth.

A context-free grammar (CFG) over Σ is a tuple G = (N, P, S) where N is the set of nonterminal

symbols, S ∈ N is the initial symbol, and P ⊆ N × (N ∪ Σ)∗ is a finite set of production rules.

In this context, one calls the alphabet Σ the set of non-rewritable terminal symbols. Instead of(X , η) ∈ P, we commonly write X →G η, and we omit the subscript G whenever it is clear from

the context.

The semantics of a context-free grammar is a transition system whose configurations are sen-

tential forms from ϑ = (N ∪ T )∗, words consisting of both terminals and nonterminals. The tran-

sitions are given by the derivation relation, the rewriting of sentential forms conforming to the

production rules. We have

β.X .γ ⇒ β.η.γ iff ∃ production rule X → η in P .

A sequence of derivation steps is called a derivation process. The language of the grammar is

the set of terminal words that can be obtained by a derivation process from the initial symbol,

L(G) = {w ∈ Σ∗ ∣ S ⇒
∗ w} .

5.1.1 Example
The non-regular language {anbn ∣ n ∈ N} is the language of the CFG ({S}, {S → ε, S → aSb}, S).
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We additionally introduce a variant of⇒ called the left-derivation relation⇒l, which only allows

us to replace the leftmost nonterminal. Formally, it is defined by

w .X .β ⇒l w .η.β iff ∃ production rule X → η

wherew ∈ Σ∗ is a word over the terminals.

It is well-known that exclusively considering left-derivation processes does not restrict the lan-

guage of a grammar,

L(G) = {w ∈ Σ∗ ∣ S ⇒
∗
l w} .

Indeed, derivation steps that work on different nonterminals are independent; they can be re-

ordered so that the leftmost nonterminal is always rewritten first.

With this knowledge at hand, we can present an LTS induced by a context-free grammar that

generates terminal words step-by-step (instead of producing thewholeword in the final deriva-

tion step that eliminates the last nonterminal). This alternative way of defining context-free

languages is arguably more complicated, but it can be generalized much easier to the case of

infinite words, as we will see in the next section. We start with some preliminary observations:

Each sentential form β can be written as β = w .γ where w ∈ Σ∗ is the largest prefix of β exclu-

sively containing terminals. Let us denote by prefix(β) this terminal prefix. During a derivation

process S ⇒
∗
l v, the prefix starts with being ε, then keeps growing until it equals v. More pre-

cisely, we have that if β ⇒l β
′, then prefix(β) is a prefix of prefix(β′): We have β = prefix(β).X .γ,

and β′ = prefix(β).w ′ .γ′ where prefix(β′) = prefix(β).w ′. We call this w ′ the growth of the ter-

minal prefix for the derivation step β ⇒l β′. In some steps of a derivation process S ⇒
∗
l v,

the growth may be the empty word ε. Every letter of v belongs to the growth of exactly one

derivation step.

This allows us to define the LTS (ϑ, T , {S}, Σ∗) over Σ and conclude that its language coincides

with L(G): The configurations are sentential forms, S is the only initial configuration, and the

terminal words are final configurations. If β ⇒l β
′ with prefix growth w ′, then T contains the

transition β
w ′

−−→ β′.

This view on context-free grammars allows us to see them as automata, similar to state based

models. In a sentential formw .X .γ, the leftmost nonterminal X plays the role of the control state,

determining which transitions are applicable. The rest of the sentential form γ can be seen as a

memory value.
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5.1.2 Example
Consider the grammar for {anbn ∣ n ∈ N} from Example 5.1.1. The (unique) derivation process

for the word anbn induces the following sequence of labeled transitions:

S
a
−→ aSb

a
−→ aaSbb

a
−→ . . .

a
−→ anSbn

bn
−−→ anbn .

As we can see, we need transitions that are labeled by words strictly longer than one.

Closure properties

Straightforward constructions yield that the class of context-free languages contains the regu-

lar languages. The class is closedunder union, concatenation, andKleene star. In contrast to the

regular languages, it is not closed under intersection and complementation, see e.g. [Koz97].

Alternative models

Context-free languages can also be defined by so-called pushdown automata (PDA), systems

that in addition to the finite control have access to an unbounded LIFO (last in, first out) stack as

storage. We briefly give the formal definition, starting with the case of an unlabeled pushdown

system (PDS). Syntactically, a PDS with stack alphabet Λ is a finite-state LTS over some set of

control statesQ and transitions labeledbyelements fromthe set {ε, push A, pop A ∣ A ∈ Λ}. Such
a PDS induces an infinite transition system with configurations of the shape (q,m) ∈ Q × Λ∗,

where q is the control state and the memory value m ∈ Λ∗ is the stack content. We follow the

convention that the left end of m is the bottom of the stack. Consequently, the transitions of

the finite LTS induce transitions on the semantic level as expected: (q,m) → (q′ ,m) if q ε
−→ q′,(q,m) → (q′ ,m.A) if q push A

−−−−−−→ q′, and (q,m.A) → (q′ ,m) if q pop A
−−−−−→ q′. Note that pop-transitions

are blocking in the sense that q
pop A
−−−−−→ q′ can only be executed if symbol A is indeed the current

top-of-stack. Computations of a PDS are defined as expected. There are multiple possibilities

to define the notion of accepting computations. For example, one can equip PDSes with initial

and final states, and consider all computations that lead from an initial state with empty stack

to a final state with arbitrary stack content as accepting.

Pushdown automata are pushdown systems in which the transitions are additionally labeled

by letters from a finite (input) alphabet. These labels carry over from the finite syntax to the

transitions on the semantic level. To show the correspondence between CFGs and PDAs, it is

not hard to construct for a given grammar a PDA that simulates the left-derivation processes of

the grammar, and, vice versa, a grammar that simulates the accepting computations of a PDA.

Recursive programs

It is awell-known folklore result that context-free grammars canbe used tomodel recursive pro-

grams. This correspondence is twofold: Context-free grammars are sufficient to describe the

control flow of a sequential program in classical programming languages (that do not feature
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higher-order recursion). If we consider recursive programs with the property that each level

of the recursion only uses bounded storage, then context-free grammars are able to precisely

model the program behavior. In the rest of this section, we want to make these two correspon-

dences explicit.

We have already given a part of the translation in Section 1.3 of the introduction. Here, we fill in

the details. We consider a toy programming language for recursive programs. A program is a set

of procedures p(), including a distinguished procedure main(). Each procedure is specified

by its source code, a finite list of statements. Each statement is either an atomic statement,

e.g. a variable assignment x = 5, a procedure call f(), or a conditional. A conditional is of

the shape if (cond) then, consisting of a conditional expression cond, followed by some

finite number statements, followed by else, followed by some finite number of statements,

followed by end. We assume that the conditionals are well-nested. We do neither formally

specify the shape of atomic statements and conditional expressions, nor do we formally define

an evaluation semantics.

Formally defining the syntax of programs, e.g. to ensure that conditionals arewell-nested and to

enable parsing, could be done using a context-free grammar. A modified version of that gram-

mar can be used tomodel the control flowof programs, whichwe describe in the following. For

each procedure p() and each of the n statements defining the source code of the procedure,

we introduce a new nonterminal pi where i ∈ [1, n + 1], including a special nonterminal pn+1
for the end of the procedure. The initial symbol is the nonterminalmain1 associated to the first

statement of the main procedure. The rules for a nonterminal pi depend on the statement in

the ith line of the source code for p(). If the statement is an atomic statement a, we get the

rule pi → a p j, using a as a terminal symbol. If the statement is a procedure call f(), the rule

is pi → f1 p j. In both of these rules, j should be the index of the next line after i, which usually

is i + 1 unless pi represents the last statement of the then or else block of a conditional. In

that case, j is the index of the first line after that conditional. Also note that if the body of the

procedure ends after pi , then j will be n + 1 and p j is the special nonterminal introduced for

the end of the procedure. If the statement in the ith line of p() is a conditional if (cond)
then, we get two rules pi → assume(cond) pi+1 and pi → assume(!cond) p j. Here, we have

turned the conditional expression and its negation into terminal symbols assume(cond) and
assume(!cond), respectively. Note that i+1 is the index of the first line of the then block, and

wedefine j to be the first line of theelseblock. For the special nonterminalpn+1, we introduce

the rule pn+1 → ε.

We claim that the control flow of a program is represented by the words in the language of that

grammar. To see this, note that the left-derivation processes for words in the language of that

grammar correspond to the control flow according to a standard evaluation semantics (which

we have not formally specified). Now we can use the fact that the language of the grammar

equals the set of finite words that can be obtained using left-derivations. Note that we only

model the control flow; we do not take the data values into account. For example, a condi-

92



5.1 Context-free grammars

tional always yields two rules, one for each branch, even though in a deterministic program,

the current memory value uniquely determines which branch will be taken. We simply print

which branch we have used as a terminal symbol and leave it to an additional verification step

to distinguish words in the language that correspond to valid executions that respects the data

values from the words that do not represent valid executions.

Additionally, we want to show that if the program uses only bounded storage at each level of

the recursion, we can explicitly model the semantics using a context-free grammar. Consider

some finite domainD from which the data values used at each level of the recursion stem. We

associate to each atomic statement a a function Fa∶D → D that specifies the transformation of

the current storage that is applied by executing a. Similarly, we associate to each conditional

expression cond a predicate Pcond∶D → B that specifies for which data values the expression

evaluates to true. To enable communication among the different levels of the recursion, we re-

define procedure to be of the shape x = f(y). Each procedure call works on an independent

copy of the storage. The variables y and x allow us to transfer information into and out of that

copy, respectively. Formally, we assume that there is a function Ff(y)∶D → D that transforms

the storage used by the current procedure into the storage used by the procedure f that we

have called. Similarly, we have a function Fx = f(-)∶D → D that does the opposite.

Wemodify the abovegrammar byhavingone copypi(d , d ′)of eachnonterminalpi for eachpair

of data values d , d ′ ∈ D. Intuitively,pi(d , d ′)means thatwe are in the ith line of procedurep, the
current storage is represented by the data value d and we expect the procedure to terminate

with data value d ′.

The rules are modified as follows: If the ith line of p is an atomic statement a, we get

the rule pi(d , d ′) → a p j(Fa(d), d ′), where j is the index of the next line as explained be-

fore, and Fa(d) is the result of applying the transformation that corresponds to executing

a. If the ith line of p is if (cond) then, then the rule associated to pi(d , d ′) is either

pi(d , d ′) → assert(cond) pi+1(d , d ′) or pi(d , d ′) → assert(!cond) p j(d , d ′), depending on

whether Pcond(d) evaluates to true. Here, i + 1 is the index of the first line of the then block

and j is index of the first line of the else block. The complicated part is modelling procedure

calls x = f(y). For eachpi(d , d ′), we get one rule for each data value d ′′. This rule is as follows:

pi(d , d ′) → f1(Ff(y)(d), d ′′) p j(Fx = f(-)(d ′′), d ′)
Intuitively, we guess the data value d ′′ representing the storage at the termination of f. We ap-

ply the transformation Ff(y) to the current value to obtain the initial storage for f, then go into

procedure fwith the obligation to terminate with data value d ′′. The execution of procedure p
continues from the next line (the one with index j) with the data value that results from apply-

ing Fx = f(-) to d ′′. In order tomake sure that a procedure call actually fulfills its obligation, we

change the rule forpn+1(d , d ′) as follows. If d = d ′, i.e. the actual data value equals the expected

one, there is a rule pn+1(d , d ′) → ε. Otherwise, we have no rule for this nonterminal.

93



5 Grammar-based models

It remains to fix the initial symbol. We introduce a newnonterminal S anduse it as initial symbol.

For each d ′ ∈ D, there is a rule S → main1(dinit , d
′). Intuitively, this means we start in the first

line of the procedure main with some fixed initial data value dinit, but we guess which data

value d ′ we will reach upon termination.

In contrast to theabovegrammarmodeling the control flowof aprogram, ournewgrammar fea-

tures deterministic conditionals. We only have one rule that either jumps to the then-branch or

to the else-branch, dependingonwhether the conditional expressionevaluates to true. Instead,

we use nondeterminism tomodel procedure calls. We guess the data value that the procedure

that we call will terminate with. Only the correct guess will actually contribute to words in the

grammar. If we have guessed some value d ′ but the procedure call terminates with data value

d ≠ d ′, then there will be no rule for the nonterminal pn+1(d , d ′). The corresponding derivation

gets stuck and does not produce a finite word. In fact, we get that even though the grammar

is nondeterministic, its language is a singleton consisting of a unique word corresponding to

the unique execution of the deterministic program (assuming that this execution terminates).

This property shows the desired statement: A context-free grammar canmodel a deterministic

recursive program that uses a bounded amount of storage at each level of the recursion.

Note that the size of the grammar is polynomial in the product of the total number of state-

ments in the program and the size of D. For each line of code, we have at most ∣D∣2 many

nonterminals and at most ∣D∣3 many rules. However, the size of D can get rather large. If the

program uses k Boolean variables as storage, thenD∶ [1, k] → B is the space of variable assign-

ments, which is of size 2k . The construction of the grammar is polynomial in the size of ∣D∣,
but exponential in k. Verifying Boolean programs is a PSPACE-complete problem even in the

absence of recursion [CS99], so we cannot expect to get a deterministic algorithm for it whose

running time is better than exponential.
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5.2 ω-languages of context-free grammars

We introduceω-context-free languages,ω-languages definedby context-free grammars. In the

literature, ω-context-free languages are an established class of languages that can be defined

in several equivalent ways, whichwewill discuss later. For now, we present a novel definition of

this class of languages that we feel is more elegant. This also means that in contrast to the rest

of this chapter, this section contains a contribution from the author of this thesis. This research

is taken from the publication [MMN17], as detailed in Chapter 20.

Consider an infinite left-derivation process

S = β0 ⇒l β1 ⇒l . . .

for some CFG G = (N, P, S). As discussed in the previous section, it induces a sequence of termi-

nal words prefix(β0), prefix(β1), . . . such that for each i , k ∈ N, prefix(βi) is a prefix of prefix(βi+k).
Intuitively, we want to associate to such a derivation process the infinite word that is the limit

of these prefixes. If the length of the prefixes grows unboundedly, we may define the infinite

word limprefix(βi)i∈N ∈ Σω whose jth letter is the jth letter of the i j
th prefix, where i j ∈ N

is an arbitrary index so that the corresponding prefix is sufficiently long. Formally, we define(limprefix(βi)i∈N) j = prefix(βi j ) j, where i j ∈ N is chosen so that ∣prefix(βi j )∣ ⩾ j. The above

observation guarantees that the definition is independent of the choice of each i j.

With this definition at hand, it is possible to associate to a context-free grammar G

a language L′ = {limprefix(βi)i∈N ∈ Σω ∣ (βi)i∈N is an infinite left-derivation process} of all infi-

nite words that occur as the prefix limits along infinite left-derivation processes.

For example, the ω-regular language (a ∪ b)∗bω of words that contain only finitely many as oc-

curs as the language of the grammar with the rules S → XY , X → Xa ∣ Xb ∣ ε, Y → bY . In a left-

derivation process, we can first use the rules for X to derive a prefix from {a, b}∗ of arbitrary, but

finite length, and then append bω by using Y → bY infinitely often. We cannot obtain infinitely

many as, because to do so, we would need to preserve nonterminal X for infinitely many steps.

Such a derivation process consists entirely of sentential forms that start with nonterminal X , so

their prefixes are ε and the prefix limit is not an infinite word.

However, the definition is too weak to express some languages that certainly should be ω-

context-free according to any reasonable definition. For example, there can be no context-free

grammar whose associated language is {anbn ∣ n ∈ N}ω, which is the ω-iteration of a context-

free language. To sketch the proof of this fact, we observe that any candidate grammar needs

to contain a nonterminal X that can be reached from the initial symbol and a rule X → aXb (or

a set of rules that after a finite number of replacement steps lead to such a pattern). Such a rule

is needed to be able to create an unbounded but equal amount of as and bs on each side: It is

well-known that with rules that are exclusively left- or right-linear (rules that only contain one

nonterminal that is the leftmost or rightmost symbol), it is impossible to generate non-regular
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languages. By infinitely often applying this rule, we obtain a left-derivation process with prefix

limit aω, a word which is not in the desired language.

We present a definition that solves this problem. Let us call an infinite left-derivation process

S = β0 ⇒l β1 ⇒l . . . right-infinite if it contains infinitelymany sentential forms of the shapewX

where w ∈ Σ∗ is a terminal prefix and X is a single nonterminal. In such a derivation process,

the rightmost nonterminal is replaced infinitely often. Additionally, every other nonterminal is

replaced by a terminal word within finitely many derivation steps.

The name right-infinite comes from the shape of the derivation tree associated to this type of

derivation process. A derivation tree (associated to a derivation process) is a tree in which the

nodes are labeled by symbol from N ∪ Σ. It is constructed inductively as follows: We start with

a tree only consisting of a root node labeled by S. If production rule X → η is used in the deriva-

tion process, we consider the node of the derivation tree that corresponds to the occurrence

of X that should be replaced and insert children η1 , . . . , η∣η∣. The limit of this process is a deriva-

tion tree in which all inner nodes are labeled by nonterminals, while the leaves are terminals.

The yield of the tree (the leaves read from left to right) form the terminal word that is derived by

the derivation process. The derivation tree associated to a right-infinite left-derivation process

is infinite only in its rightmost branch. Any node in the tree that is not on this branch can be

reached within finitely many steps.

The proper definition of the omega-language of a context-free grammar associates to a gram-

mar all infinite prefix limits that occur along right-infinite left-derivation processes.

5.2.1 Definition
A CFG G defines the ω-language

Lω(G) = {limprefix(βi)i∈N ∈ Σω ∣ (βi)i∈N is a right-infinite left-derivation process} .
In a sense, this definition imposes a Büchi acceptance condition. We may consider the

LTS (ϑ, T , S , Σ∗N) with sentential forms as configurations and transitions induced by left-

derivations with their prefix growth as label. The final configurations are configurations of the

shapewX ∈ Σ∗N, i.e. configurations in which the unique nonterminal is the rightmost symbol.

The language of the LTS with a Büchi acceptance condition (i.e. requiring that computations

contain infinitely many final configurations) is exactly Lω(G) as defined above.

We will later show in Example 5.2.4 and Remark 5.2.5 that this way of defining the ω-languages

of CFGs is strictly more expressive than the version without the restriction to right-infinite pro-

cesses. On the one hand, {anbn ∣ n ∈ N}ω is the ω-language of a suitable CFG. On the other

hand, we can recover the weaker definition that does not require right-infinity by adding rules

to the grammar.
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Characterizing ω-context-free languages

Let us call a language of infinite words ω-context-free if it occurs as Lω(G) of some CFG G. The

class of these languages admits the following characterization.

5.2.2 Theorem
An ω-language L ⊆ Σω is ω-context-free iff it can be written as

L = ⋃
i∈[1,n]Ui .V

ω
i

where n ∈ N and for each i ∈ [1, n], Ui , Vi ⊆ Σ∗ are context-free languages.

In words, a language is ω-context-free iff it is the finite union of languages that consist of a

finite context-free prefix, and a context-free period that is repeated ad infinitum. Note that this

is analogous to the characterization of ω-regular languages given in Section 4.4. Once proven,

the characterization will in particular show that {anbn ∣ n ∈ N}ω is an ω-context-free language.

Beforeproving the result, wediscuss its implications. Inparticular, weuse the result to show that

our definition ofω-context-free languages coincideswith various definitions from the literature.

Related work

Other works in the past have considered various definitions of ω-context-free languages.

Cohen and Gold [CG77] have studied how ω-context-free language can be defined by (1) push-

down automata with a Büchi acceptance condition on the states, (2) pushdown automata with

the condition that the empty stack is reached infinitely often, and (3) context-free grammars

that proceedby left-derivations and are equippedwith a so-called repetition set. The repetition

set specifies which productions need to be used infinitely often (or, equivalently, which nonter-

minals need to be replaced infinitely often) for a derivation process to be accepting. Hence,

it also imposes a Büchi condition. The authors prove that all three definitions are equivalent,

since all three are equal to what they call the Kleene closure of the context-free languages of

finite words. The Kleene closure is exactly the type of languages as in Theorem 5.2.2. Hence,

with the theorem at hand, our definition of ω-context-free languages is also equivalent to the

threemethods. Arguably, our method is more elegant as the Büchi condition is implicit instead

of being explicitly specified in the form of a repetition set.

In the second part of the paper, the authors show that if one allows arbitrary derivations (in-

stead of exclusively considering left-derivations), one obtains aweaker class of languages, even

under the presence of a Büchi condition in the form of a repetition set. For example, the

language {anbn ∣ n ∈ N}ω cannot be obtained by such a grammar.
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Independently, Linna [Lin76] has given a definition of ω-context-free languages defined by

pushdown automata with a Büchi acceptance condition. He shows that this class is equal

to the languages obtained from the ω-regular languages by applying context-free substitu-

tions. Given the characterization of ω-regular languages, this proves a result analogous to The-

orem 5.2.2 and shows that his definition coincides with our definition.

He also considers the class of languages defined as limits of context-free languages. The limit of

a context-free language is the set of infinitewords such that all their finite prefixes are contained

in the context-free language. This class of languages is incomparable to the ω-context-free

languages. On the one hand, it does not contain the ω-regular language (a ∪ b)∗bω. On the

other hand, the limit of the context-free language {w .b.ak ∣ k equals the number of bs inw} is
not ω-context-free: It is a language without so-called ultimately periodic words. An ultimately

periodic word is an infinite word of the shape w .vω for suitable finite words w , v ∈ Σ∗. From

our characterization result, Theorem 5.2.2, we immediately obtain that every ω-context-free

language is guaranteed to contain at least one such word.

Linna also shows that by closing the class of limits of context-free languages under homomor-

phisms (or, equivalently, context-free substitutions), one obtains a superclass of both that class

and the class of ω-context-free languages. The algorithms for languages of infinite words that

we will consider later, e.g. in Section 16.3, rely on the presence of ultimately periodic words.

Hence, they would not work for the latter two classes of languages defined by Linna.

Proof of Theorem 5.2.2

The rest of this section is dedicated to the proof of Theorem 5.2.2. One direction is easy, as we

can give a straightforward construction.

5.2.3 Lemma
If L = ⋃i∈[1,n] Ui .Vωi for n ∈ N and context-free Ui , Vi , then L is ω-context-free.

Proof:
Assume that for each i, Ui = L(Ni , Σ, Pi , Si) and similarly Vi = L(N′i , Σ, P′i , S′i). We as-

sume wlog. that all Ni and N′i (and hence also all Pi and P′i ) are pairwise disjoint, and

we assume that none of these sets contain S and Xi for i ∈ [1, n]. We construct a

new grammar G = (N, Σ, P, S) with N = ⋃i Ni ∪⋅ ⋃i N
′
i ∪⋅ {S} ∪⋅ {Xi ∣ i ∈ [1, n]} and

P = ⋃i Pi ∪⋅ ⋃i P
′
i ∪⋅ {S → SiXi , Xi → S′iXi ∣ i ∈ [1, n]}.

Grammar G intuitively works as follows: In the first step, one chooses some part Ui .V
ω
i of the

union by picking the corresponding rule S → SiXi . From Si , a word in Ui can be derived (recall

that Si is the initial symbol of the corresponding grammar). This process has to be finite, since

Si is not the rightmost nonterminal. Afterwards, an infinite process starts, in each step of which

Xi is replaced using Xi → S′iXi . After one such step, the occurrence of S′i can then be used to

derive a finite word from Vi . Hence, the language Lω(G) is indeed⋃i∈[1,n] Ui .Vωi . ⬛
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5.2.4 Example
To obtain a grammar for {anbn ∣ n ∈ N}ω, wemay apply a simplified version of the construction

from the above proof, obtainingG = ({S , X}, {a, b}, {S → XS , X → aXb ∣ ε}, S). This grammar in-

deed generates the desired language: Intuitively, it produces an infinite number of occurrences

of X , each of which is then replaced by a finite word from {anbn ∣ n ∈ N}.
5.2.5 Remark
Webriefly discuss how to recover theweaker definition of theω-language of a CFG inwhichwe

do not restrict ourselves to right-infinite derivation processes. Observe that because a deriva-

tion process is linear, at most one branch of the derivation tree can be infinite. Since we only

consider left-derivations, any node in the tree that is to the right of an infinite branch will not

be replaced: The infinite branch will always contain a nonterminal that is more to the left and

has to be replaced first. Similarly, terminal symbols that are to the right of an infinite branch

will not contribute to the word generated by the derivation process. Since the infinite branch

will always contain some nonterminal that occurs earlier, these terminals are not contained in

any prefix.

This observation yields amethod to turn a grammar G into a grammar G′ so thatLω(G′) is equal
to {limprefix(βi)i∈N ∈ Σω ∣ (βi)i∈N is an infinite left-derivation process of G}. The idea is to allow

any branch of the derivation tree to be infinite by making it the rightmost branch. To this end,

we simply drop the part of the derivation tree that is to the right of this infinite branch. As

argued before, dropping this part will not influence the words that can be produced.

To implement this idea, we let G′ consist of the nonterminals of G as well as a fresh version X ′

for every nonterminal X . Intuitively, we will make sure that the infinite branch of the derivation

tree will consist of nonterminals of the shape X ′. The initial symbol is S′, the copy of S. The

old nonterminals retain their rules. For each rule X → η of G and each prefix β.Y of η that

ends in a nonterminal, we add a rule X ′ → β.Y ′ for X ′. Note that we use the old versions of the

nonterminals in β, but we replace Y by its copy Y ′.

All sentential forms that canbe reached from S′ contain exactly onenonterminal of the shape X ′,

which is the rightmost symbol. Whenever we replace such a terminal, we intuitively pick a

rule X → η of G, designate a nonterminal Y in η to be on the infinite branch of the derivation

tree and drop the rest of η.

We apply this construction to the grammar from Example 5.2.4. We obtain the grammar

G′ = ({S′ , X ′ , X}, {a, b}, {S′ → XS′ ∣ X ′ , X → aXb ∣ ε, X ′ → aX ′}, S′). The rules S′ → XS′ and

S → X ′ result from the rule S → XS ofG by choosing X resp. S as the nonterminal on the infinite

branch. Similarly, X ′ → aX ′ results from X → aXb. Note thatwehaveomitted thenonterminal S

because it does not occur in any sentential form that is reachable from S′.

A right-infinite left-derivation process of this grammar either uses the rule S′ → XS′ in-

finite often. In this case, it behaves as the derivation processes of G from Example 5.2.4
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and generates a word of the shape (an ibn i )ω. Alternatively, the derivation process uses the

rule S′ → X ′ at somepoint, followed by an infinite sequence of applications of the rule X ′ → aX ′.

Hence, the word we obtain is a member of the language {anbn ∣ n ∈ N}∗ .aω. Altogether,

Lω(G) = {anbn ∣ n ∈ N}ω ∪ {anbn ∣ n ∈ N}∗ .aω.
The other direction of the proof requires more work. The first step is to present a different view

of the language Lω(G) that separates the infinite rightmost branch of the derivation tree from

the other branches. We start by noting that if w .X is a sentential form in a right-infinite left-

derivation process, then the next stepwill not apply a production rule whose rightmost symbol

is a terminal: Otherwise, we would end up in a sentential formwith a terminal as the rightmost

symbol, and it becomes impossible to reach another sentential form that ends in a nonterminal.

We use this observation to define the spinal graph, a finite LTS with nonterminals as configu-

rations that is labeled by sentential forms. Formally we define SG = (N, T , S) where X
β
−→ Y if

grammarG contains a production rule X → β.Y . Since the number of nonterminals and produc-

tions in the grammar is finite, so is SG. Note that we have not equipped SG with an acceptance

condition. We define Lω(SG) ⊆ ϑω to be all sequences of labels that occur along infinite paths

in SG starting in S. We may flatten ϑω = ((Σ ∪ N)∗)ω to see such a sequence as an element

of (Σ ∪ N)ω, and henceLω(SG) as an ω-language over Σ∪N. A problem arises in the case that in

an infinite path ε is the only label occurring infinitely often. In this case, the resulting sequence

over Σ ∪ N is finite. We will take care of this problem later by excluding such paths.

It remains to relate the languageof SG toLω(G). To this end,wedefineLG(ε) = {ε},LG(a) = a for

terminals a ∈ Σ and LG(X) = L(N, P, X), i.e. the context-free language of finite words obtained

by seeing X as the initial symbol of grammar G. For finite and infinite sequences over N ∪ T ,

we define their language to be LG(β1β2 . . .) = LG(β1).LG(β2) . . ., the (finite or infinite) concate-

nation of the respective languages. For sets of such sequences, we define the language by

applying the operator LG element-wise and then taking the union.

5.2.6 Lemma
Lω(G) = LG(Lω(SG)) ∩ Σω.
Note that the intersection with Σω removes paths from Lω(SG) in which ε is the only label oc-

curring infinitely often.

Proof:
Consider a wordw inLω(G) and a right-infinite left-derivation process for that word. Extracting

the infinite sequence of derivation steps that replace the rightmost nonterminal yields a path π

in SG. The infinite sequence of labels over (N ∪ Σ)∗ along π can be flattened to obtain an infinite

word β ∈ Lω(SG) over N ∪ Σ. The rest of the derivation steps in the right-infinite left-derivation
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process for w can be used to replace each nonterminal X in β by a finite word in LG(X). The

concatenation of these finitewordswith the nonterminals thatmay occur in β yields the infinite

wordw. Altogether, we obtain thatw is an infinite word in LG(β) ⊆ LG(Lω(SG)) as desired.
For the other direction, consider an infinitewordw inLG(Lω(SG)). By definition, it is an element

of LG(β) for some β ∈ Lω(SG), where β corresponds to an infinite path π in SG. We construct

a right-infinite left-derivation process for w as follows. We start from the initial symbol of the

grammar. Whenever we have to replace the rightmost nonterminal in the current sentential

form, say X , we consider the earliest transition in the path π that has not been processed yet.

It is of the shape X
β(i)
−−−→ Y , corresponding to a rule X → β(i)Y of the grammar. We apply this

rule, producing a finite infix β(i) of the infinite sequence β and a new rightmost nonterminal.

In order to replace the nonterminals in β(i), we use w ∈ LG(β) to obtain a finite sequence of

left-derivations that replace such a nonterminal by an infix ofw. For each such nonterminal, we

use the corresponding sequence of left-derivations until Y is the only nonterminal remaining

and we proceed by processing the next transition from π. The infinite word produced by this

derivation process isw, as it is the concatenation of the terminals in β and the finite infixes ofw

derived from the nonterminals. Hence,w ∈ Lω(G). ⬛

Finally, we can finish the proof of Theorem 5.2.2 by showing the missing implication.

5.2.7 Proposition
Each ω-context-free language L ⊆ Σω can be written as

L = ⋃
i∈[1,n]Ui .V

ω
i

for some n ∈ Nwith each Ui , Vi ⊆ Σ
∗ context-free.

Proof:
Consider an ω-context-free language Lω(G) for some CFG G. We may construct the associated

spinal graph SG. For nonterminals X , Y , we define LX ,Y to be set of sequences over N ∪ Σ that

occur in SG as the labels along finite paths from node X to Y .

We claim that

Lω(G) = ⋃
X∈N

LG(LS ,X )(LG(LX ,X ))ω .

Firstly, we argue that the expression on the right-hand side is of the required shape. Because

there are only finitely many nonterminals, the union is finite. Each language LX ,Y is a regular

languageoverN∪Σ. To this end, observe thatwemay see the spinal graph as a finite automaton

(after inserting suitable intermediary states tomake sure that each transition generates atmost
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one letter) with X as the initial and Y as the unique final state. Finally, observe that LG(LX ,Y ) is
hence context-free. The regular languages are a subclass of the context-free ones, so there is a

CFG over N ∪ Σ for LX ,Y . By adding the rules for the nonterminals from G to this grammar, we

obtain a CFG over Σ that generates LG(LX ,Y ). In particular, LG(LS ,X ) and LG(LX ,X ) are context-

free languages and the expression is as required.

Secondly, we argue that Lω(G) ⊆ ⋃X∈N LG(LS ,X )(LG(LX ,X ))ω. By Lemma 5.2.6,

Lω(G) = LG(Lω(SG)) ∩ Σω. Consider a word w ∈ Lω(G). It is a member of LG(β) for

some β ∈ Lω(SG), i.e. β is the sequence of labels along an infinite path π in SG that starts

in S. Because the spinal graph has only finite many nodes, there is some nonterminal X that is

visited infinitely often by π. By summarizing transitions in the graph, we may write π as

S
η
−→ X

γ1
−−→ X

γ2
−−→ X

γ3
−−→ . . . ,

where η and the γi are words over N ∪ Σ so that β = η.γ1 .γ2 . . . By definition, η ∈ LS ,X

and each γi ∈ LX ,X for all i. Hence, β ∈ LS ,X .(LX ,X )ω and w ∈ LG(β) is an element

of LG(LS ,X ).(LG(LX ,X ))ω as desired.

Finally, we consider the other direction. Let w ∈ LG(LS ,X ).(LG(LX ,X ))ω for some X ∈ N. Note

that w is an infinite word because the omega-iteration of a language is defined to only pro-

duce words in Σω. By definition, we may write w = w(0) .w(1) .w(2) . . . with w(0) ∈ LG(LS ,X ) and
w(i) ∈ LG(LX ,X ) for all i > 0. This in turnsmeans there is η ∈ LS ,X withw(0) ∈ LG(η) and γi ∈ LX ,X

with w(i) ∈ LG(γi) for all i > 0. By the definition of the languages LS ,X and LX ,X , β = η.γ1 .γ2 . . .
is a sequence of labels along an infinite path in the spinal graph starting in S, hence β ∈ Lω(SG).
We have that w ∈ Σω is an infinite word in LG(β) with β ∈ Lω(SG). By Lemma 5.2.6, this is

sufficient so showw ∈ Lω(G), which completes the proof. ⬛
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5.3 Higher-ordered recursion schemes

We introduce higher-order recursion schemes (HORSes) [Niv72; CN78], a rewriting-based type of

languagegeneratingmechanism that canbe seen as a generalization of context-free grammars.

As briefly mentioned, context-free grammars can be used to model recursive programs; they

canbe seenas aHORSesof order one. Modernprogramming languages likeHaskell [Pey03] sup-

port higher-order functions, i.e. functionswhoseparameters themselves are functions. Context-

free grammars (and HORSes of order one) are insufficient to model this concept, while HORSes

of order greater than one provide amodel for such programs. Our presentation follows [Had12].

We first introduce a typing discipline. The typing fixes for each term a type, which in particular

determines its order, i.e. whether it is a value (a term of order zero), a function of order one that

operates on values, or a functionof higher order that has functions as parameters. Representing

both functions and values by terms corresponds to the concept of treating functions as first-

class citizens inmodern programming languages. Instead of having a clear distinction between

values and functions, functions are simply seen as values of the corresponding function type.

We will actually not use the name type in the following. We refer to the concept that was ex-

plained above as kinds, to avoid confusion with type-based approaches to the verification of

HORSes as used e.g. in [Kob09].

We define o to be the unique kind ground of data values. Functions kinds are derived by com-

position. Formally, the kinds κ are defined by the following grammar:

κ ∶∶= o ∣ (κ → κ) .
Intuitively, a term of kind κ1 → κ2 is a function that takes a value of kind κ1 and returns a value

of kind κ2 (where both the parameter and the return value may be functions). We define K to

be the set of all kinds.

We usually omit unnecessary brackets by assuming right-associativity. For instance, this means

that o → o → o denotes o → (o → o), i.e. the kind of functions that take a ground value and

return a function that takes and returns a ground value.

Our definition of kinds does not allow for multi-parameter functions. Instead, we use the con-

cept of currying. A function that takes twovalues and returns one,which intuitively shouldhave

kind o× o → o is seen as a function of kind o → (o → o): It takes the first parameter and returns

a function that takes the second parameter and then returns the final value. Formally, we con-

sider f ∶ o × o → o as a function f ′∶ o → (o → o) by defining f ′(x)∶ o → o with (f ′(x))(y) = f (x , y).
This concept is commonly implemented in functional programming languages like Haskell to

simplify the usage of partially evaluated functions.
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We define the notion of arity that describes the number of parameters that a function takes (in

its uncurried form), and its order as explained above. We formally define

arity(o) = 0, order(o) = 0,

arity(κ1 → κ2) = arity(κ2) + 1, order(κ1 → κ2) = max(order(κ1) + 1, order(κ2)) .
For example, we have arity(o → (o → o)) = arity(o → o) + 1 = arity(o) + 2 = 2 and

order(o → (o → o)) = 1. Indeed, functions of type o → (o → o) in their uncurried form take

two parameters and are of order one, since their parameters and their return value are ground

values. In contrast, we have arity((o → o) → o) = 1 and order((o → o) → o) = 2. A function of

kind (o → o) → o takes a function as parameter and returns a ground value.

Just as a context-free grammar, a HORS consists of terminals and nonterminals. In contrast to

CFGs, we see the nonterminals of HORSes as functions. Syntactically, this means that we also

need a set of variables. To get a consisting typing, each of the three types of symbols has an

associated kind. More formally, a kinded symbol is a symbol a together with a kind κ, which

we write as a∶ κ. Let Λ be a set of kinded symbols. When convenient, we see Λ as a set of

(distinct) symbols and assume that the kind assignment is implicitly given. By Λκ , we denote

the restriction of Λ to symbols with kind κ.

For each kind κ, T (Λ)κ is the set of terms of kind κ. These sets are defined by simultaneous

inductions over all kinds. They are the smallest sets so that

(1) All symbols from Λ are terms of the appropriate kind,

∀κ∶ Λκ ⊆ T (Λ)κ
(2) If f ∈ T (Λ)κ1→κ2 is a (function) term of kind κ1 → κ2, and v ∈ T (Λ)κ1 is a term of kind κ1, then

the application f v is a term in T (Λ)κ2 of kind κ2,

∀κ1 , κ2∶ {f t »»»»» f ∈ T (Λ)κ1→κ2 , v ∈ T (Λ)κ1} ⊆ T (Λ)κ2 .
(3) If t ∈ T (Λ)κ2 is a term of kind κ2, and x ∈ T (Λ)κ1 is a term of kind κ1, then the λ-abstraction

λx .t is a term of kind κ1 → κ2,

{λx .t »»»»» t ∈ T (Λ)κ2 , x ∈ T (Λ)κ1} ⊆ T (Λ)κ1→κ2 .
The set of all terms T (Λ) is defined as the union of the T (Λ)κ for all kinds κ.

Aswe have seen in the second rule, we usually omit the brackets for function application, i.e. we

write f t instead of f (t). The last rule is interesting as it allows us to construct infinitely many

terms of arbitrarily large order assuming there is at least one symbol of kind ground. Instead
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of writing t ∈ T (Λ)κ , we simply write t∶ κ (where we assume that Λ is clear from the context).

Terms that do not contain λ-abstractions, i.e. they are build only using the first two cases of the

definition of terms, are called λ-free.

When defining HORSes, we will assume that Λ contains a set of variables. To distinguish these

variables form other types of variables that we will consider in Part V. of the thesis, we speak of

HORS variables. We assume that only the HORS variables are allowed to take the place of x in

the λ-abstraction λx .t. This allows us to speak of the free variables of a term, i.e. variables that

occur in the term and that are not bound by a preceding λ-abstraction. A variable-closed term

is a term that does not contain any free variables.

We have now gathered the prerequisites to formally defines HORSes.

A higher-order recursion scheme (HORS) is a tuple G = (V , N, T , P, S), where V are the HORS vari-

ables, T are the terminals, N are the nonterminals. All three sets are finite sets of kinded sym-

bols that are pairwise disjoint. The symbol S ∈ N is the initial symbol. The set P contains a

finite set of production rules of the shape F → t, where t is a term over Λ = V ∪⋅ N ∪⋅ T , the

union of variables, nonterminals and terminals. We require that P is well-typed in that for each

production X → t, the kinds of X and t coincide. We require that each right-hand side t is a

variable-closed term λx1 . . . λxn .e where the xi are variables and e is a λ-free term of kind o.

(This implies that x1 , . . . , xn is a superset of the variables that occur in e.)

We generalize the notions of order and arity from kinds to terms of that kind. The order of a

HORS is the maximum order of any of its nonterminals.

The semantics of a HORS G is defined in the form of a term rewriting system, whose terms are

the terms (over the union of variables, nonterminals, and terminals), and the rewriting rules

of which are induced by the productions of G. To make this definition formal, we define a

context C[•] to be a term over Λ ∪⋅ {•∶ o} in which the placeholder • of kind ground occurs

exactly once. Given C[•] and a term t∶ o of kind ground, we define C[t] as the term over Λ

obtained by replacing the unique occurrence of • by t. Note that the kinds of C[•] and C[t]
coincide. We introduce a derivation relation on terms over Λ by defining t ⇒ t′ to hold iff

if there is a context C[•], a production rule X → λx1 . . . λxn .e, and a term X t1 . . . tn∶ o such

that t = C[X t1 . . . tn] and t′ = C[e[x1 ↦ t1 , . . . , xn ↦ en]]. In words, the derivation relation

allows us to choose a subterm X t1 . . . tn of kind ground (which intuitively means that all pa-

rameters of X are present) and replace it by the right-hand side of a production for X , with the

occurrences of the variables replaced by the appropriate parameters. We call such a subterm

a reducible expression (redex). Note that since we required productions to be well-typed, the

derivation relation is kind-preserving: If t ⇒ t′, then t and t′ are of the same kind.

To associate a language to a HORS, one usually imposes several restrictions. The first one is

that we require the initial symbol S to be of kind ground. Since the rewriting relation is kind-

preserving, this implies that any term derivable from S is of kind ground. The second one is that

all terminals have order atmost one. Together, thismeans that any term over the terminals that
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can be derived from the initial word can be seen as a tree: The term a t1 t2 . . . tn , where a is a

terminal of arity n, is a tree consisting of an a-labeled root and n subtrees that correspond to

the parameters. In particular, a terminal of arity 0 is seen as a tree consisting of a single leaf.

Word-generating schemes

We are interested in schemes that define a language of finite words. To this end, we impose

the stronger restriction that the set of terminals is of the shape T = Σ ∪⋅ {$∶ o}, where $ is the

word-end marker of kind ground, and the other terminals in Σ are of kind o → o, i.e. they are

first-order and have arity one.

We say that the word w = a1 . . . an ∈ Σ∗ (with the symbols ai from Σ seen as normal letters)

can be derived by HORS G if S ⇒
∗ a1(a2(a3 . . . an($))). In the following, we will identify terms

of this shape with the corresponding words. The language L(G) of G is defined to be the set of

all words that can be derived by G.

A derivation step is outermost to innermost (OI) if there is no redex that contains the one thatwas

replaced as a proper subterm. Haddad [Had12] has shown that we do not lose expressiveness

by restricting ourselves to OI-derivations: Any word that can be derived from the initial symbol

can be derived by a sequence of OI-derivation steps. In a sense, OI-derivation steps for HORSes

correspond to left-derivations in the case of CFGs.

There is the analogue notion of innermost to outermost (IO) derivations. However, there are

words that can be derived by OI derivations, but not by IO derivations. Also, we will later make

use of the fact that each derivable term in a word-generating scheme has a unique outermost

redex. The same is not true for innermost redexes.

5.3.1 Example
Let G = (N, P, S) be a context-free grammar over Σ. We define a word-generating

scheme G′ = (V , N′ , T , P, S′) of order one with the same language. The set of variables consists

of the unique variable x∶ o. The set N′ consists of the nonterminals N of G, each seen X ∈ N as

a symbol of kind o → o. Additionally, we introduce a fresh nonterminal S′∶ o that is the initial

symbol of the HORS. The terminals T of the HORS consist of the word end marker $∶ o and of

the terminals Σ of the grammar, each terminal a seen as a symbol of kind o → o.

For the nonterminals in N, each rule X → η of the grammar with η = η1η2 . . . ηm ∈ (N ∪ Σ)∗
induces a rule X → λx .η1(η2(. . . ηm(x) . . .)). Intuitively, a nonterminal takes the suffix of the

terminal word that has already been generated as the parameter x of kind o. It then prepends

the sentential form η. Technically, the concatenations in η are seen as a sequence of function

applications. Additionally, there is a rule S′ → S $ for the fresh initial symbol S′. Intuitively, it

starts the derivation process with the empty suffix.

We obtain a one-to-one correspondence between derivation steps in the grammar and

derivation steps of the HORS, and between OI-replacement steps and left-derivations. To
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5.3 Higher-ordered recursion schemes

see that this is true, note that any term that can be derived by the HORS from S is of

the shape β1(β2(. . . βk($) . . .)), where each βi is a terminal or a nonterminal from N. Each

subterm βi(βi+1(. . . βk($) . . .)) where βi is a nonterminal is a redex. Altogether, we obtain

L(G) = L(G′) as desired.
We instantiate this construction for the grammar from Example 5.1.1 and obtain the

HORS G′ = ({x∶ o}, {S′∶ o, S∶ o → o}, {a∶ o → o, b∶ o → o, $∶ o}, P, S′) with the rules S′ → S $,

S → λx .x , and S → λx .a S b x . Note that a S b x stands for a(S(b(x))). This HORS generates the

language {anbn ∣ n ∈ N} as expected.
5.3.2 Example
We give an example showing that HORSes are strictly more expressive than CFGs. Consider

the HORS G = ({f ∶ o → o, x∶ o}, N, T , P, S) where N = {S∶ o, X , Y ∶ (o → o) → o → o, Z ∶ o → o},
T = {a, b, c∶ o → o, $∶ o}, and the rules are S → X Z $, X → λf .λx .f x , X → λf .λx .X (Y f ) (cx),
Y → λf .λx .a f b x , and Z → λx .x . It is of order two and generates the non-context-free

language {anbncn ∣ n ∈ N}.
Determinism

A HORS is deterministic if each nonterminal X has a unique rule with X as its left-hand side. If

we restrict ourselves to OI-derivation steps, this makes the transition relation on the semantic

level deterministic for word-generating schemes.

Many works in the literature present word-generating schemes in a different way: They con-

sider deterministic schemes without restricting the terminals to be of arity one. These schemes

have a unique derivation process, the limit ofwhich is a tree. The language of finitewords of the

scheme occurs as the set of all labels along finite branches of that tree. Both views have advan-

tages and drawbacks, and it is easy to convert between them. We will formally introduce the

construction for determinization in Section 18.3. The definition of word-generating schemes

here makes it easier to see the correspondence between CFGs and HORSes of order one.

Alternative models

In the sameway that context-free languages can also be defined via pushdownautomata, there

is a state-basedmodel for languages ofword-generating higher-order schemes. A higher-order

pushdown automaton of order n is an automaton that uses an order-n stack as storage. A stack

of order one is simply a LIFO stack as defined in Section 5.1. A stack of order i + 1 for i ⩾ 1 is a

sequence of order i stacks. In addition to the order-one operations push A and pop A for every

symbol of the stack alphabet, the transitions can be labeled by push i and pop i for i ∈ [2, n]. An

order-i push duplicates the topmost order-i stack (inside the topmost order-(i + 1) stack inside

the topmost-(i + 2) stack and so on, if i ≠ n). Similarly, an order-i pop operation removes the

topmost order-i stack.
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5 Grammar-based models

Unfortunately, order-n pushdownautomatadonotgenerate all languagesofHORSesof order n.

Rather, they generate a subclass, the languages of safe HORSes, where safety is a syntactic re-

striction on the production rules of HORSes [DG86; KNU02].

To get the desired equivalence, one has to enhance the model to obtain collapsible higher-

order pushdown systems [HMOS17]. In this model, each (order-1) stack symbol is equipped

with a link, a pointer into the stack that represents the context in which the symbol was cre-

ated. Additionally, there is a collapse operation that removes a part of the stack so that the

target of the link becomes the top-of-stack. Giving the formal definitions and a more in-depth

explanation is not needed for this thesis.
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Wepresent (labeled) Petri nets, anautomatamodel that is particularly suitable formodeling con-

current processes. We study the languages definedby Petri nets and algorithmic techniques for

checking properties of these languages. Finally, we discuss well-structured transition systems,

a generalization of Petri nets.

Most of the material can be found in standard textbooks on the topic, e.g. [Rei85], and is not a

contribution of this thesis. Section 6.4 contains a minor contribution, it studies the complexity

of the word problem for BPP nets.

6.1 Unlabeled Petri nets

We start by defining the syntax and semantics of unlabeled Petri nets.

A Petri net N is a tuple N = (P, T , in, out).¹ Here, P is a finite set places, T is a finite set of tran-

sitions with T ∩ P = ∅, and in, out∶ T × P → N assign each place and transition the incoming

resp. outgoing multiplicity.

We may see in and out as a function taking two arguments (e.g. in(p, t) ∈ N) or as a function

that assigns to each transition a vector of multiplicities (e.g. in(t) ∈ N
P). Here, we will usually

writeNP instead ofN∣P∣ to denote the set of vectors with one entry per place.

The effect e(t) ∈ Z
P of a transition t is defined to be e(t) = out(t) − in(t). We lift operations

like addition, subtraction, and comparison from numbers to such vectors by applying them

component-wise, e.g. e(t) is the vector that has entry out(t, p) − in(t, p) for each place p.

¹ In the literature, in and out are commonly combined into a single flowmatrix F∶ (P∪⋅ T )× (T ∪⋅ P) → N, where F(x , y)
can only be non-zero if x is a transition and y is a place or vice versa. The functions in and out can be recovered by
defining in(t) = F(−, t) and out(t) = F(t,−) for each transition t. Sometimes, in(t) and out(t) are called the pre-set
and post-set of transition t, respectively (often denoted by •t and t•).
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6 Petri nets and well-structured transition systems

With the syntax at hand, we can define the semantics of Petri nets. A Petri net N = (P, T , in, out)
induces an infinite transition system: The configurations are markings M ∈ N

P , vectors that

associate to each place p a number M(p) of tokens carried by that place.

In amarking, a transition can be executed, consuming tokens depending on the incomingmul-

tiplicities and producing tokens depending on the outgoing multiplicities. Taking a transition

is only possible if there are enough tokens that can be consumed. Formally, in markingM, tran-

sition t is enabled if M ⩾ in(t). In this case, it can be fired, leading to the new marking M′ with

M′ = M + e(t). We write M t M′.¹ This defines the transition relation of the transition system.

If we want to express that t can be fired from M, but we do not care about the marking that is

reached, we write M t .

We extend the notion of firing to sequences of transitions σ ∈ T∗. We say that σ is a valid firing

sequence from marking M, reaching marking M′ and write M σ M′ if σ = t1 . . . tn and there

are intermediary markings M1 , . . . ,Mn−1 such that

M t1 M1 t2 . . . tn−1 Mn−1 tn M′ .

The combination of the markings and transitions is called a computation of M.

We can extend the definition of the effect to transition sequences by e(σ) = ∑n
i=1 e(ti). Note

that M σ M′ implies M′ = M + e(σ).
Petri nets as graphs

Sometimes it will be useful to see a Petri net as a directed graph in which the set of nodes is the

union of the set of transitions and the set of places. This graph has an edge from a place p to

a transition t if in(t, p) > 0, and an edge t to p if out(t, p) > 0. Note that the graph is bipartite:

There are no edges among places or transitions.

Alternative models

Petri nets are equally expressive to vector addition systems (VASes) and vector addition systems

with states (VASSes): A Petri net can be converted in polynomial time into a VAS or VASS that

essentially has the samealgorithmic properties. While Petri nets are particularly useful tomodel

concurrent systems, VASSes can be understood as a restricted version of counter machines, a

Turing-complete model.

Counter machines

We start by giving the definition of counter machines. The syntax of a counter machine with

counters x1 , . . . , xk is a finite LTS with transitions labels from {xi++, xi−−, xi=0, xi≠0 ∣ i ∈ [1, k]}.
The induced semantics is an infinite transition system with configurations from Q ×N

k consist-

ing of a control state of the finite LTS and amarking that stores one value for each counter. The

¹ In the literature, the notation M[t⟩M′ is commonly used. The author of this thesis is convinced that [t⟩ is a stylized
version of t – the technology just was not there yet.
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6.1 Unlabeled Petri nets

effect of the transitions is as expected: Transitions labeled by xi++ increment the ith counter by

one while leaving the other counter values unchanged, transitions labeled by xi−− decrement

it. Transitions labeled by xi=0 or xi≠0 do not change the counter values, but they can only be

executed if the value of the ith counter is currently zero or non-zero, respectively.

The decrements xi−− are usually defined to be blocking: Such a transition can only be executed

if the value of counter i is currently strictly positive. With this assumption, one could actually

eliminate the occurrences of non-zero tests by replacing them with the sequence
x i−−
−−−−→

x i++
−−−−→ of

a blocking decrement and of an increment that reverts the effect of the decrement

One can show that counter machines are a Turing-powerful model: A (nondeterministic or de-

terministic) Turing machine can be converted in polynomial time into a counter machine that

essentially has the same algorithmic properties. To be precise, the existence of two counters is

sufficient for the conversion. It is not too hard to see that a counter machine with three coun-

ters can simulate a Turing-machine: We assume that the tape uses tape alphabet {0, 1, } and
use one counter to encode the tape content from the start to the current head position (seen as

binary number from left-to-right) and a second counter to encode the rest of the tape (seen as

binary number from right-to-left). To simulate the tape-manipulating transitions of the Turing

machine, the counter values are modified. For example, checking whether the tape content at

the current head position is 1 amounts to checkingwhether the value of the first counter is odd.

To preserve the original counter valueswhile conducting such a check, the third counter is used.

To get from three counters down to two counters, one can use Minsky’s famous prime en-

coding trick [Min67] which allows us to store the three counter values x1 , x2 , x3 as the single

number 2x1 ⋅ 3x2 ⋅ 5x3 . Operations on the counters x1 , x2 , x3 translate into a sequence of opera-

tions on this number, for which the second counter of the two-counter machine is needed as

intermediary storage. Counter machines with just one counter are not Turing-powerful: They

can be simulated by a pushdown systemwith a binary stack alphabet: one symbol to store the

unary encoding of the current counter value, another symbol that represents the bottomof the

stack; the latter is needed for the zero tests.

The above discussion in fact shows a stronger statement: The acceptance problem for Turing-

machines with space consumption bounded by n translates into the control-state reachability

problem for counter machines with three counters and counter values bounded by 2n . This

complexity-theoretic result does not extend to two-counter machines, since the prime encod-

ing introduces an exponential blowup of the counter values.

Vector addition systems

With the notation at hand, we can define a VASS as a counter machine in which the

operations xi=0 and xi≠0 do not occur. Unlike a counter machine, a VASS has only limited ac-

cess to its counter values during runtime. While it is still possible to assert non-zeroness of a

counter value by using a blocking decrement, we cannot assert that a counter is zero. We say

that the counters of a VASS are partially blind.
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6 Petri nets and well-structured transition systems

Similarly, a Petri net can check for the presence of tokens, but it cannot check the absence

of tokens on a place. It is not hard to translate a VASS into a Petri net and vice versa. With

our definition of VASSes, a transition t of a Petri net would be translated into a sequence of∥in(t)∥1 + ∥out(t)∥1 transitions of the VASS, one transition per token that is consumed or pro-

ducedby t. To obtain amore efficient translation, we could consider VASSes inwhich transitions

can increment or decrement a counter by an arbitrary number in a single step. Sincewewill not

need this construction, we forgo giving the formal definition.

A VAS is a VASS with a unique state. A VASS can be encoded as a VAS with two additional coun-

ters that store the current control state. To be precise, to store control state qi with i ∈ [0, k],
we would have one counter with value i and another complement counter with value k − i. Just

storing i would be insufficient, because then a transition that should be enabled only in control

state qi would also be enabled in any q j with j > i.
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6.2 Algorithmic problems for Petri nets

Wemention somealgorithmic problems for Petri nets that are important in the rest of this thesis.

As usual, automata should have an initial and a final state. In the case of Petri nets, this means

we consider Petri net instances (N,Minit ,Mfinal) consisting of a Petri net N, an initial markingMinit

for N from which the computation should start, and a final marking Mfinal for N that specifies

where the computation should end.

To be able to talk about the computational complexity of these algorithms, we need to de-

fine the size of (the encoding) of a Petri net instance. Firstly, we define the size ∣M∣ of a

marking M as ∣M∣ = ∑p∈P(⌈logM(p)⌉ + 1) . The size ∣N∣ of a Petri net N = (P, T , in, out)
is ∣N∣ = ∑t∈T ∣in(t)∣ + ∣out(t)∣ , where we see in(t) and out(t) as markings. Finally, the

size ∣(N,Minit ,Mfinal)∣ of a Petri net instance is defined to be the sum of the size of its compo-

nents, ∣(N,Minit ,Mfinal)∣ = ∣N∣+∣Minit∣+∣Mfinal∣ .Note thatwehave ∣M∣ ∈ O(∣P∣⋅(⌈log∥M∥∞⌉+1))
and ∣N∣ ∈ O(∣P∣ ⋅ ∣T ∣ ⋅ (⌈log∥in∥∞⌉ + ⌈log∥out∥∞⌉ + 2))
In the definition of the size, we have measured the size of all numbers via their binary encoding

which is logarithmic in the absolute value of the number. Altogether, to guarantee that the size

of a Petri net instance is polynomial in some number k ∈ N, it is sufficient to guarantee that

its number of places and transitions are polynomial in k and the occurring multiplicities and

numbers of tokens are exponential in k.

Sometimes, we will explicitly refer to the unary encoding of a Petri net instance. Formally, the

sizeof theunary encodingof amarking is ∣M∣unary = ∑p∈P∣M(p)∣+1 = ∥M∥1+∣P∣. Thedefinitions

of the size of the unary encoding of a net ∣N∣unary resp. of a net instance are similar to the binary

case, with occurrences of ∣−∣ replaced by ∣−∣unary.
Reachability and coverability

The most natural algorithmic problem for Petri nets is the reachability problem.

Petri net reachability (PNREACH)

Given: Petri net instance (N,Minit ,Mfinal).
Question: Is Mfinal reachable from Minit in N, i.e. ∃σ ∈ T∗∶Minit σ Mfinal?

Unfortunately, the Petri net reachability problem turned out to be very hard, see the discussion

below. To circumvent this problem, one often considers the coverability problem.

Petri net coverability (PNCOV)

Given: Petri net instance (N,Minit ,Mfinal).
Question: Is there σ ∈ T∗ such that Minit σ M′ with M′ ⩾ Mfinal?
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We say that a marking M′ with M′ ⩾ Mfinal covers Mfinal. A computation M σ M′ with

M′ ⩾ Mfinal is called covering computation. For the ease of notation, we contract the expression

and simply write M σ M′ ⩾ Mfinal.

The reason for considering coverability instead of reachability is not only that coverability is

much simpler to solve. In many applications, it is in fact sufficient to decide coverability. We

provide two examples to justify this claim.

For the first example, consider a Petri net N inwhich the places are states of a concurrent system.

The number of tokens that a place carries in a marking is the number of threads that are in a

specific state at a certain point in time. (Note that threads that are in the same state are indis-

tinguishable in this model.) A typical verification problem considers one of the states pbad ∈ P
to be a bad state, and one wants to ensure that from some initial configuration Minit, it is not

possible for any component to reach state pbad. This is modeled by the coverability problem

for (N,Minit ,Mfinal), where Mfinal is the unit vector that is zero but for Mfinal(pbad) = 1. This

marking Mfinal is coverable from Minit if and only if the system is incorrect (with respect to the

specification that pbad is not reachable by any component). Here, we use that it does notmatter

whether exactly one or more than one component is able to enter the bad state.

The second example is similar. We consider a Petri net modeling a mutex (mutual exclusion)

protocol. It has a state pcs modeling the critical section. The protocol should guarantee that no

two components ever enter the critical section at the same time. Wemodel this by considering

coverability with respect to the marking Mfinal that is zero but for Mfinal(pcs) = 2. Modeling this

problem using coverability is suitable because the system is incorrect as soon as any number of

components greater than 1 is able to enter the critical section and the same time.

6.2.1 Example
We make the second example explicit. Consider a program that continuously spawns a nonde-

terministic amount of worker threads that first compute on their own for some time. At some

point, each worker thread enters a critical section to transfer the result of its computations to a

data structure in sharedmemory. To ensuremutual exclusion, i.e. only one worker accesses the

critical section at the same time, we protect the critical section by a lockwhich the threads have

to acquire. After the threads have transferred their data, they leave the critical section, release

the lock and die.

We model this behavior by the Petri net depicted in Figure 6.2.a. Tokens on place p represents

worker threads that are not in the critical section; transition tspawn creates such threads. The

transition that enters the critical section by moving a token from p to pcs also acquires the lock

by moving a token from lfree to lheld. The transition that kills the thread by removing a token

from pcs returns the token from lheld to lfree. The initial marking puts one token on lfree, i.e. the

lock is initially not acquired, and no token elsewhere. It is easy to verify that it is impossible to

create more than one token in pcs at the same time.
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tspawn tenter tleave & die

p pcs

lfree lheld

Figure 6.2.a: A Petri net modeling a simple concurrent system.

In the following, we recall classical results on the complexity of coverability and reachability.

Lipton’s result

Both coverability and reachability were shown to be EXPSPACE-hard by Lipton [Lip76] (cf. a pre-

sentation of the proof by Esparza [Esp98]).

6.2.2 Theorem (Lipton [Lip76])
PNREACH and PNCOV are EXPSPACE-hard.

The hardness of reachability follows directly from the hardness of coverability: Given an in-

stance of the coverability problem, we can construct an equivalent instance of the reachability

problem by adding transitions to the net that consume superfluous tokens.

The proof uses a polytime reduction from the acceptance problem for EXPSPACE, which is

EXPSPACE-complete. Formally, this problem can be defined similarly to the AEXPSPACE ac-

ceptance problem that we have considered in Section 3.3. Firstly, one observes that a Turing

machine with exponential space consumption can be simulated by a counter machine with

counter values bounded by a number doubly exponential in n. Lipton shows how to simulate

such a counter machine with counters bounded by 22
n

with a Petri net of size polynomial in n.

The crucial step is the simulation of zero tests that are present in counter machines, but not in

Petri nets. To this end, each counter xi of the machine is represented by two places xi and xi
such that everymarkingM that is reachable from the initial one satisfiesM(xi)+M(xi) = 22

n

. To

check that counter xi is currently zero, we need to check that place xi contains at least 22
n

to-

kens. Furthermore, the places need to be initialized to carry the correct number of tokens. This

is made possible by polynomially sized gadgets that increment or decrement the number of

tokens at a place by precisely 22
n

. Sincewewill need these gadgets in the Sections 8.1 and 14.2,

we give a formal specification of their properties in the form of the following proposition.
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6.2.3 Proposition (Lipton [Lip76])
Let n ∈ N.

a) There is a Petri net instance (Ninc ,Minitinc , 0⃗) polynomial in n with two special places phaltinc,

poutinc such that any computation Minitinc σ M of Ninc with M(phaltinc) ⩾ 1 satisfies

M(poutinc) = 22
n

.

b) There is a Petri net instance (Ndec , 0⃗,Mfinaldec)polynomial in nwith a special place pindec such

that for any marking M with M(p) = 0 for all p ≠ pindec, there is a covering computation

M σ M′ ⩾ Mfinaldec if and only if M(pindec) ⩾ 22
n

.

Rackoff’s result

When Lipton proved the EXPSPACE-hardness of reachability and coverability, reachability was

not known to be decidable. Coverability, however, was already proven to be decidable using a

technique by Karp and Miller [KM69] which we will discuss in detail in Section 9.1. The precise

complexity was determined by Rackoff [Rac78] who provided an algorithm whose complexity

matches Lipton lower bound.

6.2.4 Theorem (Rackoff [Rac78])
PNCOV can be solved using exponential space.

6.2.5 Corollary
PNCOV is EXPSPACE-complete.

Rackoff proved this result by showing that if there is a covering computation, then there is one

of doubly exponential length. With this bound, one can enumerate and simulate all candidate

executions using only exponential space. Wewill discuss Rackoff’s proof in detail in Section 8.1.

Petri net reachability

After an incomplete proof by Sacerdote and Tenney [ST77], Petri net reachability was finally

proven to be decidable in 1981 by Mayr [May81].

6.2.6 Theorem (Mayr [May81])
PNREACH is decidable.

Simplified versions of the proof were later published by Kosaraju [Kos82] and Lambert [Lam92].

The algorithm that can be extracted from the proof of decidability is known to be non-

primitive recursive. A more precise complexity analysis was presented 2015 by Leroux and

Schmitz [LS15b], showing that the running time of the algorithm in the worst case is at least

116



6.2 Algorithmic problems for Petri nets

Ackermann and atmost cubic Ackermann, i.e. roughly spoken the Ackermann function applied

to itself applied to itself applied to the size of the input.

The gap between the EXPSPACE-hardness proven by Lipton and the non-primitive recursive

running time of the only known algorithm remained unclosed for more than 30 years, becom-

ing one of the most important open problems in theoretical computer science. From 2009

to 2012, Leroux published a series of papers, e.g. [Ler11], that contributed new insights about

the structure of the set of reachable markings and a new algorithm, but not a better upper

bound. In 2019 Leroux and Schmitz [LS19] have shown that the reachability problem can be

solved in ACKERMANN time for arbitrary Petri nets (improving the previous analysis of the algo-

rithm), and in primitive recursive time for Petri nets when the number of places is fixed.

Also in 2019, the lower bound was improved by Czerwiński, Lasota, Lazic, Leroux, and Ma-

zowiecki [CLLLM19]. They have shown that Petri net reachability is TOWER-hard. In 2021,

the problem has finally been solved. Independently, Leroux [Ler21] and Czerwiński and Or-

likowski [CO21] have proven that Petri net reachability is ACKERMANN-complete by providing

an ACKERMANN lower bound that matches the earlier upper bound from [LS19].

6.2.7 Theorem (Leroux [Ler21], Czerwiński and Orlikowski [CO21], Leroux and
Schmitz [LS19])
PNREACH is ACKERMANN-complete.
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6.3 Petri net coverability languages

In the following, we want to see Petri nets as language-generating devices. To this end, we

equip the transitions with a labeling.

Formally, a labeled Petri net N = (P, T , in, out, λ) over Σ consists of a Petri net (P, T , in, out) to-
gether with a labeling function λ∶ T → Σε. A computation M σ M′ generates the word λ(σ).
Here, we see λ as a function of type T∗ → Σ∗, namely as the unique homomorphism obtained

by extending λ∶ T → Σε.

To obtain a language, we equip a net with an initial marking and a set of final markings. Here,

we will only consider so-called coverability languages, where the set of final markings is the set

of markings greater or equal to a specified marking. Formally, the coverability language of a

labeled Petri net instance (N,Minit ,Mfinal) is
L(N,Minit ,Mfinal) = {λ(σ) ∣ Minit σ M ⩾ Mfinal} .

Petri net coverability languages are strictly less expressive than Petri net reachability languages

(which are defined similarly, but the acceptance condition is reaching precisely the specified

marking). For example, {anbn ∣ n ∈ N} is a reachability language, but not a coverability lan-

guage, see Section 6.5. The reason for studying coverability languages is that coverability is

sufficient to express the desired behavior in many cases (see above), and that any algorithmic

problem for Petri net reachability languages inherits the intractability of PNREACH.

6.3.1 Example
Note that any NFA can be seen as a labeled Petri net instance: The places are the states of the

automaton, the initial marking puts a single token on the initial state and no token elsewhere.

The idea is that at each point in time, there is a unique place that carries a single token. The

transitions are essentially the transitions of the automaton, which specifies their incoming and

outgoing multiplicities and their labels. We add a special final place and for each final state of

the NFA an ε-labeled transition that consumes a token on that state and produces one on the

final place. The final marking requires a token on the final place.

Hence, the Petri net coverability languages are a superset of the regular languages. To see that

the inclusion is strict, one can show that the non-regular language {anbm ∣ n,m ∈ N,m ⩽ n}
can be generated by a Petri net.
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Algorithmic problems for coverability languages

The emptiness problem for Petri net coverability languages is the following problem.

Emptiness problem for Petri net coverability languages (PNCOV-EMPTY)

Given: Labeled Petri net instance (N,Minit ,Mfinal) over Σ.
Question: L(N,Minit ,Mfinal) = ∅?

Obviously, a labeled Petri net instance (N,Minit ,Mfinal) has non-empty language if and only if

Mfinal is coverable from Minit in N. Hence, the emptiness problem is essentially equivalent to

PNCOV and inherits its complexity, i.e. it is EXPSPACE-complete.

In the following, we want to derive that theword problem for Petri net coverability languages is

also EXPSPACE-complete.

Word problem for Petri net coverability languages (PNCOV-WORD)

Given: Labeled Petri net instance (N,Minit ,Mfinal) over Σ, wordw ∈ Σ∗.
Question: w ∈ L(N,Minit ,Mfinal)?

Hardness can be easily derived from the hardness of coverability: A normal Petri net can be

equipped with the labeling that maps all transitions to ε. The language of this labeled Petri net

contains the word ε if and only if the final marking is coverable from the initial one.

For membership, we first explain how to intersect two Petri net coverability languages. Similar

to the construction for LTSes, we do this via some sort of product. Unlike in the case of general

LTSes, Petri nets have inherent support for concurrency, so we can form the product by taking

the disjoint union of places.

For the formal definition, let N = (P, T , in, out, λ), N′ = (P, T ′ , in′ , out′ , λ′) be labeled Petri nets

over the same alphabet Σ. Assume P ∩ P′ = ∅, T ∩ T ′ = ∅. The synchronized product N × N′ of N

and N′ is the Petri net

N × N′ = (P ∪⋅ P′ , T× , in× , out× , λ×)
with T× = {(t, t′) ∣ t ∈ T , t′ ∈ T , λ(t) = λ′(t′) ∈ Σ} ∪ {t ∣ t ∈ T , λ(t) = ε} ∪ {t′ ∣ t′ ∈ T , λ′(t′) = ε}.
The transitions of shape (t, t′) behave as t on the P-components of markings and as t′ on the P′-

components. Formally, (in×(t, t′))↾P = in(t), similar for P′ and similar for out. The ε-labeled transi-

tions behave on the net they come from as before and have no effect on the places of the other

net, e.g. for t ∈ T with λ(t) = ε, we have in×(t, p) = in(t, p) for p ∈ P, and in×(t, p′) = 0 for p′ ∈ P′.
The labeling of the transitions is as expected: λ×(t, t′) = λ(t) = λ′(t), λ×(t) = ε, λ×(t′) = ε.
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For two labeled Petri net instances (N,Minit ,Mfinal), (N′ ,M′
init ,M

′
final) over the same alphabet,

their synchronized product is (N×N′ ,Minit× ,Mfinal×)whereMinit× is equal toMinit on P and equal

to M′
init on P

′, similar for Mfinal×.

Intuitively, non-ε-labeled transitions of N and N′ have to synchronize in N × N′, while ε-labeled

transitions can be fired freely. This corresponds to the definition of the synchronized product

for LTSes in Section 4.1. Indeed, the LTS associated to the synchronized product of two Petri

nets is exactly the synchronized product of the LTSes associated to the nets. In particular, we

obtain that the language of the product is the intersection of the languages as desired,

L(N × N′ ,Minit× ,Mfinal×) = L(N,Minit ,Mfinal) ∩ L(N′ ,M′
init ,M

′
final) .

To obtain an EXPSPACE algorithm for PNCOV-WORD, we see the input word w as an NFA Aw
with L(Aw) = {w}. As in Example 6.3.1, we can see this automaton in turn as a labeled Petri net

instance (Nw ,Minitw ,Mfinalw). Using the previous lemma, we have that w ∈ L(N,Minit ,Mfinal) iff
the language of the product of (N,Minit ,Mfinal) and (Nw ,Minitw ,Mfinalw) is non-empty. Since the

size of this product is polynomial in the sum of the input sizes (that is, the size of the net and

the size ofw), applying the EXPSPACE algorithm for coverability yields the desired complexity.

Two useful approximations

Wehave seen that a Petri net coverability language is not regular in general. In the following, we

defineboth a regular underapproximation and a regular overapproximation of such a language.

The approximations are parametric in a number k that determines their precision. Later in the

thesis, we will see that by choosing k appropriately, certain structural properties will carry over

from the Petri net language to its approximation.

The length-approximation

For a Petri net language L(N,Minit ,Mfinal), we define its length-k approximation by only consid-

ering firing sequences of length at most k:

L⩽k(N,Minit ,Mfinal) = {λ(σ) ∣ Minit σ M ⩾ Mfinal , ∣σ∣ ⩽ k} .
This language is an underapproximation, sinceL⩽k(N,Minit ,Mfinal) ⊆ L(N,Minit ,Mfinal) holds for
any k. It is also not hard to observe that L⩽k(N,Minit ,Mfinal) is regular, and its state complexity

is exponential in n, the size of (N,Minit ,Mfinal).
6.3.2 Proposition
For each k, L⩽k(N,Minit ,Mfinal) is a regular language of state complexity at most O(kn ⋅ 2n2 ),
where n is the size of the binary encoding of (N,Minit ,Mfinal).
Proof:
We construct an NFA that simulates N for k steps. The NFA is A = (Q ,→, qinit , QF ), where
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Q = [0, k] × (P → [0, (k + 1) ⋅ 2n]), i.e. a state is of the shape ( j,M), where j is the number

of steps that have been taken andM is a marking that assigns at most (k +1) ⋅2n tokens to each

place. The initial state is (0,Minit), a state ( j,M) is final if M ⩾ Mfinal. There is a transition from( j,M) to ( j′ ,M′), labeled by a, if j′ = j + 1 ⩽ k and in N, there is a transition t such thatM t M′

with λ(t) = a.
It is obvious that A indeed simulates precisely the covering computations induced by firing

sequences of length at most k. The maximum number that we can encode with n bits is 2n ,

so a Petri net instance of size n can add atmost 2n tokens to each place per transition. Since we

perform atmost k transitions, each reachable state ( j,M) hasM(p) ⩽ Minit(p)+k ⋅2n ⩽ (k+1) ⋅2n ,
i.e. we stay within the bounded state space.

To prove the statement on the state complexity, we count the number of states of A:

∣Q∣ = (k+1)⋅(((k + 1) ⋅ 2n) + 1)∣P∣ ⩽ (k+1)⋅(2 ⋅ (k + 1) ⋅ 2n)n ⩽ 2k⋅2n ⋅22n ⋅kn ⋅(2n)n ∈ O(kn ⋅ 2n2) .
⬛

The ω-approximation

In addition to the above underapproximation, we also define a regular overapproximation of

a Petri net language. It only tracks the token count on each place up to a bound k that is the

parameter of the approximation. If the token count ever exceeds k, the value of the place is set

to ω (read as: unbounded) and remains so for the rest of the computations. All transitions are

enabled with respect to places that have become unbounded.

More formally, a generalized marking is a vector M ∈ N
P
ω with entries in Nω = N ∪⋅ {ω}. We

extend the order to generalized markings by setting x ⩽ ω for all x ∈ Nω. Furthermore, we

define ω + n = ω − n = ω for all n ∈ N. The firing relation extends to generalized markings

in the natural way: Transition t is enabled in M if M ⩾ in(t), and firing it yields M + e(t). Note

that in(t), out(t) and e(t) are vectors over the integers, so there is no need to define the values

of ω + ω and ω − ω.

For a number k ∈ N, we define the [0, k]-ω-approximationof a Petri net instance (N,Minit ,Mfinal)
as the finite automaton A>k with state space ([0, k] ∪ {ω})P . Its initial state is the marking

M′
init with M′

init(p) = Minit(p) if Minit(p) ⩽ k and M′
init(p) = ω else, and the final states are{M ∈ ([0, k] ∪ {ω})P ∣M ⩾ Mfinal}. Its transition relation is induced by the firing relation of N: We

have M
a
−→ M′ if there is an a-labeled transition of N such that M a M′′ with M′(p) = M′′(p)

if M′′(p) ⩽ k and M′(p) = ω else. The [0, k]-ω-approximation L>k(N,Minit ,Mfinal) of a Petri net

language L(N,Minit ,Mfinal) is defined to be the language of A>k .
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6.3.3 Lemma
For each k, L>k(N,Minit ,Mfinal) is a regular overapproximation of L(N,Minit ,Mfinal) with state

complexity at most 2nkn , where n is the size of (N,Minit ,Mfinal).
Proof:
Language L>k(N,Minit ,Mfinal) is trivially regular since it is defined by a finite automaton. Ob-

serve that any covering computation of N induces an accepting run of A>k generating the same

word, so L(N,Minit ,Mfinal) ⊆ L>k(N,Minit ,Mfinal) holds. For the state complexity, note that the

number of generalized markings in which the natural entries are bounded by k (for k ⩾ 2) is»»»»»([0, k] ∪ {ω})P»»»»» = (k + 2)P ⩽ 2nkn .

⬛
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6.4 BPP nets

The hardness of most computational problems for Petri nets motivates studying subclasses of

nets with better algorithmic properties. There are several classes of nets that are studied in this

context, including safe, communication-free, conservative Petri nets and many others.

In a k-safe net instance, we assume that each marking M reachable from the initial marking

satisfies M(p) ⩽ k for all places p. The case of 1-safety (often simply called safety) is of partic-

ular interest. The state space of a k-safe net instance is finite; it is a transition system with at

most k∣P∣ configurations. In particular, the computational problems for k-safe Petri nets are as

hard as the corresponding problems for finite state systems of exponential size. For example,

the reachability problem for (1-)safe Petri nets is PSPACE-complete, which corresponds to the

reachability problems in directed graphs. The latter can be solved in NL (nondeterministic log-

arithmic space) for polynomially sized graphs, and hence in polynomial space for exponentially

sized graphs. Altogether, this class is of high practical relevance, but rather boring from a theo-

retical point of view.

In this thesis, wewill, in addition togeneral Petri nets, exclusively focuson the following subclass.

A Petri net N is a BPP net or communication-free if each transition consumes at most one token,

i.e. for each t, we have∑p∈P in(t, p) ⩽ 1.

BPP nets are interesting for various reasons. On the practical side, a BPP net can model an un-

bounded number of instances of a finite state-automaton running in parallel. Each token in

a place corresponds to an instance of the automaton that is in said place. Instances can die

(when the corresponding token is consumed), and new instances can be spawned at runtime

(by transitions that produce more than one token). However, the instances cannot commu-

nicate or synchronize during runtime. This setting is modeled by the calculus of basic parallel

processes [Chr93], from which BPP nets get their name.

On the theoretical side, BPP nets are special in that they have some structural properties that

do not hold for general Petri nets: The state equation is an equivalence, and the reachability set

is semi-linear. After giving an example, we discuss each of these properties in detail.

6.4.1 Example
Consider the labeled BPP net instance (N, 0⃗, 0⃗) over the alphabet {a, b, c}, where N is given in

Figure 6.4.a. Its language is the non-context-free language of all words w ∈ {a, b, c}∗ such

that in every prefix of w, the number of occurrences of letter a is greater than or equal to the

number of occurrences of b, and the number of bs is greater than or equal to the number of cs.

The fact that this language is not context-free can be shown similar to the well-known proof for{anbncn ∣ n ∈ N} not being context-free.

123



6 Petri nets and well-structured transition systems

a b c

Figure 6.4.a: A labeled BPP net with a non-context-free language.

The state equation

Recall that M σ M′ implies M′ = M + e(σ). In turn, this means that a marking M′ can only be

reachable from M if there is a sequence of transitions with effect M′ − M. Since the effect of a

transition sequence does not depend on the order of the transitions, this can be described by

a system of linear equations. If M′ is reachable from M, then the system of equations given by

M′ − M = ∑
t∈T

ct ⋅ e(t)
has a non-negative solution c ∈ N

T . This equation is called the state equation (ormarking equa-

tion). It can be used as an easy preliminary check to rule out reachability: If the system has no

solution, reachability cannot hold. Checking whether the state equation has a non-negative

integer solution is an instance of the satisfiability problem for integer programming, which is

NP-complete [Kar72; BT76]. However, the state equation does not provide a characterization of

Petri net reachability: Firstly, it is not hard to construct an example where the system of equa-

tions has a solution, but it is impossible to arrange the transitions such that a valid firing se-

quence is obtained. Secondly, even if reachability holds, the shortest valid firing sequencemay

be vastly longer, i.e. it contains more transitions, than the transition counts provided by the

least solution to the state equation. In fact, the decision procedure for Petri net reachability in

its presentation by Lambert [Lam92] can be understood as a procedure that expands the given

Petri net until the satisfiability of themarking equation is equivalent to the reachability problem.

Note that this expansion process can lead to a blow-up that is non-primitive recursive.

For BPP nets, however, the characterization of reachability by the state equation is precise in

the following sense.

6.4.2 Theorem (Esparza [Esp97])
For a BPP net N, an initial marking M and a vector c ∈ N

T of transition counts, there is a valid

firing sequence σ with M σ containing each transition t exactly ct times if and only if

(1) the state equation holds, i.e. Minit +∑t∈T ct ⋅ e(t) ⩾ 0 and

(2) the net is connected in the sense that for each place p such that there is a transition t with

ct > 0 and in(t, p) ≠ 0 or out(t, p) ≠ 0, there is a path from a place p′ with Minit(p′) > 0 to p

that only uses transitions t′ with ct′ > 0 (in the Petri net seen as graph).
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This characterization has two important consequences that are stated and proven in [Esp97].

Firstly, one obtains that, given a BPP net N and a marking Minit, the set of reachable markings{M ∣ ∃σ∶Minit σ M} is effectively semi-linear. Secondly, it yields an NP-algorithm for reacha-

bility. The first step of this algorithm is to get rid of the dependency on c in the theorem.

6.4.3 Corollary (Esparza [Esp97])
For a BPP net N, and markings Minit ,Mfinal, there is a computation Minit σ Mfinal if and only if

there is a subset of transitions U ⊆ T such that

(1) the system of equations formed by the state equation, i.e. Minit − Mfinal = ∑t∈T ct ⋅ e(t), the
equations ct = 0 for t /∈ U, and the inequalities ct > 0 for t ∈ U has an integer solution c,

and

(2) the net is connected in the sense that for each place p such that there is a transition t ∈ U
that is adjacent to p (in thenet seenasgraph), there is apath fromaplace p′withMinit(p′) > 0

to p that only uses transitions from U.

The corollary gives rise to an algorithm for reachability in a straightforward manner. One first

guesses U, then checks the second property by a linear number of reachability checks in a di-

rected graph, and finally solves the extended state equation using integer linear programming.

As mentioned before, linear programming is NP-complete, so the whole algorithm runs in NP.

By inserting transitions that consume superfluous tokens, an instance of the coverability prob-

lem for BPP nets can be easily reduced to an instance of reachability. In fact, both coverability

and reachability areNP-complete [Esp97]. Sincewewill later present somehardness proofs that

rely on the NP-hardness of coverability, we give the proof.

6.4.4 Lemma
Coverability in BPP nets is NP-hard.

Proof:
We reduce from SAT, the satisfiability problem for propositional formulas in conjunctive normal

form. Let F = K1 ∧ . . .∧ Kn be the given formula with Ki = Li1 ∨ . . .∨ Lim i for each clause Ki . Each

literal is of the shape Li j = xk or Li j = ¬xk for one of the variables x1 , . . . , xl. We construct a net

that has three places xi , x
+
i , x

−
i for each variable. The initial marking Minit puts a token on each

place xi . For each variable, there is one transitionmoving that token to x+i , and one that moves

it to x−i . Intuitively, one assigns a truth value to variable xi using these transitions.

To encode the formula, we introduce places for all of its parts. For each positive literal Li j = xk ,

there is a place Li j and a transition that checks for a token x+k and produces a token on Li j. By

checking for a token, wemean that the transition both consumes and produces a token on this

place; the transition does not change the number of tokens on that places, but it requires a
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token to be able to be fired. Similarly, there is a place for negative literals Li j = ¬xk that check

for a token on x−k . For each clause Ki , there is a place Ki . Every literal Li j from that clause induces

a transition that moves one token from Li j to Ki .

The final marking Mfinal requires one token on each place Ki . Each covering computation in-

duces a satisfying truth assignment and vice versa: If Minit σ M ⩾ Mfinal, define the assign-

ment ϕ by ϕ(xk) = true if σ contains the transition moving a token from xk to x+k , ϕ(xk) = false

else. The structure of the net ensures that (1) no variable is set to true and false at the same time,

i.e. the places x+k and x−k are mutually exclusive, (2) each clause is satisfied, since (3) each clause

contains at least one literal that is satisfied. For the other direction, assume that ϕ is a satisfy-

ing truth assignment, and consider the computation ϕ that first moves tokens to the places x−k
or x+k , depending on the truth value of ϕ(xk), then creates tokens on all literals Li j that are satis-

fied, and then creates tokens on all clauses that are satisfied. Since ϕ(F) = true by assumption,

this computation will create a token for each clause and hence is covering. ⬛

6.4.5 Corollary
Coverability and reachability in BPP nets are NP-complete.

The word problem for BPP nets

Let us now study the class of BPPnet coverability languages and its algorithmic properties, start-

ing with the word problem. The class of BPP (coverability) languages is not well-studied yet. To

the best of our knowledge, this is one of the first works that considers this class. BPP nets are

commonly used tomodel the languages of commutative context-free grammars. We comment

on this class of languages at the end of this section. In particular, we will argue that the theory

of the languages of commutative context-free grammars is less rich than the theory of the BPP

net languages.

Word problem for BPP net coverability languages (BPPCOV-WORD)

Given: Labeled BPP net instance (N,Minit ,Mfinal) over Σ, wordw ∈ Σ∗.
Question: w ∈ L(N,Minit ,Mfinal)?

In the case of Petri nets, the complexity results for unlabeled Petri nets directly translate into

complexity results for the corresponding problems for languages. Unfortunately, some con-

structions do not carry over to BPP nets. For example, to show that the word problem for gen-

eral Petri nets is EXPSPACE-complete, we have constructed the product of the given net and an

NFA for the given word. This construction cannot be used for BPP nets, since the product of a

BPP net with an NFA is not a BPP net: Each transition will consume two tokens, one from the

BPP net and one from the automaton. Nevertheless, the word problem is NP-complete, just as

the coverability problem.
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6.4.6 Proposition
BPPCOV-WORD is NP-complete.

The hardness of theword problem is easy to obtain: Consider an unlabeled BPP net as a labeled

BPP net in which every transition is labeled by ε, then the final marking is coverable in the orig-

inal net if and only if ε is an element of the coverability language of the labeled version. Hence,

the NP-hardness result for coverability implies the NP-hardness of BPPCOV-WORD.

The proof formembership inNP is harder. To get the desired result, we use the correspondence

of BPP nets to Presburger arithmetic and the concept of semi-linearity that we have introduced

in Section 3.4.

6.4.7 Theorem (Verma, Seidl, and Schwentick [VSS05]; Esparza [Esp97])
The reachability set of a BPP is effectively semi-linear: Given a BPP net N and an initial marking

Minit, one can compute in polynomial time an existential Presburger formula Ψ(P) so that for all

markings M: Ψ(M) is true iff Minit σ M for some σ ∈ T∗.

The statement is not true for general Petri nets with at least 6 places [HP79]. We can now use

Theorem 6.4.7 to prove that the word problem for BPP net coverability languages is in NP.

6.4.8 Proposition
BPPCOV-WORD is in NP.

Proof:
Assume that (N,Minit ,Mfinal) is the given labeled BPP net instance and w = w1 . . .wm ∈ Σ∗ is

the word for which membership should be checked. We could simply guess for each letterwi

of w the transition ti of N with λ(ti) = wi that will be used to produce wi . The problem is

that a computation Minit σ M ⩾ Mfinal with λ(σ) = w can use an unbounded number of

ε-transitions in between the occurrences of the ti . Hence, we have to find a computation

Minit σ0 M1 t1 M′
1 σ2 . . . σm Mm tm M′

m σm+1 Mm+1 ⩾ Mfinal

where each σi for i ∈ [0,m + 1] only consists of ε-labeled transitions.

However, we cannot simply guess themarkingsMi in polynomial time, sincewehave no a priori

bound on their number of tokens. To overcome this issue, the characterization of reachability in

termsof existential Presburger formulas is crucial. Our goal is todesign anexistential Presburger

formula ϕ(N,Minit ,Mfinal),w that is satisfiable if and only ifw ∈ L(N,Minit ,Mfinal),
On a high level of abstraction, the formula guesses the transitions ti that are used for the letters

of the word. It also guesses the markings Mi and M
′
i and verifies that each M′

i results from Mi
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by applying the effect of transition ti , and that eachMi+1 is reachable fromM′
i by a sequence of

ε-transitions. To implement this idea, we let Nε be a version of N in which all transitions that are

not labeled by ε have been removed. We create m + 2 copies of Nε, say N
0
ε , N

i
ε , . . . , N

m
ε , N

m+1
ε .

Intuitively, the sequence σi of ε-transitions will be executed in copy N iε. This is needed since the

Presburger formula can only talk about the marking that is reached in the end, so we will need

to preserve the intermediary markings in a separate copy to be able to access them.

However, we need to ensure that each copy N iε starts from the correct initial marking. To

this end, we add transitions that allow us to populate N iε for i > 0 with an arbitrary ini-

tial marking. Our formula will check that the marking reached by firing σi plus the effect of

transition ti+1 is indeed the initial marking of N i+1ε from which σi+1 is fired. To implement this,

we let N1,init
ε , . . . , Nm,init

ε , Nm+1,initε be copies of N that do not contain any transition. We let N′ be

the disjoint union of all N iε for i ∈ [0,m+1] and all N i ,initε for i ∈ [1,m+1]. For each i ∈ [1,m+1],
andeachplace pofN, we adda transition that simultaneously adds a token inplace pof copy N i ,ε
andplace p in copyN i ,initε . Furthermore, we letM′ be the initialmarkingofN′ that assignsMinit(p)
tokens to the places p of the first copy N0

ε and no tokens elsewhere.

It remains to construct the Presburger formula ϕ(N,Minit ,Mfinal),w that is satisfiable if and only if

w ∈ L(N,Minit ,Mfinal). The free variables of ϕ(N,Minit ,Mfinal),w will correspond to the markings Mi

and M′
i in the desired computation. The formula

(1) checks that the markings correspond to a valid computation of net N′,

(2) it guesses the transitions ti used for eachof the letters ofw, checks that themarking reached

in copy N i−1ε enables transition ti , and that for each copy i > 0, the initial marking of N iε,

which is stored in copy N i ,initε , is equal to the marking reached in the copy N i−1ε plus the

effect of ti , and

(3) it checks that the final marking reached in the last copy Nm+1ε covers Mfinal.

For the formal construction, we let pi and pi ,init denote the copy of place p of N in copy N iε
and N i ,initε , respectively. In the formula, we will use the name of each place as the variable de-

scribing the number of tokens on that place. For vectors of variables y⃗, z⃗ of equal dimension k,

we will write y⃗ ⩽ z⃗ for the conjunction y1 ⩽ z1 ∧ . . . ∧ yk ⩽ zk . For two variables yi , zi , we write

yi = zi for yi ⩽ zi ∧ zi ⩽ yi . We extend this notation to vectors and write y⃗ = z⃗ for y⃗ ⩽ z⃗ ∧ z⃗ ⩽ y⃗.

We define the formula ϕ(N,Minit ,Mfinal),w to be

ϕ(N,Minit ,Mfinal),w = ϕ1 ∧ ϕ2 ∧ ϕ3 ,

where each ϕi expresses Property (i) from above. (To be precise, ϕ should be in prenex normal

form; however, it will be easy to achieve this without a blowup in size.)

We define ϕ1 to be the formula characterizing reachability in net N′ from marking M′. It exists,

is of polynomial size, and can be computed in polynomial time by Theorem 6.4.7.
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Formula ϕ2 is defined as follows:

ϕ2 = ⋀
i∈[1,m] ⋁

t i
λ(t i )=w i

⋀
p∈P

(pi−1 ⩾ in(ti , p)) ∧ (pi ,init = pi−1 + e(ti)) .
For each of the letterswi , it guesses a transition ti with the correct label using a disjunction, and

then checks Property (2). Note that e(ti) can be negative, but we have not allowed subtraction

resp. negative values in Presburger terms. However, we may bring it to the other side of the

equality, which allows us to replace subtraction by addition.

The construction of formula ϕ3 is straightforward

ϕ3 = ⋀
p∈P

pm+1 ⩾ Mfinal(p)
Obviously, ϕ(N,Minit ,Mfinal),w is of size polynomial in N and w. It remains to argue that the

formula is indeed satisfiable iff w ∈ L(N,Minit ,Mfinal). For one direction, assume that

Minit σ0 M1 t1 M′
1 σ2 . . . σm Mm tm M′

m σm+1 Mm+1 ⩾ Mfinal is a computa-

tion generating word λ(σ). We obtain a satisfying assignment for formula ϕ by setting pi to the

value Mi+1(p) reached by firing σi , and by setting pi ,init to the value M′
i(p).

For the other direction, note that a satisfying assignment of the formula is a witness for the

existence of a computation σ ′ of N′ from M′ such that the markings reached in each of the

copies satisfy the properties postulated by the formula. Since the copies are independent, we

can wlog. assume that σ ′ has been rearranged such that

σ ′ = σ ′0 .τ1 .σ
′
1τ2 . . . τm+1 .σm+1

where each σ ′i exclusively contains transitions from copy N iε, and each τi contains transitions

that initially populate N iε and N i ,initε . We define σi to be obtained from σ ′i by projecting

the transitions in N iε back to the transitions in N. Let us denote by ti a transition with la-

bel wi such that the corresponding disjunct of the formula ϕ2 is satisfied. The computation

Minit σ0 M1 t1 M′
1 σ2 . . . σm Mm tm M′

m σm+1 Mm+1 ⩾ Mfinal of net N produces

wordw as desired. ⬛

Commutative context-free grammars

We discuss how BPP nets and their languages relate to the class of languages of commutative

context-free grammars. A commutative context-free grammar is a CFG as defined in Section 5.1

for which we identify the terminal words that it produces that are equal up to commutativ-

ity. This can be formalized in various ways. One possibility is to use the Parikh image Ψ(w) of a
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wordw ∈ Σ∗, the vector inNΣ that counts for each letter its number of occurrences inw. By gen-

eralizing the definition to languages, we may define the language of a commutative context-

free grammar G as Ψ(L(G)) = {Ψ(w) ∈ N
Σ ∣ w ∈ L(G)}, where L(G) is the language of G seen

as CFG. Alternatively, we may define the language via the commutative closure commcl(L(G)),
where commcl(L) = {w ∈ Σ∗ ∣ ∃v ∈ L∶Ψ(w) = Ψ(v)} adds all words to a language that are

equal to a word from the language up to commutativity. Here, we have used that equality up

to commutativity means that the number of occurrences of each letter is equal.

The correspondence between commutative context-free grammars and BPP nets has first been

observed by Esparza [Esp97]. To see a commutative context-free grammar as a BPP net, we

introduce one place for each nonterminal and each terminal. A production X → η of the gram-

mar induces a transition in the net that consumes one token from the place for X and for each

occurrence of a symbol in η produces one token on the corresponding place. The initial mark-

ing Minit puts one token on the place for the initial symbol and no tokens elsewhere. With this

construction at hand, we recover the language of the context-free grammar as

{M↾Σ
»»»»» ∃σ ∈ T∗∶Minit σ M,M ∈ N

Σ × {0⃗}},
the set of all markings reachable from Minit in which there are not tokens on the places for the

nonterminals, restricted to the places for the terminal symbols. The fact that each production

in a context-free grammar replaces exactly one nonterminal means the net is indeed a BPP net.

In particular, the results on the structure of BPP nets apply which means that the set as defined

before is effectively semi-linear.

On the practical side, this correspondence has been used to develop an algorithm that in linear

time constructs a formula in existential Presburger arithmetic that describes the Parikh image

of a context-free grammar [VSS05]. On the theoretical side, Parikh’s theorem [Par66] states that

the classes of Parikh images of context-free languages and regular languages coincide; both

are equal to the class of semi-linear sets of vectors. However, context-free grammars may give

a representation that is more succinct: For each n ∈ N, there is a context-free grammar over

the alphabet {a} of size polynomial in n that generates the Parikh image {2n}; the same is not

true for finite automata or regular expressions. It is noteworthy that some classes of languages

that we have introduced are not closed under taking the commutative closure: The commuta-

tive closure of the regular language (abc)∗ is the non-context-free language commcl((abc)∗) of
words in which all three letters appear equally often. Similarly, the commutative closure of the

non-context-free language {w .w ∣w ∈ {a, b}∗} is the context-free (and even regular) language

in which the number of occurrences of each of the two letters is even.

We show howwe can represent commutative context-free languages with our definition of the

languages of BPPs that is based on labeled transitions. If we consider BPP reachability languages

instead of coverability languages, it is easy to design a BPP net whose language is the commu-

tative closure of the language of a given context-free grammar. We use the aforementioned

construction by Esparza and make all transitions ε-labeled. Then, we insert for each terminal
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symbol a ∈ Σ an a-labeled transition that consumes a token from the corresponding place.

The final marking of that net requires no tokens to be present. The language of this BPP net is

exactly the commutative closure of the language of the given CFG: The final marking enforces

that the derivation process has been completed, i.e. no nonterminals remain, as well as that

all terminal symbols have been taken into account. The fact that the transitions that are not

ε-labeled are independent of each other ensures that the language is commutatively closed.

It seems difficult to obtain a similar construction with coverability as the acceptance condition.

While coverability and reachability in BPP nets are both NP-complete, which means that there

is a polytime reduction from reachability to coverability, to the best of the author’s knowledge,

there is no known reduction that preserves the language of the net.

Nevertheless, we can still represent all languages of commutative context-free grammars in

the following sense: For every language of a context-free grammar there is a BPP net whose

coverability language has the same Parikh image. To see this, we use the aforementioned result

that shows that for every CFG, there is an NFAwith the same Parikh image. In Example 6.3.1, we

have shown how to see an NFA as a Petri net with the same language. This net is a BPP net.

Hence, there is a BPP net with the same Parikh image.

For the other direction, we observe that the Parikh images of all BPP net languages are semi-

linear (and hence the Parikh image of a context-free or regular language). To see this, we add

places to a given net that keep track of the letters that have been produced. Similar to Esparza’s

construction, we let each a-labeled transition produce an additional token on the place for

letter a. As mentioned before, the set of reachable markings in a BPP net is effectively semi-

linear. It is easy to extend the Presburger formula by conjunctions that make sure that the final

marking has been reached or covered. Finally, the semi-linear sets can be shown to be closed

under projection. We apply this to project to the components that count the occurrences of let-

ters. Altogether, we obtain that the Parikh image of a BPP net language (with either coverability

or reachability as acceptance condition) is semi-linear.

In summary, BPP net coverability languages can represent semi-linear sets, and their Parikh

images are always semi-linear. The same holds true for both the context-free and the regular

languages. It makes sense to consider the class of languages of BPP nets without applying the

Parikh image abstraction (or, equivalently, the commutative closure): With Example 6.4.1 at

hand, one can show that it is incomparable to both aforementioned classes.
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6.5 Well-structured transition systems

We present well-structured transition systems (WSTSes), a generalization of Petri nets with cover-

ability as the acceptance condition. In Section 4.1, we have explained that decidability results

for automata models are usually based on the fact that the transitions are only allowed to de-

pend on the memory in a way that is local. In the case of WSTSes, this locality is formalized by

requiring an order on the states that is respected by the transition relation. Our presentation

loosely follows [FS01].

Upward and downward closures

We start by introducing some notation. Let (X , ⩽) be a quasi-ordered set. For a subset Y ⊆ X , its
downward closure

Y↓⩽= {x ∈ X ∣ ∃y ∈ Y ∶ x ⩽ y}
is the set of all elements smaller than some element of Y . The set Y is called downward closed if

it contains all elements that are smaller than some element. Wemay formalize this by requiring

that Y equals its downward closure, Y = Y↓⩽.

The notions of the upward closure Y↑⩽= {x ∈ X ∣ ∃y ∈ Y ∶ y ⩽ x} and of being upward closed are

defined similarly. If the order is clear from the context, we omit the corresponding subscript.

The complement of an upward-closed set is a downward-closed set and vice versa. Taking the

upward closure commutes with unions, (Y ∪ Y ′)↑= Y↑ ∪Y ′↑, similarly for the downward closure.

A set of minimal elements for a set Y is a subset B ⊆ Y such that B is an antichain, and for

each y ∈ Y , there is some b ∈ B with b ⩽ y. The second condition may be rephrased as

B ↑= Y ↑. We are particularly interested in the case where Y is upward closed and B is finite,

B = {b1 , . . . , bk}. In this case, we call B a basis of Y and we have Y = b1↑ ∪ . . . ∪ bk↑. Here and in

the following, we omit the set-brackets when taking the upward closure or downward closure

of single elements.

We define the operatormin that takes a set Y and returnsmin Y , a set of minimal elements of Y

of minimum size. In particular, if a finite set of minimal elements exists, it will return one. Since

we have not required the order to be antisymmetric, the set ofminimal elements does not have

to be unique. For us, it will suffice thatmin returns some arbitrary set of minimal elements.

Ordered LTS

An ordered LTS over Σ is of the shape W = (Γ , ⩽, T , Γinit , Γfinal), where (Γ , T , Γinit , Γfinal) is an LTS

with labels from Σ as defined in Section 4.1, ⩽ ⊆ Γ × Γ is a quasi-order on configurations (i.e. it

is reflexive and transitive), the set of final configurations is upward-closed, i.e. Γfinal = Γfinal↑, and
the transition relation is compatible with respect to ⩽ in the following sense: If c

a
−→ d, and

c ⩽ c′, then c′ a
−→ d ′ for some d ′ with d ⩽ d ′. We say that T is upward-compatiblewith ⩽, or that ⩽
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is a simulation relation, since intuitively, the condition states that larger states can simulate the

behavior of smaller states.

Requiring an LTS to be ordered is actually not a real restriction: Any LTS is an ordered LTS with

respect to equality as the order. In this case, upward-compatibility is trivially satisfied since

c ⩽ c′ means c = c′ in this case, and we have S = S↑ for any set S ⊆ Γ of configurations. To get a

model with good properties, we have to restrict the order.

Well-quasi-orders

The crucial restriction is requiring the order to be a well-quasi-order. Before finally giving the

definition of WSTSes, we define such orders and list some of their properties.

Consider a quasi-ordered set (X , ⩽). We call it a well-quasi-order (WQO) if any infinite sequence

x0 , x1 , x2 , . . . of elements of X contains an increasing pair, i.e. there are indices i < jwith xi ⩽ x j.

6.5.1 Example

a) Equality on a set, i.e. the order (X , =), is a WQO if and only if X is finite. Indeed, if X is finite,

any infinite sequence has to contain a repetition of elements. If X is infinite, then any infinite

sequence without repetitions is a bad sequence, a sequence without increasing pair.

b) The usual order (N, ⩽) is aWQO: Any sequence n0 , n1 , n2 , . . . of numbers contains an increas-

ing pair. In fact, the increasing pair has to occur within the first n0 + 2 indices: After starting

with n0, there are only ∣[0, n0 − 1]∣ = n0 distinct numbers that are smaller than n0. Either

the first n0 + 2 entries of the sequence already contain the repetition of a number, which

constitutes an increasing pair, or nn0+2 or an earlier entry is larger than n0.

The generalized version of Dickson’s Lemma [Dic13] states that the product of WQOs is a WQO.

6.5.2 Lemma (Dickson [Dic13])
If (X1 , ⩽1), (X2 , ⩽2) are WQOs, then the product order (X1 × X2 , ⩽×) is a WQO.

Consequently, (Nk , ⩽) is a WQO for each k ∈ N.
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WQOs admit many different characterizations. We list some of them in the following lemma.

6.5.3 Lemma
Let (X , ⩽) be a quasi-order. The following are equivalent:

(1) (X , ⩽) is a WQO.

(2) Every infinite sequence in X contains an infinite ascending subsequence.

(3) Every subset of X has a finite set of minimal elements.

(4) All antichains and strictly descending sequences in X are finite.

(5) Every infinite ascending chain of upward-closed sets U0↑⊆ U1↑⊆ U2↑⊆ . . . gets stationary,

i.e. there is i ∈ N such that Ui↑= Ui+1↑.

(6) Every strictly ascending chain of upward-closed sets U0↑⊊ U1↑⊊ U2↑⊊ . . . is finite.

For the proof we refer to [FS01]. The equivalence of the Properties (1) and (2) is sometimes

credited to anunpublisheddraft by Erdős andRado. The last twoproperties can alsobephrased

in terms of (strictly) descending chains of downward closed sets.

With Property (3), we have that min Y is finite for all Y ⊆ X . If Y is upward closed,

min Y = {b1 , . . . , bk} is a basis with Y = b1 ↑ ∪ . . . bk ↑. Note that this property cannot be

dualized: It is not true that in aWQO, every downward-closed set can be represented by a finite

set of maximal elements. For example, the downward-closed setN in the WQO (N, ⩽) does not
occur as the downward closure of any finite set of numbers. Inmany cases, this problem can be

overcome by considering ideals, which we will do in Section 13.3.

Well-structured transition systems

With all preliminaries at hand, we can finally give the crucial definition. We call an ordered

LTSW = (Γ , ⩽, T , Γinit , Γfinal) a well-structured transition system (WSTS) if (Γ , ⩽) is a WQO.

The notions that we have introduced for general LTSes, e.g. the notion of being finitely branch-

ing, carry over to ordered LTSes and WSTSes.

In the definition of WSTSes, the WQO restriction and upward-compatibility come together to

create amodel that has nice structural properties. Upward compatibility states that large states

can simulate the behavior of smaller states; the underlying order being aWQOsmeans that this

will eventually be possible in a computation that is long enough. To obtain algorithms, e.g. for

coverability, it is sufficient to impose very mild restrictions: In [FS01], the authors show that it is

sufficient that the order is decidable (i.e. one can check, given two configurations, whether one

is smaller than the other), and that for each configuration c, one can computeminpre(Σ, c↑), a
finite basis for the predecessors of the upward closure of c.
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WSTSes have their origins in a collection of papers [Fin87; Fin90; AJ93; ACJT96; FS01]. They

provide a framework that subsumes several widely studied models. This includes Petri

nets [Esp98] (with coverability as the acceptance condition, see the example below) and their

extensions, e.g. Petri nets with transfer or reset transitions [DFS98], as well as lossy channel

systems (LCSes) [AJ93]. The importance of WSTSes also comes from a collection of general

decidability results that have been proven on the level of WSTSes with mild assumptions.

These results include the decidability of termination and boundedness [Fin87; Fin90], cover-

ability [AJ93], as well as several simulation and equivalence problems [FS01]. Going into the

details is beyond the scope of the thesis.

6.5.4 Example
Consider a labeled Petri net instance (N,Minit ,Mfinal)where N = (P, T , in, out, λ) is a net inwhich

no transition is labeled by ε. We consider coverability as the acceptance condition. We may

see it as an ordered LTS (NP , ⩽, T ′ , {Minit},Mfinal↑) that hasmarkings as configurations, the initial

marking as initial configuration, and themarkings that coverMfinal as final configurations. There

is a transition M
a
−→ M′ if the Petri net contains some a-labeled transition t such that M t M′.

The order is the product order ⩽ onN
P . Compatibility holds since greater markings potentially

enable more transitions, and firing a transition in a greater marking leads to a greater marking.

By Lemma 6.5.2, the product order onN
P is a WQO, so this ordered LTS is in fact a WSTS.

6.5.5 Remark
The previously mentioned papers consider WSTS without transition labels. We will discuss the

related work on WSTS languages below. Here, we explain why we have not allowed ε-labeled

transitions for WSTS.

The paper [FS01] studies various versions of upward-compatibility. The version that we have

introduced for ordered LTS is called strong compatibility in [FS01]: A single transition originating

in a small state can be simulated by a single transition from a larger state. In the presence of

ε-labeled transitions, it would be consequential to consider (a variant of ) transitive compatibility.

In this version of compatibility, an a-labeled transition from a small state could be simulated by

a non-empty sequence of transitions from a larger state in which all transitions are labeledwith

ε except for one a-labeled transition.

To avoid this complicated definition, we have simply disallowed ε-labeled transitions. Instead,

we will proceed as follows when we want to apply a result that we have proven for WSTSes

(where we do not allow ε-transitions) to Petri net coverability languages (where we allow ε-

transitions) in Section 14.1: We argue that we can preprocess the nets under consideration so

that all ε-transitions get eliminated, and then apply the result.
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WSTS languages

The literature predominantly considers the unlabeled variant of well-structured transitions sys-

tems. The class of languages of WSTSes, which we will sometimes simply denote by WSTS, has

received attention in [GRV07]. We summarize some results from that paper that show why this

class is worth studying.

The class of WSTS languages satisfies some nice closure properties. In particular, it is closed

under both union and intersection. Indeed, with the help of Lemma 6.5.2, it is easy to show

that the synchronized product of two WSTSes is a WSTS. The aforementioned decidability of

coverability proves that the class is a strict subclass of RE, the semi-decidable languages. For

this property, it is important that we require the set of final configurations to be upward-closed.

If we allow arbitrary finite sets or the set of deadlocked configurations (configurations with no

successor) as the final configurations, we would obtain in both cases the class RE and hence

lose all decidability results.

The paper [GRV07] also formulates the following pumping lemma for WSTS languages. It intu-

itively states that in an infinite sequence of words from a WSTS language, one can recombine

the suffix of some word with a prefix of a later word from the sequence.

6.5.6 Lemma (Geeraerts, Raskin, and Van Begin [GRV07])
LetL(W)be the languageof aWSTS and let (wn .vn)n∈N be an infinite sequenceofwords inL(W).
There are i , j ∈ Nwith i < j andw j .vi ∈ L(W).
With this lemma, it is not difficult to show that the context-free language {anbn ∣ n ∈ N} is not a
WSTS language: For each n ∈ N, definewn = a

n , vn = b
n . If the language were the language of

a WSTSW , the sequence (wn .vn)n∈N would satisfy the assumptions of the lemma. Hence, there

are i ≠ j such that w j .vi = a j .b i ∈ L(W), a contradiction. Since the language {anbn ∣ n ∈ N} is
the language of a Petri net with reachability as the acceptance condition, we can also conclude

that the class of Petri net reachability languages is incomparable to the WSTS languages. Note

that {a j .b i ∣ i , j ∈ N, j > i}, a modified version of this language, does not violate the lemma and

is indeed a Petri net coverability language.

In [GRV07], the authors also show that there is a non-context-free language that occurs as a

Petri net coverability language. Hence, both the Petri net coverability languages and the WSTS

languages are incomparable to the class of context-free languages. Furthermore, the paper

considers extensions of Petri nets, like Petri netswith transfer arcs [DFS98], that canbemodelled

as WSTSes. One can prove that these models can generate languages that are not Petri net

coverability languages, while still being WSTS languages. We obtain that the class of WSTS

languages is a strict superclass of the Petri net coverability languages.
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Downward-compatible WSTSes

To conclude this section, we define downward-compatible ordered LTSes and WSTSes similar

to their upward-compatible variants.

A downward-compatible ordered LTS M = (Γ , ⩽, T , Γinit , Γfinal) is an LTS (Γ , T , Γinit , Γfinal) together
with a quasi-order (Γ , ⩽) on the configurations such that Γfinal is downward closed and T is down-

ward compatible: If c
a
−→ d, and c′ ⩽ c, then c′ a

−→ d ′ for some d ′ with d ′ ⩽ d.

We call such a system a downward-compatible well-structured transition system (DWSTS) if (Γ , ⩽)
is a WQO.

One might expect that each result that holds for WSTSes can be dualized to obtain the dual

result for DWSTSes and vice versa. This would be true if wewould dualize the definition ofWQO

and require the existence of decreasing pairs. With the definition above, however, DWSTSes

form a separate category of systems, the results for which differ from the results for (upward-

compatible) WSTSes.

DWSTSes are less common than WSTSes. A natural source of examples are gainy models, like

gainy counter systemmachines or gainy communicating finite statemachines. For an overview,

see page 31 of [FS01].
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Part III.
Closures of Petri net languages

This part of the thesis provides the theoretical development corresponding to Section 1.2 of the

introduction. We study the closures of Petri net languages with respect to the subword order.

We do so for general Petri nets and for restrictions thereof.

Outline

In Chapter 7, we give some basic definitions. In particular, we formally introduce the upward

and downward closures of languages andmention some of their properties. We also discuss re-

lated work from the literature and we summarize the results contained in this part of the thesis.

Chapter 8 is concerned with the upward closures of Petri nets, while Chapter 9 contains our

work on downward closures.

Finally, Chapter 10 contains our study on the problem of deciding whether a given Petri net

language is upward resp. downward closed. In this context, we also explore the relatedproblem

of deciding regular containment.

Publication

Most of the content of this section has beenpublished in the form the paper [AMMS17] (resp. its

full version [AMMS17a]). The author’s contributions to that publication are discussed in detail

in Chapter 20. In comparison to the publication, this thesis adds somedetails, e.g. a study of the

state complexity of the language closures in terms of the size of the Petri net encoded in unary.
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Contents
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This chapter serves as an introduction to this part of the thesis. In Section 1.2 of the introduc-

tion, we have outlined the importance of the set of all superwords and subwords of a language

for several verification tasks that deal with systems containing unreliable communication. In

the following, we will give some definitions to make this formal. Then, we summarize some

results from the literature, presenting classes of languages for which these sets have already

been shown to be computable. Finally, we outline the contributions contained in this part of

the thesis.

7.1 Basic definitions

We start bymaking formal the notions of superwords and subwords and the sets of such. To be

precise, we show that they can be incorporated into the framework of WQOs, see Section 6.5.

Let (X , ⩽) be a quasi-order. The subsequence ordering (X∗ ,⪯) on the set of finite-length se-

quences over X is defined as follows. A sequence v is smaller than sequence w, v ⪯ w, if it

can be obtained from v by iteratively deleting elements and replacing elements by smaller el-

ements with respect to the underlying order (X , ⩽). If v = a1a2 . . . an and v ⪯ w, this means

that we can write w = c(0)b1c(1)b2 . . . c(n−1)bnc(n) for sequences c(i) ∈ X∗ and elements bi ∈ X

with ai ⩽ bi for all i. Note that here, we use X∗ to denote the finite-length sequences over X

following the notation for words, even if X is not finite.

Higman’s lemma [Hig52] guarantees that the subsequence ordering induced by a WQO is a

WQO again.

7.1.1 Lemma (Higman [Hig52])
If (X , ⩽) is a well-quasi-order, then so is (X∗ ,⪯).
Throughout this thesis, we will be exclusively interested in the case where the underlying or-

der is (Σ, =), a finite alphabet ordered by equality. Indeed, such a set is a WQO, see Part a) of

Example 6.5.1, so Higman’s Lemma guarantees that (Σ∗ ,⪯) is a WQO. In this special case, we call
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7 Closures of Petri net languages

the order the subword order. Since the underlying order is equality, the definition of the subse-

quence order is restricted: It is impossible to replace an element by a distinct smaller element.

Hence, the definition is as expected: Awordw is a subword of another word v,w⪯ v, if it can be

obtained by deleting letters. In that case, we also say that v is a superword, which means that

it can be obtained from w by inserting letters. Note that when we say subword, we are talking

about scattered subwords, i.e. we do not require subwords to occur as infixes. It is also notewor-

thy that the subword ordering inherits the property of being partial order from (Σ, =), meaning

that unlike WQOs in general, it is antisymmetric.

In Section 6.5, we have introduced the notion of the upward and the downward closure of a set.

Here, we apply these operations to a language with respect to the subword ordering. Given a

languageL, its downward closureL↓= {w ∈ Σ∗ ∣ ∃v ∈ L∶w⪯ v} is the set of all words that are a

subword of a word in the language. Similarly, the upward closureL↑= {w ∈ Σ∗ ∣ ∃v ∈ L∶ v ⪯ w}
is the set of all superwords of a word in the language, or equivalently, all words that have a

subword in the language. Unless stated otherwise, all closure operatorswill refer to the closures

with respect to the subword ordering in this part of the thesis.

Regularity and simple regular expressions

With Higman’s Lemma, we also get that the various properties of WQOs stated in Lemma 6.5.3

apply to the subword ordering. A surprising consequence of this is the classical result that both

the upward closures and the downward closures of arbitrary languages are guaranteed to be

regular. We give the proof to show how the properties of well-quasi-orders come into play.

7.1.2 Theorem (Haines [Hai69])
For any language L ⊆ Σ∗, L↓ and L↑ are regular.

Proof:
By Higman’s Lemma (Σ∗ ,⪯) is a WQO, so every language over Σ has a finite set of minimal el-

ements by Item (3) of Lemma 6.5.3. Applying this property to L↑ yields a finite set of words

w(1) , . . . ,w(k) such that L↑= {w(1) , . . . ,w(k)}↑= w(1)
↑ ∪ . . . ∪ w(k)

↑. To show that L↑ is regular,

we observe that the upward closure of a single wordw(i) = a1 . . . an can be represented by the

regular expression Σ∗a1Σ
∗ . . . Σ∗anΣ

∗, and that the class of regular languages is closed under

finite unions.

To see that the downward closures are regular as well, we use that the complement of a

downward-closed language is upward-closed, hence regular, and complements of regular lan-

guages are again regular. ⬛
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A more recent result [ACBJ04] shows that a certain type of restricted regular expressions is suf-

ficient to describe downward and upward closures. A simple regular expression (SRE) is a choice

among products,

sre ∶∶= p ∣ sre ∪ sre ,

where a product is a concatenation of letters, optional letters, and iterations over subsets Γ ⊆ Σ
of the alphabet,

p ∶∶= a ∣ (a ∪ ε) ∣ Γ∗ ∣ p.p .

SREs are sufficient to describe all upward and downward-closed languages.

7.1.3 Theorem (Abdulla, Collomb-Annichini, Bouajjani, and Jonsson [ACBJ04])
For any language L ⊆ Σ∗, there are simple regular expressions describing its downward and

upward closures.

For upward closures, the proof follows directly from the proof of Theorem 7.1.2. For downward

closures, one needs to carefully look at the shape of the language obtained by complementing

an upward-closed language.

Actually, the original definition of SREs in [ACBJ04] is simpler than ours. In [ACBJ04], a product is

defined to be a concatenation p.p of products, an optional letter (a ∪ ε), or the Kleene iteration

of a subalphabet Γ∗, omitting the case of a single non-optional letter. With this version, one

obtains a tight correspondence with the downward-closed languages: The language of an SRE

is downward closed, and any downward-closed language can be described by an SRE. We have

modified the definition to ensure that also upward-closed languages are covered, losing the

property that every language of an SRE is downward closed.

Effectivity

As we have seen, closures of languages are guaranteed to be regular. This in turn means that

they cannot be effectively regular in general. We know that they can be represented by e.g. an

NFA, but it may be impossible to compute such a representation. We have given a sketch of

the corresponding proof in Section 1.2, which we repeat here for the sake of completeness.

By the well-known results of Turing and others, all non-trivial decision problems for languages

of Turing machines are undecidable. This in particular means that the emptiness problem for

Turing machine languages is undecidable. However, the upward and downward closure of a

language are empty if and only if the language itself is empty. Hence, the computability of an

effective representation of the closure of a Turing machine language (e.g. an NFA or a regular

expression) would allow us to decide the emptiness problem, a contradiction.
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7 Closures of Petri net languages

7.2 Related work

The fact that closures of languages are regular, but their representations cannot always be com-

puted, has motivated research to study for which classes of languages the closures are effec-

tively regular. For some classes that have this property, studies have determined the optimal

size of NFAs representing the closures. This size is important: If we use an NFA representing a

closure as the input to a decision problem, then the running time of solving that problem will

scale with the size of the automaton.

We present some simple examples before citing more involved results from the literature.

For a regular languageL = L(A), represented by an NFA A, it is easy to compute NFAs A↓ and A↑

with L(A↓) = L↓ and L(A↑) = L↑, respectively. Note that the arrow in A↓ is part of the notation

and does not denote a closure, similar for A↑. To construct A↓, we add for each transition q
a
−→ p

of A that is labeled by a symbol a ∈ Σ an ε-labeled version of this transition, q
ε
−→ p. By using

these transitions, it is easy to show that any subword of a word in the language of A has an

accepting run in A↓. For the constructionof A↑, wemimic theproof of Theorem7.1.2 by allowing

the insertion of arbitrary words. To be more precise, for each state q and each letter a ∈ Σ, we

add a loop q
a
−→ q to automaton A.

Alternatively, one could construct a representation of L ↑ by complementing L, computing

the downward closure, and complementing again. However, this approach does not work for

classes of languages for which the complement cannot be effectively constructed. In general,

the computability of the upward closure and the computability of the downward closure are

distinct problems that have to be studied separately.

The construction that we have used for NFAs translates into similar constructions for Petri nets

and context-free grammars. Given a Petri net N, we can construct a Petri net N ↓ by adding

for each transition an ε-labeled version. Similarly, we construct N↑ by adding for each letter a

an a-labeled spontaneous transition that does not produce any tokens, i.e. a transition t with

in(t) = out(t) = 0⃗. We obtain that L(N ↓,Minit ,Mfinal) = L(N,Minit ,Mfinal) ↓ for all markings

Minit ,Mfinal, similar for the upward closure. The constructions for context-free grammars are

similar and realize the downward closure by being able to omit letters and the upward closure

by allowing the insertion of arbitrary words.

While these constructions are simple and sometimes even useful – we will use the Petri net N↓

in several proofs later in this part of the thesis – they donot yield the desired result. For example,

N↓ is a Petri net that represents the downward closure of N, but it is not a regular representation,

i.e. an NFA or a regular expression. It may be hard or even impossible to construct an algorithm

that transform a non-regular representation for some input languageL into a regular represen-

tation, even when knowing that the input language is regular.
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For the languages generated by context-free grammars, the computability of the downward

and upward closure has been studied in [Lee78; Cou91; GHK07; BLS15]. The effective regularity

has been first proven in [Lee78]. The paper [GHK07] shows that for a context-free grammar of

size n, the state complexity of the upward closure is at most 2O(n), i.e. one can compute an NFA

with at most 2O(n) states representing the upward closure. The same upper bound on the state

complexitywasproven [BLS15] for thedownward closure. Additionally, [BLS15] present a family

of finite languages that show that the aforementioned upper bounds are in fact optimal.

For the languages of one-counter automata, a strict subclass of the class of context-free lan-

guages, finite automata representing the downward and upward closure of the language can

be computed in polynomial time [ACHKSZ16].

In [Zet15a], Zetzsche has shown that for any class of languages that is a full trio, i.e. it satisfies

certain closureproperties, the computability of thedownwardclosure is equivalent to thedecid-

ability of a simultaneousunboundedproblem. In his paper, he applies this result to show that the

downward closures of indexed languages, the languages of higher-order pushdown automata

of order 2, are computable. Later, the result has been used to prove the effective computabil-

ity of the downward closures of higher-order pushdown automata and higher-order recursion

schemes of arbitrary order [HKO16; CPSW16; BCCP22].

The case of Petri net languages has been considered in [HMW10]. In addition to the general

case of reachability as the acceptance condition, the paper contains a construction specifically

for coverability languages. In contrast to the general case, this construction does not rely on de-

tails from Lambert’s proof of decidability of Petri net reachability [Lam92], but only on the well-

known Karp-Miller tree [KM69]. However, the size of the Karp-Miller tree is known to be non-

primitive recursive in the worst case, and the paper leaves the question of whether a smaller

construction exists unanswered.

We conclude this section with a negative example: The downward closures of the languages

of lossy channel systems are not computable. A lossy channel system (LCS) consists of several

finite-state components that communicatebywriting to and reading fromFIFO (first in, first out)

channels. To avoid the undecidability of the Turing-complete model of perfect channel systems,

the channels are lossy. This means that in each step of the computation, the contentw of some

channel can be replaced by some v with v ⪯ w. LCSes are captured by the framework ofWSTSes,

which in particular means that reachability is decidable. However, many other problems that

are decidable for otherWSTSes like Petri nets are undecidable, as proven in [May03]. In addition

to repeated reachability, this also includes the unboundedness problem, i.e. the problem of de-

ciding whether there is a constant bounding the length of the content of all channels. It is easy

to design an LCS that at some point stops its computation, selects one channel, and generates

(a subword of) the current content of this channel as a word. Assuming that one could com-

pute an NFA representing the downward closure of the language of this LCS, one could check

whether the channel content of the original LCS is bounded. Hence, the undecidability of the

boundedness problem means that downward closures are not effectively regular for LCSes.
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7 Closures of Petri net languages

7.3 Results

The goal of this part of this thesis is to study the computability and size of representations of the

upward and downward closures of Petri net coverability languages. We recall the result for cov-

erability languages from [HMW10] and provide a lower bound that matches the non-primitive

recursive complexity of the algorithm. We extend the result by studying various restrictions of

theproblem that yield lower complexities, providingmatchingupper and lower bounds in each

case. Furthermore, we study upward closures which have not been considered in [HMW10]. Be-

cause the class of coverability languages is not closed under complement, we cannot simply

use the computability of the downward closures to deduce the computability of the upward

closures. It turns out that the upward closures are computable, and the complexity of doing so

is much lower than in the case of downward closures.

Let us briefly comment on the structure of this part of the thesis and summarize the results

that will be proven in each of the chapters. Chapter 8 considers the upward closures of Petri

net coverability languages. We first consider PN-UC, the problem of computing an NFA rep-

resenting the upward closure. We prove in Theorem 8.1.1 that this problem can be solved in

doubly exponential time, which is optimal. This bad complexity leads us to considering three

restricted versions of the problem: If we restrict the input to be a BPP net, we obtain the prob-

lem BPP-UC which can be solved in singly exponential time which is again optimal, see Theo-

rem 8.2.1. Instead of computing the upward closure, we then check whether the language of a

given SRE is contained in it. This problem, PN-SREUC, is EXPSPACE-complete as proven in Theo-

rem 8.3.1. Combining both restriction leads to the problem BPP-SREUC which is NP-complete,

Theorem 8.4.1. In the corresponding sections of Chapter 8, we provide more motivation for

considering each of these restrictions.

In Chapter 9, we conduct a similar study for the downward closures of Petri net languages. The

computability of thedownward closure in thegeneral case, problemPN-DC, was already settled

in [HMW10]. We briefly recall the procedure that results in an NFA of potentially non-primitive

recursive size and complement it by a matching lower bound, showing that the construction

is optimal, Theorem 9.1.1. We again consider the two restrictions and their combination in the

following sections, which yields the following results: Problem BPP-DC can be solved in expo-

nential time, which is optimal (Theorem 8.2.1); problem PN-SREDC is EXPSPACE-complete (The-

orem 9.3.1), and BPP-SREDC is NP-complete (Theorem 9.4.1). While these complexities match

the corresponding problems for the upward closure, the proofs are vastly different.

In both Chapter 8 and Chapter 9, wewill also consider the computational resp. state complexity

of the various problems for Petri nets encoded in unary. For all problems, we obtain the same

complexity class as in the case of the usual binary encoding. This means that the difficulty in

computing the language closures comes from the concurrent nature of Petri nets, and not from

their capability of encoding exponential transition multiplicities using polynomial space.
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7.3 Results

Petri nets BPP nets

PN-UC / BPP-UC Doubly exponential
(Theorem 8.1.1)

Exponential
(Theorem 8.2.1)

PN-SREUC / BPP-SREUC EXPSPACE-complete
(Theorem 8.3.1)

NP-complete
(Theorem 8.4.1)

PN-DC / BPP-DC Non-primitive recursive
(Theorem 9.1.1,[HMW10])

Exponential
(Theorem 8.2.1)

PN-SREDC / BPP-SREDC EXPSPACE-complete
(Theorem 9.3.1)

NP-complete
(Theorem 9.4.1)

PN-BEINGUC,
PN-BEINGDC

Decidable
(Theorem 10.0.1)

PN-REGCONT Decidable
(Theorem 10.1.1)

Figure 7.3.a: A summary of our results regarding the upward and downward closures of Petri
net coverability languages.

We conclude this part of the thesis by studying whether the upward resp. downward closure of

a Petri net coverability language – representations of which we can compute as demonstrated

in the Chapters 8 and 9 – are equal to the language itself. It turns out that this problem is decid-

able, aswewill show in the formof Theorem10.0.1. The proof of this theoremuses another new

decidability result that is of independent interest. We show that the regular containment prob-

lem PN-REGCONT of checkingwhether a given regular language is contained in the coverability

language of a given Petri net is decidable, Theorem 10.1.1.

The table in Figure 7.3.a summarizes the results that we will present in detail in the rest of this

part of the thesis.
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This chapter of the thesis is dedicated to studying the computation of the upward closures of

Petri net languages. The task is to compute an NFA whose language is the upward closure of

the language of a given Petri net. We first study this problem in the case of Petri net coverabil-

ity languages, showing that the state complexity of the upward closure is doubly exponential,

and that a corresponding NFA can be computed in doubly exponential time. The proof tech-

niques for the upper and lower bound use and extend the well-known results on coverability

by Rackoff [Rac78] and Lipton [Lip76], respectively.

The doubly exponential complexity motivates studying restricted versions of the problem. We

do so in the second section by considering the upward closures of BPP net languages. We show

that in this case, both the state complexity and the time to compute a corresponding NFA are

singly exponential.

Finally, we consider a different kind of restriction. Instead of actually computing the upward

closure, we consider the problem of checking whether a candidate SRE is included in it. We will

give more motivation for studying this problem in Section 8.3. This restriction results in even

better complexity: The problem is EXPSPACE-complete for general Petri nets and NP-complete

for BPP nets. In both cases, the proofs make use of coverability having the same complexity.

8.1 Upward closures for Petri nets

We start by considering the problem of computing the upward closure of a given Petri net cov-

erability language. This problem is formalized as follows.

Computing the upward closure for Petri net languages (PN-UC)

Given: A labeled Petri net instance (N,Minit ,Mfinal).
Compute: An NFA Awith L(A) = L(N,Minit ,Mfinal)↑.
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8 Upward closures

The result that we will show in this section is the following.

8.1.1 Theorem
Upward closures of Petri net coverability languages have doubly exponential state complexity,

and the correspondingautomata canbeconstructed indoubly exponential time. Thesebounds

are tight.

The proof consists of two steps. Firstly, we show the upper bound: Given a Petri net instance,

one can compute in doubly exponential time an NFA representing the upward closure. Obvi-

ously, the time needed for the construction also limits the size of the NFA. Secondly, we present

a family of Petri nets that provides a lower bound. We conclude the section by considering the

case of Petri nets that are encoded in unary.

Upper bound

We prove one direction of Theorem 8.1.1 in the form of the following theorem.

8.1.2 Theorem
Given a labeled Petri net instances (N,Minit ,Mfinal), we can compute in doubly exponential time

an NFA Awith L(A) = L(N,Minit ,Mfinal)↑. The state complexity of L(N,Minit ,Mfinal)↑ is at most

doubly exponential, as witnessed by automaton A.

Our proof strongly relies on an extension of the algorithm presented by Rackoff to show that

Petri net coverability is in EXPSPACE [Rac78]. Let us recapitulate Rackoff’s approach. The

key result is that if there is a covering computation, then there is one of doubly exponential

length. With this property, it is not hard to enumerate and check all candidates of doubly ex-

ponential length using only exponential space. To prove the result, Rackoff considers pseudo-

computations that are valid only on a subset of the places, say on the first i places wrt. some

total order on the places. Assuming that themaximum length of the shortest covering pseudo-

computation that is valid on the first i places is known, one obtains a bound for i+1 places. This

yields a recursive formula which one can evaluate for i equal to the number of places to get a

bound on the length of ordinary computations (instead of pseudo-computations). A closed

form for this formula provides the desired doubly exponential bound. Establishing the recur-

sive formula itself is quite involved: One has to show that any covering computation can be

pruned and partially replaced to obtain one that fits the bound. This requires quantifying over

all possible initial markings.

We want to use and extend Rackoff’s ideas to prove that any minimal word results from a com-

putation of length at most doubly exponential. With this result, it is easy to find all minimal

words and construct the automaton for the upward closure in doubly exponential time. Estab-

lishing the bound requires twomajor modifications in Rackoff’s proofs: Firstly, the definition of
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the bound has to be adjusted such that it guarantees that it is larger than (the length of) all cov-

ering computations producingminimalwords, instead of just one single covering computation.

Secondly, the technique that is applied to long covering computations to establish the bound

has to be handled with care to ensure that the resulting shortened computation generates a

subword of the original one.

Let us assume that (N,Minit ,Mfinal) is the labeled Petri net instance of interest, and that its places

are ordered i.e. P = [1, l]. We fix n = ∣(N,Minit ,Mfinal)∣ to be the size of this instance. A pseudo-

marking of N is a function M∶ P → Z that assigns an integer number of tokens to each place.

Let i ∈ [0, l] be a number. Following Rackoff [Rac78], we define versions of most notions that

we have introduced for markings that work on pseudo-markings, but require the first i places

to be treated properly. We call pseudo-marking M i-non-negative if M(p) ⩾ 0 for p ∈ [1, i]. An

i-non-negative marking M i-enables a transition t if M(p) − in(t, p) ⩾ 0 for p ∈ [1, i]. If we fire

it, we obtain the i-non-negative marking M′ = M + e(t). We write M t i M
′. A sequence of

pseudo-markings and transitions

M0 t1 i M1 . . . tm i Mm

is an i-valid computation if all markings are i-non-negative and all transitions are i-enabled in

the marking from which they are fired. A pseudo-marking M is i-covering if M(p) ⩾ Mfinal(p)
for p ∈ [1, i]. A computation on pseudo-markings is i-covering if it is i-valid and it reaches a

marking that is i-covering.

There are two special cases that are worth mentioning. The case of i = 0 imposes no restric-

tions: Any pseudo-marking is 0-non-negative, any transition is 0-enabled in such a marking

and any sequence of pseudo-markings and transitions that respects the effect of the transi-

tions is i-covering. In the case of i = l, the definitions coincide with the usual definitions for

markings, since we require all places to be treated properly. For instance, an l-non-negative

pseudo-marking is a marking and an l-covering computation is a covering computation.

In the proof, we will need to consider markings other than Minit as the initial marking. Conse-

quentially, the following definitions are parametric in the initial pseudo-marking M. Later, we

maximize over all possible initialmarkings, which on the onehand removes the dependency on

M, and on the other hand ensures that the bound holds for Minit, the initial marking of interest.

We proceed by giving the formal definitions. Let M be some pseudo-marking. We define

Paths(M, i) to be the set of all firing sequences inducing i-covering computations from M,

Paths(M, i) = {σ ∈ T∗ ∣ M σ i M
′ is i-covering} .

Let Words(M, i) = {λ(σ) ∣ σ ∈ Paths(M, i)} be the corresponding set of words, and let

minWords(M, i) be its minimal elements with respect to the subword relation. Since we allow

ε-labeled transitions, each element of minWords(M, i) is potentially generated by an infinite
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prun

ptemp

pstop

ta

tc

tb

Figure 8.1.a: The Petri net Nce.

number of computations. The definition of SPath(M, i) takes care of this by considering for

each such element only the shortest computation(s),

SPath(M, i) = {σ ∈ Paths(M, i) »»»»»»»»»» λ(σ) ∈ minWords(M, i),
∄ σ ′ ∈ Paths(M, i)∶ ∣σ ′∣ < ∣σ∣, λ(σ ′) = λ(σ) } .

Finally, we define m(M, i) = max{∣σ∣ + 1 ∣ σ ∈ SPath(M, i)} to be the maximum number of

markings (which is the number of transitions plus one) associated to any firing sequence from

SPath(M, i). If SPath(M, i) is empty, we set m(M, i) = 0. Note that minWords(M, i) is finite

since the subword relation is a WQO, see Section 6.5. Hence, also SPath(M, i) is finite and m

is well-defined.

By definition, we have that any word that occurs along an i-covering computation from M has

a subword that labels an i-covering computation from M with length at most m(M, i). To get

rid of the parameter M, we maximize over all pseudo-markings and define

f (i) = max{m(M, i) ∣ M∶ P → Z} .
Obviously, we have f (i) ⩾ m(Minit , i). The well-definedness of f is not clear from its definition.

Instead, it will be implied by the bound that we will prove below.

The above definitions incorporate the first major change to Rackoff’s original proof in [Rac78].

Rackoff simply defines m(i ,M) to be the minimum length of an i-covering computation from

M plus one. Before continuing with the theory, we present our definitions on an example.

8.1.3 Example
Consider the Petri net Nce = ({prun , ptemp , pstop}, {ta , tb , tc}, in, out, λ) over {a, b, c}, where the

multiplicities are given by Figure 8.1.a and we have λ(ta) = a, λ(tb) = b, and λ(tc) = c.

Let us use the total order prun < ptemp < pstop on the places. Consider the initial mark-

ing Minit = (1, 0, 0) with one token on prun and no token elsewhere, and the final marking

Mfinal = (0, 0, 1) that requires one token on pstop. We see that SPath(Minit , 1) contains the

firing sequence tb , which is 1-valid, but not 2-valid. When choosing i = 3, we obtain that

Words(Minit , 3) = L(N,Minit ,Mfinal) = a+b ∪ a∗c, minWords(Minit , 3) = {ab, c} and thus

L(N,Minit ,Mfinal)↑= Σ∗aΣ∗bΣ∗ ∪ Σ∗cΣ∗. We have SPath(Minit , 3) = {ta tb , tc} and consequently
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m(Minit , 3) = 3. Indeed, to generate the minimal word ab, a computation consisting of three

markings and two transitions is needed. It is not difficult to see that in fact, f (3) = 3 holds, since

removing the token from prun in the initial marking leads to Mfinal becoming non-coverable,

while adding more tokens only makes covering easier.

In the following, we will first obtain a recursive formula that establishes an upper bound for

f (i + 1) depending on f (i). The proof proceeds by Rackoff’s famous case distinction from the

proof of Lemma3.4 in [Rac78]. The secondcaseof theproof incorporates the changesnecessary

to maintain the subword relationship.

8.1.4 Proposition
f (0) = 1 and f (i + 1) ⩽ (2nf (i))i+1 + f (i) for all i ∈ [1, l− 1].
Proof:
To prove f (0) = 1, we use that ε ∈ minWords(M0 , 0) for any M0 ∈ Z

l, and the empty firing

sequence induces a 0-covering computation just consisting of the initial marking M0 that gen-

erates the word ε.

For the second part, we prove that m(M0 , i) ⩽ (2nf (i))i+1 + f (i) for any marking M0 ∈ Z
l. If

Mfinal is not (i + 1)-coverable from M0, we havem(M0 , i) = 0 by definition and the bound holds.

Hence, we may assume that there is an (i + 1)-covering computation, say M0 σ i+1 M
′. We

show that there is a firing sequence σ ′ such that M0 σ ′ i+1 M
′′ is also an (i + 1)-covering com-

putation, λ(σ ′) is a subword of λ(σ), and σ ′ satisfies the bound ∣σ ′∣ < 2n(f (i))i+1 + f (i). To see

that the desired statement is then indeed proven, note that by pickingM0 σ i+1 M
′ as a com-

putation generating a word from minWords(M0 , i + 1) and applying the argument, we obtain

a computation for the same word (since we assumed the word to be minimal) whose length

satisfies the bound. Hence, also a firing sequence for that word from SPath(M0 , i + 1), i.e. one
with minimum length, satisfies the bound. By the definition of m(M0 , i + 1) as the maximum

over the length of all computations associated to firing sequences from SPath(M0 , i + 1), we

obtain thatm(M0 , i + 1) itself satisfies the bound as required.

In order to prove the bound, we distinguish two cases.

1st Case: Suppose that for each marking M occurring in the computation M0 σ i+1 M
′ and

for each place p ∈ [1, i + 1],M(p) < 2n ⋅ f (i) holds. Our goal is to remove infixes of the computa-

tion, resulting in an (i+1)-covering computation inwhichno twomarkings agreeon their restric-

tion to the first i+1 places. Whenever a repetition occurs, i.e. we havemarkingsM j andM j′ with

j < j′ and M j(p) = M j′(p) for all p ∈ [1, i + 1], we remove the infix σ j+1 i+1 M j+1⋯ σ j′ i+1 M j′ .

Note that this removal changes the markings occurring in the rest of the computation only on

places pwith p > i + 1. Hence, the resulting computation is still a valid (i + 1)-covering compu-

tation. After iterating this process until all repetitions have been eliminated, we have obtained
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a computation M0 σ ′ i+1 M
′′ of length strictly less than (2nf (i))i+1 since each of the relevant

i + 1 places can only attain values from [0, 2n ⋅ f (i) − 1]. The strictness comes from the fact that

a computation consisting of h markings has (h − 1) transitions. Since σ ′ was obtained from σ

by deleting infixes, it is a subword of σ , and λ(σ ′)⪯ λ(σ) holds.
2nd Case: Otherwise, the computation contains amarking that assigns 2n ⋅ f (i) ormore tokens

to one of the first i + 1 places. Let M j be the first such marking. Without loss of generality, we

assume that for place i + 1, M j(i + 1) ⩾ 2n ⋅ f (i) holds. Otherwise, swap the order of the places.

We decompose the computation into

M0 σ1 i+1 M j−1 t i+1 M j σ2 i+1 M
′

where, σ1 , σ2 ∈ T
∗ are a firing sequences.

Note that the computationM0 σ1 i+1 M j−1 satisfies the requirement that wemade in the first

case of the proof. Hence, we can assume that ∣σ1∣ < (2nf (i))i+1 holds. More formally, we could

replace the computation by a repetition-free computation M0 σ1′ i+1 M
′
j−1, where M j−1 and

M′
j−1 coincide on the first i + 1 places. In particular, the computation obtained by now firing

t.σ2 is an (i + 1)-covering computation. Since σ ′1⪯ σ1, we also have λ(σ ′1 .t.σ2)⪯ λ(σ1 .t.σ2).
Let us consider the third part of the computation, M j σ2 i+1 M

′. By the definition of f (i), we

have m(M j , i) ⩽ f (i). Hence, for any word w ∈ Words(M j , i), there is an associated subword

w ′ ∈ minWords(M j , i) with w ⪯ w ′ and an i-covering computation M j σ2′ i M
′′ of minimum

length with λ(σ ′2) = w ′ and ∣σ ′2∣ < m(M j , i) ⩽ f (i). In the following, we consider the word

w = λ(σ2) ∈ Words(M j , i) and consider the firing sequence σ ′2 with the aforementioned prop-

erties. Here, we have used that any (i + 1)-covering computation is also i-covering. We claim

that M0 σ1 i+1 M j−1 t i+1 M j σ2′ i+1 M′′ is a valid (i + 1)-covering computation. Since

M j σ2′ i M
′′ was an i-covering computation, it only remains to argue that the transitions in

the computation are enabled with respect to the place i + 1, and that M′′(i + 1) ⩾ Mfinal(i + 1).
To this end, note that we had M j(i + 1) ⩾ 2n ⋅ f (i). Each transition in σ ′2 can only consume

at most 2n tokens from this place, since this is the largest number that can be encoded in bi-

nary using n ⩾ ∣N∣ bits. Hence, in the worst case, all markings M occurring in the computation

M j σ2′ i+1 M
′′ satisfy

M(i + 1) ⩾ M j(i + 1) − ∣σ ′2∣ ⋅ 2n ⩾ (2n ⋅ f (i)) − ((f (i) − 1) ⋅ 2n) = 2n .

Here, we have used ∣σ ′2∣ < f (i). By the definition of n as the size of the Petri net instance, 2n is

larger than any incoming transitionmultiplicity and larger thanMfinal(i+1). Thus, the transitions

occurring in the computation are enabled, andM′′ is coveringwith respect to thefirst i+1places.
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8.1 Upward closures for Petri nets

In total, we have obtained that M0 σ1 i+1 M j−1 t i+1 M j σ2′ i+1 M
′′ is an (i + 1)-covering

computation with

∣σ1 .t.σ ′2∣ = ∣σ1∣ + 1 + ∣σ ′2∣ ⩽ ((2nf (i))i+1 − 1) + 1 + (f (i) − 1) < (2nf (i))i+1 + f (i) ,
and the desired bound holds. ⬛

Using Proposition 8.1.4, it is easy to prove a non-recursive boundon the length of computations

that generate minimal words.

8.1.5 Proposition
For each computation Minit σ M ⩾ Mfinal, there is σ ′ with Minit σ ′ M′ ⩾ Mfinal, λ(σ ′)⪯ λ(σ)
and ∣σ ′∣ ⩽ 22

cn log n

for some constant c.

The proof uses the same line of argumentation as Theorem3.5 in [Rac78]. We give it for the sake

of completeness.

Proof:
We define the function g inductively by g(0) = 23n and g(i + 1) = (g(i))3n . It is easy to see that

g(i) = 2((3n)(i+1)). Using Proposition 8.1.4 we can conclude f (i) ⩽ g(i) for all i ∈ [0, l], where we

again assume that P = [1, l]. Furthermore,

f (l) ⩽ g(l) ⩽ 2((3n)(l+1)) ⩽ 2((3n)n+1) ⩽ 22
(l+1)⋅log(3n)

which, using l ⩽ n and the laws for logarithms, is of the required shape.

Now assume thatMinit σ M ⩾ Mfinal, i.e. λ(σ) ∈ Words(Minit , l). Thismeans that there is some

σ ′ ∈ SPath(Minit , l) with Minit σ ′ M′ ⩾ Mfinal and λ(σ ′)⪯ λ(σ). By the definition of function f ,∣σ ′∣ ⩽ m(Minit , l) ⩽ f (l) holds. If we combine this with the above estimation, we obtain the

desired result. ⬛

8.1.6 Remark
Lemma 5.3 in [LPS13] essentially states Proposition 8.1.5. For the proof, it is claimed that Rack-

off’s original proof already implies the statement. While it is indeed true that the same (recursive

as well as non-recursive) bounds hold as in Rackoff’s paper, this claim is misleading. This can

be demonstrated using the Petri net instance from Example 8.1.3. When we compute Rack-

off’s bound according to his definitions, we obtain that if there is a computation coveringMfinal

from Minit, then there is one consisting of at most one transition. Indeed, the computation

Minit tc Mfinal is covering.

157



8 Upward closures

However, computationswhose length iswithin Rackoff’s upper bounddonot necessarily gener-

ate all minimal words: We have that ab is a minimal word inL(N,Minit ,Mfinal)↑ and the shortest

covering computation that generates ab is Minit ta (1, 1, 0) tb Mfinal, consisting of 3mark-

ings and 2 transitions.

Recall that in order to prove Theorem 8.1.2, we need to construct an automaton for the upward

closure of doubly exponential size. To this end, we employ the length-k approximation that we

have introduced in Section 6.3. It represents all words that can be generated by computations

of length at most k. By choosing k equal to the bound for f (l), Proposition 8.1.5 guarantees

that the upward closure of the approximation is equal to the upward closure of the language of

the Petri net. Since the length-k approximation is regular and we can construct an automaton

for it, we can construct an automaton for the upward closure of the Petri net language with the

desired size.

Proof of Theorem 8.1.2:
Let (N,Minit ,Mfinal) be the Petri net instance of interest, and let n = ∣(N,Minit ,Mfinal)∣ be its size.

We define k = 22
cn log n

to be the doubly exponential bound from Proposition 8.1.5. We consider

the length-k approximation L⩽k(N,Minit ,Mfinal) of the given Petri net, see Proposition 6.3.2, or

rather, its upward closure L⩽k(N,Minit ,Mfinal)↑.
Since the length-k approximation is an underapproximation, we have

L⩽k(N,Minit ,Mfinal) ⊆ L(N,Minit ,Mfinal) and hence L⩽k(N,Minit ,Mfinal)↑⊆ L(N,Minit ,Mfinal)↑. It

remains to argue that equality holds. SinceL⩽k(N,Minit ,Mfinal)↑ is upward closed, it is sufficient

to show that the minimal words in L(N,Minit ,Mfinal) are contained in L⩽k(N,Minit ,Mfinal). Using

Proposition 8.1.5 for someminimal wordw, we obtain the existence of a covering computation

for that word of length at most k. Thus,w ∈ L⩽k(N,Minit ,Mfinal) as desired.
To finish the proof, we need to consider the automaton for L⩽k(N,Minit ,Mfinal)↑.
Proposition 6.3.2 gives us an automaton A forL⩽k(N,Minit ,Mfinal). Furthermore, we get that the

number of states of A is at most O(kn ⋅ 2n2 ) = O(22c⋅n2 ⋅log n ⋅ 2n2 ), which is doubly exponential

as required. We have argued in Section 7.2 that we can transform an automaton into an au-

tomaton for the upward closure by inserting self-loops q
a
−→ q for every letter of the alphabet

a and every state q. In particular, this construction does not add any new states. Applying this

construction to A yields an automaton A↑ for L⩽k(N,Minit ,Mfinal)↑= L⩽k(N,Minit ,Mfinal)↑ with a

doubly exponential number of states. ⬛

Lower bound

We complete the proof of Theorem 8.1.1 by providing a lower bound that matches the doubly

exponential upper that we have just proven, showing that the above construction is optimal.

To achieve this goal, we present for each n ∈ N a Petri net instance of size polynomial in n
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8.1 Upward closures for Petri nets

such that any NFA describing its upward closure is at least of doubly exponential size. To be

precise, we show that we can generate the language {ak ∣ k ⩾ 22
n} with a Petri net of size

polynomial in n. Note that this language is already upward closed, and its state complexity is

doubly exponential as we have discussed in Example 4.3.1. To ensure that a doubly exponential

number of a-labeled transitions is fired, we rely on Lipton’s construction, Proposition 6.2.3, from

his proof of the EXPSPACE-hardness of coverability [Lip76].

8.1.7 Proposition
For each n ∈ N, there is a labeled Petri net instance (N(n),Minit(n),Mfinal(n)) of size polynomial

in n such that L(N(n),Minit(n),Mfinal(n))↑ has state complexity at least 22
n

.

Proof:
Let n ∈ N. Using Proposition 6.2.3, there is a Petri net instance (Ndec , 0⃗,Mfinaldec) polynomial

in n with a place pindec such that for any marking M with M(p) = 0 for all p ≠ pindec, there is a

covering computation M σ M′ ⩾ Mfinaldec if and only if M(pindec) ⩾ 22
n

. Let us see Ndec as a

labeled Petri net in which all transitions are labeled by ε. We construct N(n) by adding places

and transitions toNdec. A schematic representationof thenetN(n) is given inFigure8.1.b. Firstly,

we add two new places pinit and prun. All existing transitions t from Ndec are modified so that

they check for the existence of a token on prun, i.e. we set in(t, prun) = out(t, prun) = 1. Other

than that, the effect of the transitions remain unchanged. In particular, they do not consume or

produce tokens on pinit. We add a fresh transition ta that is labeled by a, checks for the existence

of a token on pinit and produces a token on the place pindec of Ndec. We add another ε-labeled

transition tstart that moves a token from pinit to prun. The initial marking Minit assigns a single

token to pinit and no tokens elsewhere. The final marking Mfinal coincides with Mfinaldec on the

places of Ndec and requires no token on the new places.

A computation of N(n) from Minit first fires ta an arbitrary number of times, then fires tstart to

enable the transition in Ndec and ends with a computation of Ndec. This final part of the compu-

tation starts from a marking in which the number of tokens on pindec is equal to the number of

times that ta has been fired. By Proposition 6.2.3, any covering computation of N(n) has to fire

ta at least 22
n

times. Firing ta more often is also possible. Since all transitions but ta are labeled

by ε, we obtain that the language of the Petri net instance is

L(N(n),Minit ,Mfinal) = {ak »»»»»» k ⩾ 22
n} .

This language is upward closed and has state complexity 22
n

+ 1 states, see Example 4.3.1. To

conclude the proof, observe that the size of N(n) is polynomial in the size of Ndec, which in turn

is polynomial in n. ⬛

This completes the proof of Theorem 8.1.1.
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Ndecta

tstart

pinit prun

pindec

a

ε

Figure 8.1.b: A schematic representation of the Petri net N(n) used to prove the lower bound.

The unary case

To complete our study of the state complexity of the upward closures of Petri net languages, we

consider the case in which the Petri net is encoded in unary. Let us consider the lower bound

first. The transitions that are occurring in the nets whose properties we have specified in Propo-

sition 6.2.3 use in- and outgoing multiplicities only from the set {0, 1}. This means that the size

of the unary encoding of these nets is the same as the size of their binary encoding. Hence,

the net N(n) in the proof of Proposition 8.1.7 is still polynomial in n. We obtain the same lower

bound as before.

With this result at hand, it is already clear that we cannot obtain a better upper bound. Never-

theless, it is interesting to inspect the proof of the upper bound. Assume that n is the size of the

unary encoding of the given Petri net instance. We could now prove f (i + 1) ⩽ (n ⋅ f (i))i+1 + f (i)
for all i ∈ [1, l− 1], improving the bound f (i + 1) ⩽ (2n ⋅ f (i))i+1 + f (i) from Proposition 8.1.4: If

we consider an instance whose unary-encoded size is n, any transition can consume at most n

tokens and the final marking can require at most n tokens on any place. However, this better

bound for f (i + 1) does not lead to a better bound for f (l). When computing f (l) by evaluating

the recursive formula, applying the exponent (i + 1) repeatedly turns out to be the dominating

part. Altogether, we obtain that Theorem 8.1.1 holds for Petri nets, independently of whether

we measure their size using the unary or binary encoding.
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8.2 Upward closures for BPP nets

8.2 Upward closures for BPP nets

The doubly exponential state complexity of upward closures in the case of Petri net coverability

languages motivates studying a restricted version. In Section 6.4, we have already introduced

BPP nets as a version of Petri nets in which transitions may consume at most one token. This

restricts the expressiveness of themodel compared to general Petri nets, but still leads to an in-

teresting theory, e.g. the possibility to express non-context-free languageswith such nets. With

respect to their practical applicability, note that BPP nets correspond to concurrent systems in

which threads cannot communicate after they have been spawned, asmodeled by the calculus

of basic parallel processes [Chr93]. Regarding the algorithmics of BPP nets, it is well known that

both the coverability and the reachability problem of BPP nets are NP-complete, compared to

EXPSPACE-complete and Ackermann-complete for general Petri nets. Altogether, computing

the language closures for BPP net languages is an interesting problem for which it is reason-

able to hope for a better computational and state complexity than in the case of general Petri

nets. We formalize this problem in the case of computing the upward closure as follows.

Computing the upward closure for BPP net languages (BPP-UC)

Given: A labeled BPP net instance (N,Minit ,Mfinal).
Compute: An NFA Awith L(A) = L(N,Minit ,Mfinal)↑.

We show that this restriction improves the state complexity as well as the time needed to con-

struct the NFA to be singly exponential. The following theorem formalizes this.

8.2.1 Theorem
Upward closures of BPP net coverability languages have exponential state complexity, and the

corresponding automata can be constructed in exponential time. These bounds are tight.

We proceed as we did when proving the result for general Petri nets: Firstly, we show the upper

bound, then the lower bound, and finally, we discuss the case of using a unary encoding.

Upper bound

The goal of this part of the section is to prove the upper bound.

8.2.2 Theorem
Givena labeledBPPnet instances (N,Minit ,Mfinal), we can compute in exponential timeanNFA A

withL(A) = L(N,Minit ,Mfinal)↑. The state complexity ofL(N,Minit ,Mfinal)↑ is atmost exponential,

as witnessed by automaton A.
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Weproceed similar as in Section 8.1: We show that theminimal words in the upward closure are

generated by computations of a bounded length. However, to establish the bound, we cannot

reuse the argumentation from before. Simply using the fact that the given net is a BPP net

does not lead to amodification of the proof of Proposition 8.1.4 that yields an improved bound.

Instead, we have to come up with a new proof approach.

Wewill establish that the bound is a number that depends on the transitions of the net and the

amount of tokens assigned by the final marking. Since we are considering a binary encoding,

the lattermaybeexponential in the size of the instance. Hence, k is exponential in the size of the

given net. Once this result has been proven, we can proceed as in the proof of Theorem 8.1.2:

We obtain the upward closure as the upward closure of the regular length-k underapproxima-

tion of the BPP net.

The bound is formalized in the form of the following proposition.

8.2.3 Proposition
For every covering computation Minit σ M ⩾ Mfinal there is a firing sequence σ ′ such that

Minit σ ′ M ⩾ Mfinal, λ(σ ′)⪯ λ(σ) and ∣σ ′∣ ⩽ k = (∥Mfinal∥1)2 ⋅ (∣T ∣ + 1).
Before giving the proof, we introduce the unfolding of a BPP net, a construction that we will

need in the following. The correctness of the construction will rely on an additional restriction:

We require that each transition in the given BPP net consumes exactly one token. If the BPP net

contains a spontaneous transition that consumes no token, we apply the following preprocess-

ing. We introduce a new place p and let the initial marking put one token on this place. We also

introduce a new ε-labeled transition tgen with in(t, p) = 1, out(t, p) = 2 that allows us to gener-

ate an arbitrary number of tokens on this place. Every spontaneous transition t with in(t) = 0⃗

is modified so that it consumes one token from place p. The final marking does not require any

tokens on p.

The net that results from the processing is a BPP net in which every transition consumes exactly

one token. It is only polynomially larger than the original net. Furthermore, it has the same

language: A computation of the original net can be turned into a computation of the new net

that generates the same word by inserting a suitable number of firings of transition tgen at the

beginning, and vice versa.

Hence, we may assume in the following that the preprocessing has already been applied to

the net N; it contains no spontaneous transitions. We consider its unfolding, the infinite BPP

net obtained by unfolding the transitions so that each layer of transitions produces tokens on

a fresh layer of places. Any computation of N corresponds to a computation in a finite prefix

of the unfolding. Combining the fact that the unfolding moves the tokens to fresh places af-

ter each transition and the defining properties of BPPs, this corresponding computation has a

forest-like structure. By backtracking the tokens from the marking that has to been covered,
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we identify subtrees in the unfolding that induce a computation in the BPP net consisting of

at most (∥Mfinal∥1)2 ⋅ ∣T ∣ transitions. Note that this bound is subtly different from the bound(∥Mfinal∥1)2 ⋅ (∣T ∣ + 1) stated in Proposition 8.2.3. This is to take the new transition into account

which is added by the preprocessing.

Unfoldings of Petri nets are a standard notion in research on Petri nets [EH08] and not a contri-

bution of this thesis. Unfoldings are a true concurrency semantics for Petri nets, meaning they

are the true concurrency analogue of the computation tree, the latter being used for sequential

models of computation. On the one hand, the unfolding represents all possible computations,

just as a computation tree does. On the other hand, it reflects the concurrent nature of Petri

nets by keeping track of the flow of each token individually.

To make this formal, we consider occurrence nets O = (P′ , T ′ , in′ , out′), which are defined like

(unlabeled) BPP nets with the following modifications: (1) O may be infinite. (2) Each place

has at most one incoming transition. (3) Each transition creates at most one token per place.

(4) O seen as directed graph is acyclic.

We call two elements x , y ∈ P′ ∪⋅ T ′ causally related and write x ⊴ y if there is a path from x to

y in O seen as graph. Note that this is a partial order on the nodes of the graph: Reflexivity and

transitivity obviously hold true, while antisymmetry is guaranteed by O being acyclic. We use

x↓⊴= {y ∈ P′ ∪ T ′ ∣ y ⊴ x} to denote the ancestors of x ∈ P′ ∪ T ′. As suggested by the notation,

this is indeed the downward closure of the set {x}wrt. the relation ⊴. The ⊴-minimal places are

denoted byminO. Because the relation ⊴ is antisymmetric, this set is uniquely determined, The

initial marking of O is fixed to put one token in each place ofminO and no tokens elsewhere.

Occurrence nets (together with their initial marking) are 1-safe, i.e. each place can carry at most

one token in any reachable marking. This allows us to identify markings with subsets P′′ ⊆ P′

by assuming that P′′ contains exactly the places that carry a token. Similarly, we may write

P′1 t′ P′2 for subsets P′1 , P
′
2 ⊆ P

′.

To associate an occurrence net O to a BPP net N together with an initial marking Minit, we use

the notion of folding homomorphisms. Such a homomorphism is a function h ∶ P′ ∪ T ′ → P ∪ T .

For a place p of the original net, we think of all places p′ of O with h(p′) = p as copies of p, similar

for the transitions.

A folding homomorphism should satisfy three properties, but in order to state them, we will

need some more notation. We extend h to a function that, given a subset P′′ ⊆ P′ of places

of O, returns the marking h(P′′) ∈ N
P defined by h(P′′)(p) = ∣{p′ ∈ P′1 ∣ h(p′) = p}∣, i.e. we

count all tokens assigned to copies of place p. Furthermore, we may use that transitions in O

consume and produce at most token per place and see in′(t) and out′(t) as subsets of P′ (for

some transition t). This allows us to consider h(in′(t)) and h(out′(t)) as markings.
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The three properties of folding homomorphisms are the following:

(1) Initiation: The initial marking of O maps to the initial marking of N, h(minO) = Minit.

(2) Consecution: in′ and out′ map to in and out: For all t′ ∈ T ′: h(in′(t′)) = in(h(t′)),
h(out′(t′)) = out(h(t′)).

(3) Irredundancy: For all t′1 , t
′
2 ∈ T

′ with in(t′1) = in(t′2) and h(t′1) = h(t′2), we have t′1 = t
′
2.

A pair (O , h) consistingof anoccurrencenetO anda foldinghomomorphism h is called abranch-

ing process of (N,Minit). Branching processes are partially ordered by the prefix relation which,

intuitively, states how far they unwind the BPP. The limit of the unwinding process is the un-

folding Unf(N,Minit), the unique (up to isomorphism) maximum branching process. Note that

Unf(N,Minit) is infinite in general.

We forgo making this definition more formal. Instead, we specify its properties on which we

will rely in the following. There is a correspondence between computations from Minit in N

and computations from the initial marking in Unf(N,Minit): Each computation in Unf(N,Minit)
induces a unique computation of N, and each computation of N induces a set of computations

that only differ by a permutation of the tokens.

Note that even if Unf(N,Minit) is infinite, each finite computation – and in particular each com-

putation inducedby a finite computationofN –only uses places and transitionswhosedistance

fromminO is bounded by the length of the computation times two.

Recall that Proposition 8.2.3 requires us to prove that ever covering computation has a covering

subcomputation consistingof atmost (∥Mfinal∥1)2⋅∣T ∣ transitions. (Note that this is themodified

bound that takes the aforementioned preprocessing step into account.) Using the unfolding,

we can now prove this statement.

Proof of Proposition 8.2.3:
Consider the covering computation Minit σ M ⩾ Mfinal of the BPP net N. Let (O , h) with

O = (P′ , T ′ , in′ , out′) be the unfolding Unf(N,M0). We pickminO τ P′′ as an arbitrary compu-

tationofO corresponding to the computationofN, i.e. h(τ) = σ and h(P′′) = M. UsingM ⩾ Mfinal,

for each place p ∈ P, the set P′′ contains at leastMfinal(p) places p′ that getmapped to p under h.

For each place p, let Xp ⊆ P
′′ be a set of sizeMfinal(p) of places p′ with h(p′) = p. Let X = ⋃p∈P Xp

be their union, and note that h(X) = Mfinal holds by construction.

Sincewe assume that every transition in the original net consumes exactly one token, so do the

transitions in the unfolding. Furthermore, they produce atmost one tokenper place, eachplace

has atmost one incoming transition and the unfolding is acyclic. Thus, each computation in the

unfolding induces a forest inO seen as graph. For each place inminO, the forest contains a tree

which is rooted in that place. The leaves of the forest correspond to places that carry a token in
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the marking reached by the computation. The inner nodes consist of places that carry a token

at some point during the computation, and the transitions that are used in the computation.

Let us consider this forest for the computation defined by the firing sequence τ. Note that X is

a set of leaves by definition. We select the subforest induced by the set X↓⊴, i.e. the places in X ,

their ancestors in the graph and the edges connecting them. We project the firing sequence τ

to the transitions occurring in this subforest, obtaining the sequence τ1. Since X↓⊴ is downward

closedwrt. the relation⊴, τ1 is a valid firing sequence fromminO in the sense that all transitions

are enabledwhenever they are fired. Furthermore, τ1 still generates all tokens in X andwe have

thatminO τ1 P′1 ⊇ X is a covering computation in the sense that h(P′1) ⩾ Mfinal.

In the following, our goal is to delete transitions from τ1 so that the resulting sequence τ2
matches the bound ∣τ2∣ ⩽ (∥Mfinal∥1)2 ⋅ ∣T ∣. This will allow us to show that h(τ2), its image under

the folding homomorphism, is the sequence whose existence is required by the proposition.

We first need to introduce a notion for the ⊴-maximal transitions in τ that lead to at least two

different places in X . Formally, a transition t′ is a join transition if there are x , y ∈ X with

t′ ∈ x↓⊴ ∩y↓⊴ and there is no t′′ ∈ x↓⊴ ∩y↓⊴ with t′ ⊴ t′′.

Assume that t′ ≠ t′′ are two adjacent join transitions that occur on the same branch of the

subforest with t′ ⊴ t′′. This means that t′t(1) . . . t(m)t′′ is an infix of the sequence of transitions

along that branch, where none of the t(i) is a join transition. Note that for two places in X , there

is either no join transition or a unique one leading to these two places, since join transitions are

required to be ⊴-maximal. Consequently, t′ and t′′ have to lead to different places of X .

Since t′ , t′′ occur in τ1, all t
(i) also have to occur in τ1. If there are indices j < k such that

h(t j) = h(tk), we may delete t( j+1) . . . t(k) from τ1. To ensure validity of the computation, we

need to modify t(k+1) . . . t(m)t′′: Transition t(k+1) should consume the token produced by t( j) (in-
stead of the token produced by the deleted transition t(k)) and so on. This is possible since

h(t j) = h(tk) implies h(in′(t j)) = h(in′(tk)) by Consecution, Property 2 of folding homomor-

phisms. Furthermore, we exhaustively need to delete from τ all transitions that rely on tokens

that are not produced anymore, starting with transitions relying on tokens produced by the

transitions t( j+1) . . . t(k). To see that the resulting computation still covers, note that we have

not deleted any join transitions. Hence, the leaves of the subforest that are removed by delet-

ing the transitions are not contained in X .

We repeat this deletion process until we obtain that between each two join transitions of

the same branch of the subforest, there are no repetitions, i.e. transitions whose image un-

der h is the same. Let the resulting transition sequence be τ2, inducing the computation

minO τ2 P′2 ⊇ X . Firstly, note that for any x ∈ X , there are at most ∥Mfinal∥1 join transitions

on the branch from the corresponding minimal place to x : In the worst case, for each place in

X \ {x}, there is a join transition on the branch, and ∣X ∣ = ∥Mfinal∥1. Between any two adjacent

join transitions along such a path, there are at most ∣T ∣ transitions in τ2 Hence, the number of
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8 Upward closures

transitions in such a path is bounded by ∥Mfinal∥1 ⋅ ∣T ∣. Since we have ∥Mfinal∥1 places in X , the

total number of transitions in τ2 is bounded by (∥Mfinal∥1)2 ⋅ ∣T ∣.
To conclude the proof, consider the firing sequence σ ′ = h(τ2) obtained by applying the folding

homomorphism to τ2 and the computationMinit σ ′ M2 of N that is induced by it. We indeed

haveM2 ⩾ Mfinal sinceM2 = h(P2) ⩾ h(X) = Mfinal and ∣σ ′∣ = ∣h(τ2)∣ = ∣τ2∣ ⩽ (∥Mfinal∥1)2⋅∣T ∣. ⬛

With Proposition 8.2.3 at hand, we can prove Theorem 8.2.2. We consider the length-k approxi-

mation for k = (∥Mfinal∥1)2 ⋅ ∣T ∣, and obtain an automaton forL⩽k(N,Minit ,Mfinal) of size at most

O(kn ⋅ 2n2 ), see Proposition 6.3.2. We compute

kn ⋅2n
2

= ((∥Mfinal∥1)2 ⋅ (∣T ∣ + 1))n ⋅2n2 ⩽ (2n ⋅ ∣T ∣)n ⋅2n2 = 2n
2

⋅ ∣T ∣ + 1n ⋅2n
2

= 22n
2

⋅(∣T ∣ + 1)n ,
which is exponential as required. The upward closure of the language of this automaton can be

constructed without adding new states, see Section 7.2. To show correctness, i.e. this upward

closure coincidingwith theupward closureof theoriginal BPPnet language,weproceedexactly

as in the proof of Theorem 8.1.2.

Lower Bound

To prove that the above construction is optimal, we present a family of BPP languages for which

the state complexity of the upward closure is exponential in the size of the nets. The proof uses

the fact that we can encode the exponential number 2n occurring in the final marking using

only log 2n = n bits.

8.2.4 Proposition
For each n ∈ N, there is a labeled BPP net instance (N,Minit ,Mfinal(n)) of size polynomial in n

such that L(N,Minit ,Mfinal(n))↑ has state complexity at least 2n .

Proof:
The net N required to prove the proposition is depicted in Figure 8.2.a.i). It consists of a sin-

gle place p, and a single a-labeled transition t that produces a token on this place. The initial

marking Minit is the zero vector, the final marking Mfinal requires 2
n tokens on p.

Obviously, to cover the final marking, transition t needs to be fired at least 2n times. Hence,

L(N,Minit ,Mfinal(n)) = {ak ∣ k ⩾ 2n}. This language is already upward closed and has state-

complexity 2n+1, see Example 4.3.1. Both N andMinit are of constant size. Asmentioned above,∣Mfinal∣ is of size polynomial in n since the size of a marking is defined based on the length of

the binary encoding of the numbers. ⬛

With the lower bound at hand, the proof of Theorem 8.2.1 is completed.
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i) In the binary case.

⋯

ta1 ta2 tan

pa1

a1

pa2

a2

pan

an

ii) In the unary case.

Figure 8.2.a: BPP nets to prove the exponential lower bound for the upward closure.

The unary case

We complete our study by considering the case in which the BPP net is encoded in unary. We

start by inspecting the upper bound, noting that the bound k = (∥Mfinal∥1)2 ⋅ ∣T ∣ provided by

Proposition8.2.3 is polynomial in the sizeof thenet ifwe consider theunary encoding. However,

we then use this bound to construct an automatonwith state space [1, k]× (P → [0, (k +1) ⋅ n]).
This is a modification of Proposition 6.3.2 that takes into account that with the net of size n

being encoded in unary, each transition can add at most n tokens. This set of states is of size

(k + 1) ⋅ (((k + 1) ⋅ n) + 1)∣P∣ ,
i.e. it is exponential in the number of places, even if k is a number that is polynomial in the size

of the net. In summary, we still obtain an exponential upper bound.

Let us see whether the lower bound matches. Obviously, the net that we have constructed in

Proposition 8.2.4 toprove the lower bound in thebinary casedoes not do the job. Thenet uses a

finalmarking that requires 2n tokens on aplace, so its unary encoding is of exponential size. Can

anetwith the language {ak ∣ k ⩾ 2n}whoseunary encoding is polynomial in n be constructed in

a different way? To the best of the author’s knowledge, there is no such construction. However,

there is a different language that will provide a lower bound that matches the upper bound,

i.e. it is exponential in the number of places.

Let n ∈ N, and consider an alphabet Σ = {a1 , . . . , an} of size n. We define the language Lall as

the language of all words over Σ that contain each letter at least once,

Lall = {w ∈ Σ∗ ∣ ∀i ∈ [1, n]∃ j ∈ [1, ∣w∣]∶w j = ai} = Σ∗a1Σ∗ ∩ . . . ∩ Σ∗anΣ
∗ .

This language and its complementLall, the set of words in which at least one letter does not oc-

cur, are well-known examples in the context of the state complexity of regular languages. Both

languages can be easily represented by a DFA of size 2n : The DFA has one state for each subset

of Σ and tracks the set of letters that have occurred. One can find a small NFAof size n+1 that ac-

ceptsLall by initially guessing a letter thatwill not occur and verifying that guess later. The same

is not true for Lall: Any NFA for this language has at least 2n states, just as the DFA. Hence, the

167



8 Upward closures

pair of languages shows that complementing a regular language can increase its state complex-

ity exponentially. This behavior has been first observed by Sakoda and Sipser [SS78], although

on a pair of languages that is more complex to define. Later, Birget [Bir93] provided a simpler

proof for this fact (but still based on the languages from [SS78]). This proof uses an extension

of the fooling set technique for DFAs to NFAs. For the sake of completeness, we give a proof for

the fact that Lall cannot be represented by a small NFA that uses the argumentation by Birget.

8.2.5 Lemma
For each positive n ∈ N, Lall has state complexity 2n .

Proof:
Asmentioned before, it is easy to construct a DFA –which can be seen as NFA –with the desired

number of states. It remains to show that there is no NFA with a smaller number of states.

Let us assume that A is an NFA with L(A) = Lall. For each subset Γ ⊆ Σ of the alphabet, we let

wΓ be an arbitrary word that contains exactly the letters from Γ . For example, we may assume

Γ = {ai1 , . . . , ai∣Γ∣}with 1 ⩽ i1 < i2 < . . . < i∣Γ∣ ⩽ n and definewΓ = ai1 . . . ai∣Γ∣ .
Note that for each Γ ⊆ Σ, the wordwΓ .wΣ\Γ is an element of Lall because it contains each letter.

Hence, we can define the state qΓ to be the state that occurs afterwΓ has been processed in an

accepting run onwΓ .wΣ\Γ , i.e.
qinit

wΓ
−−→ qΓ

wΣ\Γ
−−−−→ qfinal ∈ Qfinal .

If multiple accepting runs exist, we pick an arbitrary one.

We claim that if Γ ≠ Γ ′ are two distinct subsets of Σ, then qΓ ≠ q′Γ . Towards a contradiction,

assume equality, i.e. we have runs

qinit
wΓ
−−→ qΓ

wΣ\Γ
−−−−→ qfinal ∈ Qfinal ,

qinit
wΓ′
−−−→ qΓ

wΣ\Γ′
−−−−→ q′final ∈ Qfinal .

Since Γ ≠ Γ ′, there is some letter that occurs only in one of the subalphabets. Wlog., we as-

sume that ai ∈ Γ , but ai /∈ Γ ′. Consider the word wΓ ′ .wΣ\Γ . This word is not contained in Lall

because neither wΓ ′ nor wΣ\Γ contain letter ai . However, we can construct an accepting run

qinit
wΓ′
−−−→ qΓ

wΣ\Γ
−−−−→ qfinal ∈ Qfinal on that word, proving that it is contained in L(A). We obtain a

contradiction to L(A) = Lall.

Hence, automaton A needs to contain a distinct state qΓ for each subalphabet Γ ⊆ Σ. The num-

ber of subalphabets is 2∣Σ∣ = 2n , whichmeans Aneeds to have at least 2n states. This completes

the proof. ⬛
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With the lemma at hand, it remains to see that Lall occurs as the language of a BPP net whose

unary encoding is of size polynomial in n. The required net is rather simple: It counts how often

each letter has been generated. We depict it in Figure 8.2.a.ii). For each i ∈ [1, n], there is a

place pa i and an ai-labeled transition ta i that consumes no tokens and produces a token on pa i .

The initial marking puts no tokens anywhere, while the final marking is 1⃗, i.e. it is covered once

at least one token has been produced on every place. Additionally, Lall is an upward-closed

language.

Altogether, we obtain matching lower and upper bounds: The state complexity of the upward

closure of a BPP net is a number that is exponential in the number of places of the net.
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8 Upward closures

8.3 SRE inclusion in the upward closures for Petri nets

In the first two sections, we have established that the upward closure can be computed in dou-

bly exponential time for Petri nets and in exponential time for BPP nets. These intractable com-

plexitiesmotivate studying further restrictions of the problem. We have argued before that the

upward and downward closure of any language can be represented by simple regular expres-

sions (SREs). This result yields a new approach to the closures of Petri net languages: Instead of

computing the closure, we check for a given SRE whether the closure is equal to the language

of that SRE. Let us focus on the case of the upward closure for now. Formally, we will check

L(N,Minit ,Mfinal)↑= L(sre), where (N,Minit ,Mfinal) is the given Petri net and sre is an SRE. This SRE

may come from an oracle that iteratively creates candidate SREs based onmembership queries

and on whether the checks for the previously generated candidates have been successful.

Checking the equality decomposes into checking both inclusion. Checking one of the inclu-

sions is conceptually easy, namely checking L(N,Minit ,Mfinal)↑ ⊆ L(sre). We proceed as follows:

Weuse that the inclusionholds if andonly if the intersectionL(N,Minit ,Mfinal)↑ ∩L(sre) is empty.

To represent L(sre), we construct an NFA for the language of the SRE, determinize it and con-

struct a DFA for the complement which we see as a Petri net in the following. To represent

L(N,Minit ,Mfinal)↑, we may use the Petri net N↑ whose language is L(N,Minit ,Mfinal)↑. Finally,

we construct the synchronized product of the two nets and check language emptiness, which

amounts to a coverability query.

The complexity of this procedure depends on the size of the representation of L(sre). In prin-

ciple, an NFA for the complement of a regular language could be exponentially larger than an

NFA for the language itself. We leave it as future work to see whether this worst-case behavior

can actually occur in the case of languages defined by SREs. Instead, we focus on checking the

other inclusion.

The reason for focusingon the inclusionL(sre) ⊆ L(N,Minit ,Mfinal)↑ is the following: Weenvision

a refinement procedure in which an oracle iteratively outputs candidate SREs sre1 , sre2 , . . .For

each candidate, we check whether the inclusion L(srei) ⊆ L(N,Minit ,Mfinal)↑ holds. The answer

to each check is sent to the oracle, which uses it for refinement. Once we are sufficiently sure

that some srei represents the actual upward closure of the language (e.g. because the inclusion

L(srei) ⊆ L(N,Minit ,Mfinal)↑ holds, but the inclusion for SREs with a larger language fails), we

check L(N,Minit ,Mfinal)↑⊆ L(srei). This procedure uses a high number of inclusion checks with

the SRE as the left-hand side, compared to a low number of inclusion checks with the SRE as the

right-hand side.
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Formally, our goal in this section is to study the complexity of the following decision problem.

SRE inclusion in the upward closure (PN-SREUC)

Given: A labeled Petri net instance (N,Minit ,Mfinal), an SRE sre.

Question: L(sre) ⊆ L(N,Minit ,Mfinal)↑?
Wewill show that this problem is EXPSPACE-complete. This is an improvement over the doubly

exponential time needed to construct a representation of the upward closure, as proven in the

first section of this chapter. Furthermore, it matches the complexity of the coverability prob-

lem. Indeed, the lower bound is a straightforward reduction from coverability, while the upper

bound reduces PN-SREUC to a polynomial number of membership queries.

8.3.1 Theorem
PN-SREUC is EXPSPACE-complete.

We proceed by proving the upper bound, i.e. EXPSPACE membership, and the lower bound,

EXPSPACE-hardness, separately.

Upper bound

We show one direction of Theorem 8.3.1 by proving EXPSPACEmembership.

8.3.2 Proposition
The problem PN-SREUC can be solved in exponential space.

To prove the proposition, we use the following observation. A language L is contained in an

upward-closed languageL′ if every minimal word (wrt. the subword relation) ofL is a member

of L′, i.e. minL ⊆ L′. Indeed, L ⊆ minL↑⊆ L′↑= L′ holds in this case. We even know that the

set of minimal words of a language is finite, by Property 3 from Lemma 6.5.3 and the fact that

the subword relation is a WQO. The problemwith using this observation to decide inclusions is

that it can be difficult or even impossible to compute the set of minimal words.

Here, we use that for an SRE, it is easy to construct the set of minimal words in polynomial time.

To be precise, we can construct for each product p in the SRE of interest a word min p that is

the unique minimal word in L(p), i.e. (min p)↑= L(p)↑, in linear time. It then only remains to

check that for each product p of the given SRE, min p is contained in the upward closure of

L(N,Minit ,Mfinal). To conduct this check, we do not need to construct an NFA representation of

the upward closure. It is sufficient to use the net N↑whose size is polynomial in the size of N.

We show how to extract from a product its minimal word, then give the formal proof.
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8 Upward closures

8.3.3 Definition
Let p be the product of an SRE. We definemin p by induction as follows:

min a = a min p.p′ = min p.min p′

min a ∪ ε = ε min Γ∗ = ε .

Using the definitions, it is easy to see that for each product p, we have L(p) ↑= min p ↑. To

obtainminL(sre), the minimal words of the language of an SRE, we can construct the minimal

words for each of the products. Some of them might be comparable, so we obtain minL(sre)
by removing the non-minimal ones. The proof of Proposition 8.3.2 follows immediately.

Proof of Proposition 8.3.2:
Let (N,Minit ,Mfinal) be the given net and let sre = p1∪ . . .∪pk be the given SRE, consisting of the

products pi . As argued above, we have that L(sre) ⊆ L(N,Minit ,Mfinal)↑ if and only if for each i,

min pi ∈ L(N,Minit ,Mfinal)↑. We consider thenetN↑withL(N↑,Minit ,Mfinal) = L(N,Minit ,Mfinal)↑,
and checkmin pi ∈ L(N↑,Minit ,Mfinal). Note that both thenumber of products and the lengthof

eachmin pi is polynomial in the size of the SRE. Hence, we have reduced the problem PN-SREUC

to a polynomial amount of membership queries for instances of polynomial size. The desired

result follows as PNCOV-WORD is in EXPSPACE, see Section 6.3. ⬛

Lower bound

The lower bound for PN-SREUC follows directly from Theorem 6.2.2, the EXPSPACE-hardness of

coverability.

8.3.4 Lemma
PN-SREUC is EXPSPACE-hard.

Proof:
We reduce from the coverability problem for unlabeled Petri nets, which is EXPSPACE-hard by

Theorem 6.2.2. Let (N,Minit ,Mfinal) be a Petri net instance. We see N as a labeled Petri net in

which all transitions are labeled by ε. Consequently, we have L(N,Minit ,Mfinal) = {ε} if Mfinal

is coverable from Minit in N, else L(N,Minit ,Mfinal) = ∅. Hence, L(N,Minit ,Mfinal)↑ is either Σ∗

or ∅. We obtain that the instance ∅∗ ⊆ L(N,Minit ,Mfinal) ↑ of PN-SREUC is equivalent to the

coverability problem, since the SRE ∅∗ expresses the language {ε}. ⬛

This completes the proof of Theorem 8.3.1. Note that the same result holds in the case of the

unary encoding, since coverability remains EXPSPACE-complete for nets encoded in unary: Lip-

ton’s construction only uses transition multiplicities from the set {0, 1}.
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8.4 SRE inclusion in the upward closures for BPP nets

We complete the chapter by combining the two restrictions: We consider the problem of de-

ciding whether a given SRE defines a language that is included in the upward closure of the

language of a given BPP net.

SRE inclusion in the upward closure for BPP nets (BPP-SREUC)

Given: A labeled BPP net instance (N,Minit ,Mfinal), an SRE sre.

Question: L(sre) ⊆ L(N,Minit ,Mfinal)↑?
We show that this decision problem is complete for the class NP. As in the case of general Petri

nets, this means that the complexity matches the complexity of the coverability problem.

8.4.1 Theorem
BPP-SREUC is NP-complete.

The proofs of membership and hardness are extremely similar to the proofs in the case of gen-

eral Petri nets. To show the upper bound, we proceed as in Proposition 8.3.2. We compute in

polynomial time the minimal word of each product and check membership in the upward clo-

sure of the language of the given BPP net. The latter is represented by the net N↑ which is a

BPP net if N is. Since the word problem for BPP nets can be solved in NP, Proposition 6.4.8, this

completes the proof.

The lower bound can be proven analogous to Lemma 8.3.4. The coverability problem for BPP

nets is NP-hard, Lemma 6.4.4, and ∅∗ ⊆ L(N,Minit ,Mfinal)↑ holds if and only if (N,Minit ,Mfinal) is
a yes-instance of coverability.

The result holds even if we consider the net to be encoded in unary. The NP-hardness of cover-

ability constructs a net with transition multiplicities in {0, 1}.
Altogether, this finishes our study of the upward closure of Petri net coverability languages. We

have proven all results regarding upward closures that we mentioned in Section 7.3.
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In this chapter, we study the downward closures of Petri net coverability languages. Our goal

is to obtain a finite automaton representing it with a minimal number of states. The struc-

ture of the chapter is similar to the structure of Chapter 8. Firstly, we consider the problem

of computing a representation of the downward closure of a Petri net. This problem has al-

ready been solved in [HMW10] with a procedure that is based on the Karp-Miller tree. Hence,

the resulting automaton can be of non-primitive recursive size. Here, we complement the re-

sult from [HMW10] by a matching lower bound, using the well-known fact that a Petri net can

weakly compute a variant of the Ackermann function.

This high complexitymotivates studying the same restrictions thatwehave considered in Chap-

ter 8: We consider the problems of computing the downward closure of BPP net languages, of

checking whether a given SRE is included in the downward closure of a given Petri net, and

finally whether an SRE is included in the downward closure of a BPP net. The results that we

obtain are similar to the results in the previous chapter. The upward closure of a BPP net can be

computed in exponential time, whichwewill showbyproving some sort of pumping lemma for

BPP nets. The SRE-inclusion problems are EXPSPACE and NP-complete in the case of Petri nets

and BPP nets, respectively. While the complexitiesmatch those for the problems PN-SREUC and

BPP-SREUC, the proofs are much more involved. Also note that in contrast to the results from

the previous chapter, the complexities of the three restricted versions are drastic improvements

over the non-primitive complexity of the problem in the general case.

9.1 Downward closures for Petri nets

We first consider the problem of computing the downward closure of a given Petri net cover-

ability language, formalized as follows.

Computing the downward closure (PN-DC)

Given: A labeled Petri net instance (N,Minit ,Mfinal).
Compute: An NFA Awith L(A) = L(N,Minit ,Mfinal)↓.

175



9 Downward closures

Our goal is to prove the following result.

9.1.1 Theorem
Downward closures of Petri net coverability languages have non-primitive-recursive state com-

plexity, and the corresponding automata can be constructed in non-primitive recursive time.

These bounds are tight.

The computability has already been shown by Habermehl, Meyer, and Wimmel [HMW10]. We

will start by recalling the proof. Later, we give a matching lower bound.

Computability / Upper bound

It has been shown in [HMW10] that the downward closure of Petri net languages is computable.

In addition to the main result, which shows the computability for Petri net reachability lan-

guages, the paper also provides an algorithm specifically for coverability languages. The ad-

vantage of the latter is that the construction does not rely on techniques from the proof of the

decidability of Petri net reachability [Lam92], but only on the coverability graph [KM69].

9.1.2 Theorem (Habermehl, Meyer, andWimmel [HMW10])
The downward closures of Petri net languages are computable.

Webriefly recall how, given aPetri net instance (N,Minit ,Mfinal), anNFA A representing thedown-

ward closure, i.e.L(A) = L(N,Minit ,Mfinal)↓, can be constructed. For the proof of correctness, we

refer to [HMW10]. The construction relies on the Karp-Miller tree [KM69] associated to the Petri

net, a standard construction to represent all markings that can be covered from the initial one.

To explain the construction, we will need the notion of generalized markings that we have pre-

sented in Section 6.3. We briefly recall the definition. We define Nω = N ∪ {ω}, the natural

numbers plus a new top element. The order and addition are extended fromN toNω by defin-

ing n < ω and ω + n = ω − n = ω for all numbers n ∈ N. (In the following, we will never need to

add ω to or subtract ω from itself.) A generalized marking is a function M∶ P → Nω that assigns

to each place a finite number of tokens, or the special value ω. Intuitively, M(p) = ω means

that p carries unboundedly many tokens. A transition t is enabled in generalized marking M if

M ⩾ in(t) (which means that places p with M(p) = ω are essentially ignored), and firing it then

yields M t M + e(t).
With these preliminaries at hand, we can specify the construction of the Karp-Miller tree. It is a

finite tree in which the nodes are labeled by generalized markings, and in which the edges are

labeled by transitions. During the construction, we store for each node of the graph whether it

has been processed or not. The construction is set up so that all unprocessed nodes are leaves

of the tree.
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Initially, we consider a tree that solely consists of the root node that is labeled by the initial

marking Minit and not yet processed. While the tree contains an unprocessed leaf, we proceed

as follows: Pick an unprocessed leaf v, say labeled by generalized marking M, and mark it as

processed. For each transition t that is enabled in M, compute M′ with M t M′. For each

place p, check whether on the unique path from the root of the tree to v, there is a marking M̂

with M̂ ⩽ M′ and M̂(p) < M′(p). If so, we modify M′ by setting M′(p) = ω. After iterating over all

places, we insert a new leaf v ′ into the tree, labeled byM′, and add a t-labeled edge from v to v ′.

If the tree already contains a node labeled by M′, mark v ′ as processed. Else, it is unprocessed.

Intuitively, the construction explores the behavior of the Petri net while tracking accelerations

or pumps, i.e. infixes of the computation that lead from a marking M̂ to a marking M′ that is

strictly greater than M̂. If such a pump has been discovered, it could be inserted as often as

desired to obtain arbitrarily high token counts on the places p with M̂(p) < M′(p).
The termination of the algorithm relies on WQO arguments: (Nω , ⩽) is a WQO, similar to (N, ⩽),
see Part b) of Example 6.5.1. Hence, also theproduct order onNP

ω is aWQO. TheWQOproperties

guarantee that each path in the tree is finite: After finitely many steps, for each place we have

either discovered a pump that sets this place to ω in the successor, or we have explored all the

finitely many values that M(p) can obtain in reachable markings. Now observe that the out-

degree of each node of the tree is bounded by the number of transitions. Both facts combined

yield the finiteness of the Karp-Miller tree.

One should mention that the Karp-Miller tree is not unique, as its construction depends on the

order in which unprocessed leaves and transitions are considered. However, the interesting

properties of the tree are independent of this order. In the literature, the Karp-Miller tree is

often transformed into the so-called coverability graph bymerging all nodes that are labeled by

the same generalized marking. For our purpose, we will keep the tree structure.

The Karp-Miller tree is commonly used to represent the coverability set of a net N together with

an initial marking Minit. A marking Mfinal is coverable in N from Minit (i.e. it is contained in the

coverability set) if and only if the Karp-Miller tree contains some node labeled by a generalized

marking M with Mfinal ⩽ M. Since the tree is finite, this yields a simple procedure to decide

coverability. Unlike Rackoff’s procedure [Rac78], its worst-case complexity is not optimal, as we

will discuss below.

Habermehl, Meyer, and Wimmel [HMW10] provide a procedure that constructs the down-

ward closure of a Petri net language based on the Karp-Miller tree. Consider the NFA

A = (Q , δ, vinit , QF ), where Q is the set of nodes of the Karp-Miller tree, vinit is the root node,

and QF is the set of nodes labeled by generalized markings M′ with Mfinal ⩽ M
′. The transitions

decompose into the transitions induced by the Karp-Miller tree and back edges. Each edge

v → v ′ in the Karp-Miller tree, say labeled by transition t, induces the transition v
λ(t)
−−−→ v ′ in A. If

node v is labeled by the generalized marking M, and v̂ is a node on the unique path from the

root to v, labeled by a marking M̂ with M̂ ⩽ M, we add the transition v
ε
−→ v̂.
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9 Downward closures

NFA A has the property that its downward closure coincides with the downward closure of the

coverability language.

9.1.3 Lemma (Habermehl, Meyer, andWimmel [HMW10])
L(A)↓= L(N,Minit ,Mfinal)↓.
A representation forL(A)↓ is easy to computeby inserting an ε-labeled variant of each transition

in A as described in Section 7.2. Hence, this proves Theorem 9.1.2.

The result is not accompanied by a statement on the complexity of the algorithm and the state

complexity of the downward closure. An upper bound for the latter is the size of the Karp-Miller,

which is well-known to be non-primitive recursive in the worst case. This fact can be shown

similar to the proof of our lower bound below.

Lower bound

Our lower bound will be based on the well-known fact that Petri nets can weakly compute fast-

growing functions. We say that a Petri netweakly computes a function f if for each numberm of

tokens on a special input place in the initial marking, there is a computation that produces f (m)
tokens on a special output place, and no computation produces more than f (m) tokens on the

output place. More formally, consider a net N with a designed input place pin and a designed

output place pout and an initial markingMinit. We define byMinit(m) themarking that coincides

with Minit but for M(pin) = m. The net N weakly computes function f ∶N → N if for any m ∈ N

and any marking M reachable from Minit(m), M(pout) ⩽ f (m) holds, and there is at least one

reachable marking M with M(pout) = f (m).
It has been observed by Mayr and Meyer [MM81] that a function closely related to the non-

primitive recursive Ackermann function can be computed by a Petri net. We adapt their con-

struction to show that for each number n ∈ N there is a Petri net of size linear in n ∈ N that

weakly computes the functionAcker(n,−), i.e. a version of the Ackermann function inwhich the

first parameter is fixed. With this net at hand, we will be able to prove the following result.

9.1.4 Proposition
For all n,m ∈ N, there is a Petri net instance (N(n),Minit(n,m),Mfinal(n)) of size polynomial in

n +m such that L(N(n),Minit(n,m),Mfinal(n)) = {ak ∣ k ⩽ Acker(n,m)}.
This language is already downward closed and any NFA for it needs at least Acker(n,m) states,
see Example 4.3.1. Hence, it proves that the downward closure of a Petri net coverability lan-

guage canhavenon-primitive recursive state complexity. This also implies that the timeneeded

to construct the corresponding automaton may be non-primitive recursive. Proposition 9.1.4

together with Theorem 9.1.2 prove the main result of this section, Theorem 9.1.1.
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9.1 Downward closures for Petri nets

The rest of this section is dedicated to the proof of Proposition 9.1.4. We first present an unla-

beled family of Petri nets (AN(n))n∈N such that AN(n) weakly computes Acker(n,−). Later, we

show how to modify it to obtain the family of language required by the proposition.

The definition of AN(n) is inductive in n and imitates the definition of the Ackermann function.

9.1.5 Definition
We define the Petri net AN(0) to be

AN(0) = (P0 , T0 , in0 , out0) with

P0 = {in0 , out0 , start0 , stop0 ,move0}, and
T0 = {t0start , t0stop , t0move}.

The transition multiplicities are given by Figure 9.1.a, where each edge has a weight of 1.

For n ∈ N, we define AN(n + 1) inductively by

AN(n + 1) = (Pn+1 , T n+1 , inn+1 , outn+1) with

Pn+1 = Pn ∪ {inn+1 , startn+1 ,moven+1 , outn+1 , stopn+1 , swapn+1 , tempn+1}, and
T n+1 = T n ∪ {tn+1start , t

n+1
move , t

n+1
stop , t

n+1
restart , t

n+1
in , tn+1swap , t

n+1
temp}.

The transition multiplicities are given by Figure 9.1.b, where again each edge has a weight of 1.

Let us furthermore define for each m ∈ N the marking Minit(n,m) of AN(n) that places one

token on startn ,m tokens on inn and no token elsewhere.

We show that the family of nets (AN(n))n∈N has the desired property.

9.1.6 Lemma
For all n ∈ N, AN(n) weakly computes Acker(n,−): For each m ∈ N, there is a computation

Minit(n,m) σ M of AN(n) such that M(outn) = Acker(n,m), M(stopn) = 1, and there is no

computation Minit(n,m) σ M with M(outn) > Acker(n,m).
in0 t0move out0

start0 t0start move0 t0stop stop0

Figure 9.1.a: The Petri net AN(0).
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inn+1

startn+1

AN(n)
inn

startn

outn

stopntn+1start

tn+1swap

swapn+1

tn+1restart

tn+1in

tn+1move

tn+1temp tempn+1 tn+1stop stopn+1

outn+1

Figure 9.1.b: The Petri net AN(n + 1).
Before starting the proof, recall the recursive definition of the Ackermann function that we

have already given in Section 3.3: Acker(0,m) = m + 1, Acker(n + 1, 0) = Acker(n, 1), and
Acker(n + 1,m + 1) = Acker(n, Acker(n + 1,m)). We will need the following three properties of

the Ackermann function, which are easy to show using induction. For all n,m,m′ ∈ N, we have

Acker(n + 1,m) = Acker(n, Acker(n, . . . Acker(n,ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ(m+1) times

1) . . .)) (A1)

Acker(n,m) +m′ ⩽ Acker(n,m +m′) (A2)

Acker(n,m) ⩽ Acker(n, Acker(n,m)) . (A3)

Proof of Lemma 9.1.6:
We proceed by an induction on n that proves both statements simultaneously.

Base case, n = 0: All firing sequences that are enabled from Minit(n,m) and produce a token

on stop0 are of the shape t0start .(t0move)k .t0stop, where k ∈ [0,m]. Such a transition sequence

creates between 1 andm+ 1 = Acker(0,m) tokens on out0. It is impossible to createmore than

m + 1 tokens on out0.

Inductive step, n → n+1: Wefirst demonstrate how to create a tokenon stopn andAcker(n, 1)
tokens on outn . The only transition that is enabled in Minit(n,m) is tn+1start. Firing it creates one

token on inn and one token on startn . We can now execute the computation of AN(n) that
creates Acker(n, 1) tokens on outn and one token on stopn , which exists by induction.
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9.1 Downward closures for Petri nets

Next, we show how to create Acker(n, Acker(n, 1)) tokens on outn . Using tn+1in , we consume

one token from inn+1 and the token on stopn to create a token on swapn+1. This token allows

us to swap all Acker(n, 1) tokens from outn to inn using tn+1swap. After doing this, we move the

token from swapn+1 to tnstart using the restart transition tn+1restart. We are now able to execute the

computation of AN(n) that createsAcker(n, Acker(n, 1)) tokens on outn and one token on stopn ,

which exists by induction.

The process described in the previous paragraph can be repeated for each of the

m tokens on place inn+1. After doing so, we end up with one token on stopn and

Acker(n, Acker(n, . . . Acker(n,ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ(m+1) times

1) . . .)) = Acker(n + 1,m) tokens on outn using Equation (A1).

It remains to use tn+1temp once to get a token on tempn+1. Then we can transfer all Acker(n + 1,m)
tokens from outn to outn+1 with tn+1move. Finally, we use tn+1stop to create a token on tn+1stop.

To prove the second part of the statement, we argue that it is not possible to create more than

Acker(n + 1,m) tokens on outn . Obviously, the number of tokens on outn during the computa-

tion also limits the number of tokens on outn+1 at the end. Having l tokens on inn , we cannot

createmore than Acker(n, l) tokens on outn by induction. This in particular means that initially,

with only one token on inn , we cannot create more than Acker(n, 1) tokens on outn .

Afterwards, if we do not execute tn+1swap as often as possible, say we leave l
′ out of l tokens on

outn , we end upwith Acker(n, l− l
′)+ l

′ ⩽ Acker(n, l) tokens, using Equation (A2). This means

that in each iteration, we maximize the number of tokens on outn by using tn+1swap as often as

possible, as in the previously described computation.

Finally, we use that Acker(n, l) ⩽ Acker(n, Acker(n, l)), Equation (A3). We obtain the maximum

number of tokens on outn by conducting the maximum number of iterations consuming all

tokens on inn+1.

Altogether, the computation of AN(n + 1) as previously described maximizes the number of

tokens on outn+1; no computation can create more than Acker(n + 1,m) tokens. ⬛

It remains to modify the unlabeled Petri net AN(n) to obtain the Petri net instance(N(n),Minit(n,m),Mfinal(n))with L(N(n),Minit(n,m),Mfinal(n)) = {ak ∣ k ⩽ Acker(n,m)}.
Proof of Proposition 9.1.4:
Let n,m ∈ N. Consider AN(n), the net from Definition 9.1.5, as a labeled Petri net with all tran-

sitions labeled by ε. We define N(n) to be the Petri net that is obtained from it by adding an

a-labeled transition ta that consumes one token from outn . The initial marking is the marking

Minit(n,m) of AN(n), the final marking is the zero vector.

By Lemma 9.1.6, there is a computation creating Acker(n,m) tokens on outn , and no com-

putation creates more than Acker(n,m) tokens. Hence, a computation of N(n) can fire ta
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9 Downward closures

up to Acker(n,m) times, producing the same number of as in the process. This proves

L(N(n),Minit(n,m),Mfinal(n)) = {ak ∣ k ⩽ Acker(n,m)}.
Note that the size of N(n) is polynomial in AN(n), which has a number of places and transitions

linear in n. The binary encoding of the initial marking is linear in n + ⌈logm⌉. ⬛

With the proof of Proposition 9.1.4 completed, we have provided the lower bound matching

the construction from Theorem 9.1.2, showing Theorem 9.1.1.

To be precise, we have shown the stronger statement that the complexity of computing the

downward closure corresponds to the Ackermann function. This matches themaximum size of

a Karp-Miller tree. For the Petri net AN(n), it is not hard to see that the associated Karp-Miller

treewill beofAckermannian size. Thepaper [FFSS11] provides uswith amatchingupper bound,

which also shows that the procedure for computing the downward closure runs in Ackerman-

nian time.

The unary case

Theorem 9.1.1 also holds if we define the size of Petri nets based on their unary encoding. The

upper bound obviously continues to hold. For the lower bound, observe that AN(n) only uses

transitionmultiplicities from the set {0, 1}, and that the unary encoding of the initial marking is

linear in n +m.
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9.2 Downward closures for BPP nets

9.2 Downward closures for BPP nets

The non-primitive recursive complexity of the downward closure in the case of general Petri

nets is a dire insight. On the practical side, one should take into account that we are talking

about the worst-case complexity. It has been shown in experiments that the worst-case be-

havior occurs rarely. On many instances that are of practical interest (e.g. for the purpose of

verifying systems), the Karp-Miller tree, which can be used to represent the downward closure,

can be computedwithin acceptable time. On the theoretic side, the unexpectedly tame behav-

ior of these instances can partially be explained by the fact that they may stem from restricted

subclasses of Petri nets. Hence, we study the problemof computing downward closures for one

such subclass. As in Chapter 8, we focus on the class of BPP nets. This means we consider the

following problem.

Computing the downward closure for BPP net languages (BPP-DC)

Given: A labeled BPP net instance (N,Minit ,Mfinal).
Compute: An NFA Awith L(A) = L(N,Minit ,Mfinal)↓.

In this section, we will prove that this problem can be solved in exponential time. This also

implies that the state complexity is at most exponential.

9.2.1 Theorem
Downward closures of BPP net coverability languages have exponential state complexity, and

the corresponding automata can be constructed in exponential time. These bounds are tight.

The result is similar to Theorem 8.2.1 in the case of upward closures of BPP nets. However, in the

case of the upward closure, the exponential complexity of the problem for BPP nets was only a

moderate improvement over the doubly exponential complexity in the general case. Here, the

exponential complexity is a vast improvement over the non-primitive recursive complexity in

the case of unrestricted Petri nets.

As usual, we prove upper and lower bound separately, starting with the upper bound. We com-

ment on the proof approach for each of the bounds after formally stating the result.

Upper bound

We prove one direction of Theorem 9.2.1: Within exponential time, we can construct an NFA of

exponential size accepting the downward closure of the language of a given BPP net instance.
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9 Downward closures

9.2.2 Theorem
Givena labeledBPPnet instances (N,Minit ,Mfinal), we can compute in exponential timeanNFA A

withL(A) = L(N,Minit ,Mfinal)↓. The state complexity ofL(N,Minit ,Mfinal)↓ is atmost exponential,

as witnessed by automaton A.

To show the theorem,weprove a result that can be seen as some sort of pumping lemma for BPP

nets: If it is possible to create more than an exponential number of tokens on a place (where

the precise number will be given later), then it is possible to create arbitrarily many tokens on

that place. To be precise, to get the desired number of tokens one can insert a suitable number

of occurrences of a pump, a sequence of transitions, into the computation that creates these

tokens. The insertion of these pumps contributes to the word generated by the computation,

but the downward closure in which we are interested will also contain a version of the word in

which the additional letters are deleted.

Let us formally state this pumping lemma. We assume that the labeled BPP net instance(N,Minit ,Mfinal) of size n is fixed. We use ∥N∥∞ to denote maxp∈P{∥in(p)∥∞ , ∥out(p)∥∞}, the
maximum multiplicity of any transition.

9.2.3 Lemma
If Minit σ M and there is a place p with M(p) > k, where

k = (∥Minit∥1 + 2) ⋅ ((∣P∣ + 1) ⋅ ∥N∥∞)(∣T ∣+2) ,
then for eachm ∈ N, there is Minit σ̂ M̂ such that (1) σ ⪯ σ̂ , (2) M ⩽ M̂, and (3) M̂(p) > m.

Wedefer the proof of the lemma, and first show that under its assumption, Theorem8.2.2 is easy

to prove. We consider the regular [0, k]-ω-overapproximation from Lemma 6.3.3. It provides an

automaton A>k that simulates theBPPnet, but only tracks thenumberof tokensup to abound k.

We instantiate it with k as in the above lemma. It is not hard to see that the downward closures

of the language of (N,Minit ,Mfinal) and the downward close ofL>k(N,Minit ,Mfinal), the language

of the automaton A>k , coincide.

Proof of Theorem 9.2.2:
Let k = (∥Minit∥1 + 2) ⋅ ((∣P∣ + 1) ⋅ ∥N∥∞)(∣T ∣+2) be as in Lemma 9.2.3. Consider the au-

tomaton A>k for the [0, k]-ω-approximation and its language L(A>k) = L>k(N,Minit ,Mfinal)
from Section 6.3. As argued in Lemma 6.3.3, L(N,Minit ,Mfinal) ⊆ L>k(N,Minit ,Mfinal) and

hence L(N,Minit ,Mfinal) ↓⊆ L>k(N,Minit ,Mfinal) ↓ hold. For the converse inclusion, consider

w ∈ L>k(N,Minit ,Mfinal) ↓. We consider an accepting run of A>k on a word v ∈ L(A>k) with

w⪯ v that has to exist by the definition of the downward closure. The transitions of A>k used in

this run induce a firing sequence σ that is formed by the corresponding transitions of net N.
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9.2 Downward closures for BPP nets

If the accepting run of A>k only uses markings from N
P , i.e. no component is ever ω, this

firing sequence σ is valid. This means it induces a covering computation of N, proving

v ∈ L(N,Minit ,Mfinal) and thusw ∈ L(N,Minit ,Mfinal)↓.
Otherwise, the firing sequence decomposes into σ = σ ′ .σ ′′ such that Minit σ ′ M′ is a valid

computation of N, and the state M′ of A>k reached by the transitions of the automaton corre-

sponding to σ ′ is the first state in which some place, say place p, is set to ω.

In the following, we demonstrate how to obtain a new sequence of transitions σ̂ ′ .σ ′′

such that σ ′ ⪯ σ̂ ′ and all transitions used in the sequence are enabled with respect to

place p. More formally, we associate to a sequence of transitions σ a pseudo-computation

Minit = M0 σ1 M1 . . . σ∣σ∣ M∣σ∣, where the markings are allowed to have negative entries,

as in Section 8.1. In all markings Mi occurring in the pseudo-computation associated to σ̂ ′ .σ ′′,

we will haveMi(p) > 0,Mi(p) ⩾ in(t, p) if t is the ith transition, and the last markingM∣σ∣ satisfies
M∣σ∣(p) ⩾ Mfinal(p).
Let m = ∑∣σ ′′∣

j=1 in(σ ′′j , p) + Mfinal(p). It is an upper bound for the number of tokens required on

place p so that all transitions in σ ′′ are enabled and so that the final marking is covered with

respect to place p. Since after firing σ ′, we had obtained value ω for place p in the run of the

automaton, we have M′(p) > k. We instantiate Lemma 9.2.3 form. There is a firing sequence σ̂ ′

with Minit σ̂ ′ M̂′, σ ′ ⪯ σ̂ ′, M′ ⩽ M̂′, and M̂′(p) > m. The desired modification of σ ′ is σ̂ ′: The

numberm was chosen so that in the pseudo-computation associated to σ̂ ′ .σ ′′, all markings are

enabled with respect to place p and the final marking is larger than Mfinal for place p.

After repeating this process for each of the places, i.e. at most ∣P∣ times, we obtain a pseudo-

computation associated to some transition sequence τ in which all markings are non-negative,

all transitions are enabled whenever they are fired, and the final marking covers Mfinal. Hence,

Minit τ M ⩾ Mfinal is a covering computation of N, proving that λ(τ) ∈ L(N,Minit ,Mfinal), and
thusw⪯ λ(σ ′ .σ ′′)⪯ λ(τ) is in the downward-closure L(N,Minit ,Mfinal)↓.
We have established that the downward closures of L>k(N,Minit ,Mfinal) and L(N,Minit ,Mfinal)
coincide. To obtain a representation of L>k(N,Minit ,Mfinal)↓, we take the automaton A>k and

add for each transition an ε-labeled variant as described in Section 7.2. This does not change

the number of states, so to finish the proof, we argue that the state complexity of A>k is as

desired. It is as most

2n ⋅ kn ∈ O(2n ⋅ (∥Minit∥1 + 2)n ⋅ ((∣P∣ + 1) ⋅ ∥N∥∞)n2)
using Lemma 6.3.3 and the definition of k. By the power laws, this number is singly exponential

(even if ∥Minit∥1 and ∥N∥∞ are exponential). ⬛

It remains to show the lemma on which the proof of the theorem relies. For the proof, we will

again need the unfolding of a BPP net and its properties, see Section 8.2. This in particular
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means that we have to eliminate spontaneous transitions from the net. To this end, we assume

that have applied the preprocessing described in Section 8.2. In the following, we will consider

the bound k = ∥Minit∥1 ⋅ (∣P∣ ⋅ ∥N∥∞)(∣T ∣+1). This bound is subtly different from the bound(∥Minit∥1+2) ⋅ ((∣P∣+1) ⋅∥N∥∞)(∣T ∣+2) stated in Lemma 9.2.3. Themodifications take into account

that thepreprocessingadds anewplace, a new transition, andanew token in the initialmarking.

We also assume that the original net satisfies ∥N∥∞ ⩾ 2, which means that the preprocessing

does not increase ∥N∥∞.

Proof of Lemma 9.2.3:
Let (O , h) be the unfolding Unf(N,Minit) of the given net with respect to the initial marking, as

defined in Section 8.2. Assume that Minit σ M is a computation of N reaching a marking M

such that M(p) > k = ∥Minit∥1 ⋅ (∣P∣ ⋅ ∥N∥∞)(∣T ∣+1) for some place p.

We consider a computation minO σ ′ M′ of O induced by σ , i.e. we have h(σ ′) = σ . We also

have h(M′) = M, meaning that for each place p1 of N, the total number of tokens in places p′1
with h(p′1) = p1 is equal to M(p1). In particular, we have

∑
p′∈P′ ,
h(p′)=p

M′(p′) = M(p) > k
for the place p fixed above.

Recall that O can be seen as a forest, each of its trees rooted in a place that carries a token in

minO. Considering only the part of O that is used by the computation associated to σ ′, i.e. the

transitions that are used in σ ′ and the places that carry a token at some point during the com-

putation, yields a finite prefix ofO that is again a forest. The places that carry a token in the final

marking M′ form the leaves of the trees in the forest. We will call the places p′ with M′(p′) = 1

and h(p′) = p the p-leaves of the forest. The name is justified by the above discussion.

We identify in the forest associated to σ ′ the tree with the largest number of p-leaves. Let us

denote this tree by T and its root node by r′. The number of p-leaves in T is at least

k1 =
k∥Minit∥1 = (∣P∣ ⋅ ∥N∥∞)(∣T ∣+1) .

The forest consists of exactly ∥Minit∥1 trees, since h(minO) = Minit and each token in the initial

marking uniquely identifies the root of a tree. If every tree had less than k∥Minit∥1 many p-leaves,

then it could not be true that the forest has at least k many p-leaves in total.

In the following, we will show that theminimal subtree of T that contains the root and reaches

all its p-leaves contains a pump, i.e. a substructure that can be replicated to obtain arbitrarily

many tokens in place p. The idea is similar to the one behind the proof of the pumping lemma

for context-free languages executed on parse trees. However, the structure of the unfolding

causes some technical difficulties that we have to overcome.
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9.2 Downward closures for BPP nets

Let us denote by T ′ the subtree of T that consists of the p-leaves and their ancestors. Its leaves

are exactly the p-leaves, and every other place has out-degree exactly one. That the out-degree

cannot be larger than one is clear by the definition of O. A place with no outgoing edge has to

be a p-leaf, as we have removed all nodes that are not ancestors of p-leaves. The out-degree of

the transitions occurring in T ′ is at most ∥N∥∞∣P∣, since each transition of N can create at most∥N∥∞ tokens in each of the ∣P∣ places.
Similar to the proof of Proposition 8.2.3, we will call a transition of out-degree at least two a

join transition, as it leads to at least two different p-leaves. The latter property is guaranteed by

the acyclicity of O. The definition of join transitions is simpler here (compared to the proof of

Proposition 8.2.3), because we only consider the part of the computation that leads to p-leaves.

We claim T ′ has a branch with at least ∣T ∣ + 1 join transitions on it. To this end, we state and

prove the following claim.

Claim: Let Tr be a tree with l leaves in which all nodes have out-degree atmost c. Then Tr has

a branch with at least logc lnodes of out-degree at least 2.

To prove the claim, assume that in any branch of such a tree Tr, the number of nodes of out-

degree greater than two in any branch of the tree is m < logc l. Such a tree has at most

cm < clogc l = lnodes, which is a contradiction to the assumption that T has l leaves.

We now use the claim for the tree T ′, l = k1, c = ∥N∥∞ ⋅ ∣P∣, and obtain that T ′ has at least

k2 = log∥N∥∞⋅∣P∣ k1 = ∣T ∣ + 1

many join transitions. This means that T ′ has a branch with transitions t′ , t′′ of O such that

h(t′) = h(t′′) = t for some transition t of N, since N has only ∣T ∣ different transitions.
Since t′ is a join transition, t′ is contained in (at least) two branches: The first is a branch that

also contains t′′ and ends in a p-leaf; let σ ′a .t
′ .σ ′b .t

′′ .σ ′c be the transitions along that branch. The

other branch does not contain t′′ and ends in a different p-leaf; let σ ′a .t
′ .σ ′d be the associated

transitions. Note that σ ′a , σ
′
b , σ

′
c , σ

′
d ∈ T ′∗ denote sequences of transitions here.

We now argue that we can first use σ ′b to create an arbitrary number of tokens on the places

fromwhich transition t of N consumes a token, and later use t′ .σ ′d to create an arbitrary number

of tokens on place p as desired. More formally, we have that σ ′a .t
′ .σ ′b .t

′′ .σ ′c is a subword of the

computation σ ′ of O, and hence that h(σ ′a .t′ .σ ′b .t′′ .σ ′c) is a subword of σ . Hence, we may write

σ = σA.t.σB, where t corresponds to the occurrence of t′ in σ ′a .t
′ .σ ′b .t

′′ .σ ′c .

Let m ∈ N be an arbitrary number. We have to construct σ̂ such that Minit σ̂ M̂ satisfies

(1) σ ⪯ σ̂ , (2) M ⩽ M̂, and (3) M̂(p) > m. We define pump1 = h(σ ′b .t′′), and pump2 = h(σ ′d).
We claim that σ̂ = σA.t.pump1

m .σB .pump2
m is as required. Firstly, note that indeed transition

t produces the token required by the first transition of pump1 and the token required by σB.
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Secondly, the last transition of pump1 is again h(t′′) = t. Altogether, σA.t.pump1
m .σB is a valid

firing sequence. Furthermore, them iterations of pump1 produce at leastm tokens on the place

from which pump2 consumes a token. Hence, Minit σ̂ M̂ is a valid firing sequence. The

properties (1) – (3) are easy to justify: (1) σ = σA.t.σB is a subword of σ̂ by definition, (2) the

pumps only create additional tokens, and (3) in particular, each iteration of pump2 creates a

token on place p, since σ ′a .t
′ .σ ′d corresponds to a branch in O leading to a p-leaf. ⬛

With the proof of Lemma 9.2.3 completed, the upper bound, Theorem 9.2.2 is proven.

Remark
In the case of the upward closure, the proofs of the upper bounds were based on the length-k

approximation, both in the general case and in the case of BPP nets. In the case of the down-

ward closure, the constructions seem to be fundamentally different: In the general case, the

construction was based on the Karp-Miller tree, while in the case of BPP nets, we have used the[0, k]-ω-approximation. We claim that these differences can be overcome: The proof concept

from this section can be generalized so that it also applies to the case of general nets. We claim

that to obtain the downward closure of a Petri net, we can take the downward closure of the[0, k]-ω-approximation, where k is the greatest non-ω number occurring in a general marking

labeling a node in the Karp-Miller tree. Proving this fact is not difficult, but relies on some prop-

erties of the Karp-Miller tree that we have not stated here. Hence, we forgo giving the proof.

Lower Bound

To prove that the above construction is optimal, we present a family of BPP languages for which

the state complexity of the downward closure is exponential in the size of the nets. The proof

is similar to the proof of Proposition 8.2.4 and uses that exponential numbers can be stored

in polynomial space using their binary encoding. The difference is that this time, we use an

exponential number in the initial marking instead of in the final marking.

9.2.4 Proposition
For each n ∈ N, there is a labeled BPP net instance (N,Minit(n),Mfinal) of size polynomial in n

such that L(N,Minit(n),Mfinal)↓ has state complexity at least 2n .

Proof:
Wedefine N to be the netwith a single place p and a single a-labeled transition t that consumes

a token from this place. The finalmarkingMfinal is the zero vector, the initialmarkingMinit places

2n tokens on p. This net is depicted in Figure 9.2.a.i).

Any computation of the net is covering, and each sequence tk for k ⩽ Minit(p) = 2n is a valid

firing sequence. Hence,L(N,Minit(n),Mfinal) = {ak ∣ k ⩽ 2n}. This language is alreadydownward
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2n t

p
a

i) In the binary case.

⋯t1
2 t2

2 ta
2

p0 p1 pnε ε a

ii) In the unary case.

Figure 9.2.a: BPP nets to prove the exponential lower bound for the downward closure.

closed and has state-complexity 2n + 1, see Example 4.3.1. To conclude the proof, note that the

size of N and Mfinal is constant, while the size of Minit is linear in n. ⬛

The proof of the proposition also completes the proof of Theorem 9.2.1.

The unary case

We complete our study by considering the case in which the BPP net is encoded in unary. Con-

sider the upper bound. The size of the automaton that we construct is based on the number

k = (∥Minit∥1+2) ⋅ ((∣P∣+1) ⋅∥N∥∞)(∣T ∣+2) from Lemma 9.2.3. This number is exponential, even if

we assume that the net is encoded in unary. Hence, we do not get an improved upper bound.

The proof of the lower bound, Proposition 9.2.4, obviously becomes invalid if we consider nets

to be encoded in unary. With a unary encoding, it is not possible to assign 2n tokens to a place

in the initial marking of an instance whose size is polynomial in n. However, it turns out that we

can construct an instance (N,Minit , 0⃗) of size polynomial in n whose language coincides with

the language of the net from Proposition 9.2.4.

The construction is more involved than the one from the proof of Proposition 9.2.4. It uses the

well-known fact that a context-free grammar of size polynomial in n can generate the word a2
n

.

Here, we adapt this construction to BPP nets.

The net that we construct is depicted schematically in Figure 9.2.a.ii). It has n + 1 places

p0 , p1 , . . . , pn . The initial marking assigns one token to place p0 and zero tokens elsewhere. For

each i ∈ [1, n], there is a transition ti that consumes a token from place pi−1 and produces two

tokens on pi . All these transitions are labeled by ε. Additionally, there is an a-labeled transition

ta that consumes a token from pn . The final marking is the zero vector. Note that this net is

indeed a BPP net; every transition consumes exactly one token.

Let us prove that the language of the instance is indeed {ak ∣ k ⩽ 2n}. By firing the transitions

ti exhaustively, one can generate 2n tokens on place pn : Assuming that 2i tokens are present

on place pi , one can fire transition ti+1 exactly 2i times to generate 2 ⋅ 2i = 2i+1 tokens on pi .

Now, we may fire transition ta up to 2n times to generate an arbitrary number of as between

zero and 2n .
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To conclude the proof, it remains to observe that the size of the instance is indeed polynomial

in n. Hence, we have re-proven the lower bound, Proposition 9.2.4. We obtain a matching

exponential lower and upper bound in the case of BPP nets encoded in unary.
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9.3 SRE inclusion in the downward closures for Petri nets

9.3 SRE inclusion in the downward closures for Petri nets

Similar to Section 8.3, we study the problem of checking whether a given SRE is contained in

the downward closure of a given Petri net coverability language.

SRE inclusion in the downward closure (PN-SREDC)

Given: A labeled Petri net instance (N,Minit ,Mfinal), an SRE sre.

Question: L(sre) ⊆ L(N,Minit ,Mfinal)↓?
The goal of this section is to show that the problem is complete for EXPSPACE, the class of prob-

lems solvable with exponential space. This matches the EXPSPACE-completeness of PN-SREUC,

and is a huge improvement over the non-primitive recursive complexity of computing the

downward closure.

9.3.1 Theorem
PN-SREDC is EXPSPACE-complete.

We first briefly comment on the lower bound, before we turn to developing some techniques

needed for proving EXPSPACE-membership.

Lower bound

Similar to the EXPSPACE-hardness of the problem PN-SREUC, Lemma 8.3.4, the hardness of

PN-SREDC directly follows from the hardness of coverability. We briefly recall the idea of the

proof, but refer to Lemma 8.3.4 for the technical details.

If we modify an unlabeled Petri net instance (N,Minit ,Mfinal) by labeling all transitions by ε, we

have L(N,Minit ,Mfinal) = {ε} if Mfinal is coverable from Minit. If this is not the case, we have

L(N,Minit ,Mfinal) = ∅. These two languages are already downward closed. Hence, we have that

∅∗ = {ε} ⊆ L(N,Minit ,Mfinal)↑ holds if and only if (N,Minit ,Mfinal) is a yes-instance of coverability.

Upper bound

It remains to prove EXPSPACEmembership.

9.3.2 Theorem
PN-SREDC can be solved using exponential space.

Let (N,Minit ,Mfinal) be the Petri net instance of interest, and let sre = p1 ∪ . . . ∪ pk be the given

SRE. Our goal is to check whether the inclusion L(sre) ⊆ L(N,Minit ,Mfinal)↓ holds.
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In Section 8.3, we did proceed as follows to solve the problem in the case of the upward closure:

Firstly, we observed that the inclusion holds if and only if L(pi) ⊆ L(N,Minit ,Mfinal)↑ holds for

each product pi . Secondly, we specified an operation that computes for each product pi the

uniqueminimal word ofL(pi)↑. Checking the inclusion then amounts to checkingwhether this

minimal word is contained in the downward closure of the net. Altogether, we reduced the

problem PN-SREUC to a polynomial number of membership queries.

The first observation still holds true in the case of PN-SREDC: L(sre) ⊆ L(N,Minit ,Mfinal)↓ holds

if and only ifL(pi) ⊆ L(N,Minit ,Mfinal)↓ for all products pi . Since the number of products is poly-

nomial in the size of the SRE sre, this will allow us to focus on the simpler problem of checking

whether the language of a single product p is contained in the downward closure.

Unfortunately, the second observation does not carry over. Unlike upward-closed languages,

downward-closed languages cannot be represented by a single word in general. Consider for

example the product Σ∗ (whose language is already downward closed). A priori, there is no

reason why there should be a single word such that the inclusion of the product and the mem-

bership problem for that word are equivalent. This means that checking whether a product is

contained in the downward closure is much more involved.

Nevertheless, we can provide a syntactic transformation of the product that will later simplify

solving the problem. Intuitively, our goal is to replace each occurrence of the iteration of a sub-

alphabet by the iteration of a single word. To this end, we fix some total order on the alphabet,

e.g. a1 < a2 < . . . < am , where Σ = {a1 , . . . , am}. We obtain a word wΣ = a1a2 . . . am by

concatenating the letters in ascending order. To each subalphabet Γ ⊆ Σ, we assign the word

wΓ = πΓ (w) that is obtained fromwΣ by removing all letters not present in Σ.

We can now define a linearization operation that turns a product into a regular expression.

9.3.3 Definition
The linearization of a product is inductively defined as follows.

lin(a ∪ ε) = a lin(a) = a
lin(Γ∗) = wΓ

∗ lin(p1 .p2) = lin(p1).lin(p2) .
9.3.4 Example
For example, if Σ = {a, b, c} and we take wΣ = abc, then p = (a ∪ c)∗(a ∪ ε)(b ∪ c)∗ is turned

into lin(p) = (ac)∗a(bc)∗.
The following lemma states that the linearization indeed allows us to simplify the problem: The

language of a product is contained in the downward closure if and only if the language of its

linearization is.
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9.3.5 Lemma
For a product p, we have L(p) ⊆ L(N,Minit ,Mfinal)↓ if and only if L(lin(p)) ⊆ L(N,Minit ,Mfinal)↓.
Proof:
We claim thatL(p)↓= L(lin(p))↓, which implies the desired statement. We proceed by induction

on the structure of the product. We have L(a ∪ ε)↓= {a, ε} = L(a)↓= L(lin(a))↓= L(lin(a ∪ ε))↓,
which proves two of the base cases.

Consider Γ∗. We have L(Γ∗) ↓= Γ∗. It remains to show that L(wΓ
∗) ↓= Γ∗. One direction,

L(wΓ
∗) ↓⊆ Γ∗ is clear since wΓ only contains letters from Γ . For the other direction, consider

v ∈ Γ∗. We claim that v is a subword of (wΓ )∣v∣: Each letter of v is from Γ , so it occurs in wΓ .

Dropping all other letters in each iteration of (wΓ )∣v∣ proves the statement. Hence, v ∈ L(wΓ
∗)↓

as desired.

Finally, for the induction step, assume that L(pi)↓= L(lin(pi))↓ for i ∈ {1, 2}. We have

L(p1 .p2)↓ = (L(p1). L(p2))↓= L(p1)↓ . L(p2)↓
= L(lin(p1))↓ .L(lin(p2))↓= (L(lin(p1)).L(lin(p2)))↓
= L(lin(p1).lin(p2))↓= L(lin(p1 .p2))↓ .

Here, we have used induction, the fact that the downward closure distributes over concatena-

tion, and the definition of the linearization. ⬛

With the lemma at hand, the remaining task is the following: For each infix wΓ
∗ occurring in

the linearization of the product, we need to check whether arbitrarily long instantiations lead

to a word contained in the downward closure. Intuitively, this means that we need to count

the number of instantiations of each wΓ
∗. Formally, we reduce checking the inclusion to an

unboundedness problem.

The specific type of unboundedness that we require is simultaneous unboundedness, formally

defined in the following.

Simultaneous unboundedness for Petri nets (PNSU)

Given: Petri net N, initial marking Minit, set of places X of N.

Question: Are the places in X simultaneously unbounded, i.e. is there for eachm ∈ N

a computation Minit σ M with M(p) ⩾ m for all p ∈ X?

Simultaneous unboundedness has been introduced by Demri [Dem13] as a generalization of

several classical notions of unboundedness, i.e. the questions whether a given net Petri is un-

bounded in some arbitrary resp. a specified component. Indeed, we need this simultaneous

unboundedness to encode our problem: It is not sufficient to separately check that for each in-

fixwΓ
∗, arbitrarily long instantiations lead to a word in the downward closure. Rather, we need
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that even if we combine arbitrarily long instantiations of each of the infixes, we still obtain a

word in the downward closure.

All aforementioned unboundedness problems could be solved using the Karp-Miller tree. For

example, the places in X are simultaneously unbounded if the Karp-Miller tree contains a node

labeled by a generalized marking in which all places p ∈ X attain value ω. However, this proce-

dure would inherit the non-primitive recursive complexity of constructing the Karp-Miller tree.

Luckily, Demri [Dem13] has shown that the complexity of PNSU is in fact EXPSPACE.

9.3.6 Theorem (Demri [Dem13])
PNSU is EXPSPACE-complete.

The proof of this result is an extension of Rackoff’s technique [Rac78]. Demri shows that if a

set of places is simultaneously unbounded, then there are specific computations that witness

this fact. With a Rackoff-like argumentation, one obtains a doubly exponential bound on the

length of these computations. This finally allows for checking all such computations using only

exponential space by using counters encoded in binary and Savitch’s theorem [Sav70].

With the EXPSPACE membership of PNSU at hand, it remains to reduce the inclusion

L(lin(p)) ⊆ L(N,Minit ,Mfinal)↓ to an instance of PNSU in polynomial time. The first step is to

consider the net N↓with L(N,Minit ,Mfinal)↓= L(N↓,Minit ,Mfinal), see Section 7.2.

As explained above, we need to check whether for each infixwΓ
∗, arbitrarily long instantiations

still lead to words in the language of N↓. We encode this by introducing for each infix wΓ
∗ a

place that tracks that wΓ has been seen. The instance of the unboundedness problem that we

construct requires all such places to be simultaneously unbounded. We will make this formal

in the following. Afterwards, the minor problem of also encoding the final marking of the net

into the unboundedness problem remains to be solved.

To make the construction formal, we see lin(p) as a Petri net. To be precise, we construct

an NFA that is language-equivalent to lin(p), e.g. using the construction by McNaughton and

Yamada [MY60]. Then, we see this NFA as a Petri net. We have given a construction in Ex-

ample 6.3.1, but here, it will be important that we obtain a net with no ε-labeled transitions.

To this end, we assume that the NFA has a unique final state, a condition that is easy to en-

force, especially for the NFAs with language lin(p). Then, we construct a Petri net instance(Np ,Minit,p ,Mfinal,p). Net Np has one place per state of the NFA and one transition per transi-

tion of the NFA. The labeling and effect of the transitions is as expected. The initial marking

Minit,p puts one token on the place corresponding to the initial state of the NFA and no tokens

elsewhere. The final marking Mfinal,p just requires one token on the place corresponding to the

unique final state of the NFA. We obtain L(lin(p)) = L(Np ,Minit,p ,Mfinal,p) as desired.
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a c

a

bc

p0 pf

p{a,c} p{b,c}

Figure 9.3.a: A net Np with language (ac)∗a(bc)∗ that also counts the number of iterations.

It remains to modify the net so that for each infixwΓ
∗ of lin(p), it counts howmany iterations of

wΓ
∗ have occurred. For such an infix, net Np has a transition that correspond to the last letter

of wΓ . We add a new place pΓ and modify the transition so that it additionally creates a token

on pΓ . The desired result is that if a computation produces m tokens on pΓ , then wΓ
m was the

instantiation ofwΓ
∗ that has been read.

Note that the notation is intentionally a bit sloppy here: The linearization may contain several

occurrences of wΓ
∗ for the same subalphabet Γ . In this case, each occurrence gets its own

place pΓ . To improve readability, we forgo introducing additional indices

9.3.7 Example
Consider lin((a ∪ c)∗(a ∪ ε)(b ∪ c)∗) = (ac)∗a(bc)∗ from Example 9.3.4. The net Np for this prod-

uct is depicted in Figure 9.3.a, including the two places p{a,c} and p{b,c} that count the iterations.

To improve readability, some names of places and transitions have been omitted.

We now construct the synchronized product of N↓ and Np, which we will denote by(N′ ,M′
init ,M

′
final). Recall that its set of places is the disjoint union of the places of N ↓ and Np.

Transitions labeled by ε can be fired freely, while transitions labeled by a ∈ Σ are synchronized

in that we can only fire an a-labeled transition of N↓ and an a-labeled transition of Np together.

For the correctness of the construction, it will be crucial that the synchronized product acts as a

one-sided synchronized product in the special case at hand: (1) Np has no ε-labeled transitions,

so all transitions of Np have to be synchronizedwith an appropriate transition of N↓, while (2) N↓

has an ε-labeled version of each transition, so each transition can be fired freely.

We would like to have that the desired inclusion holds if and only if the set of places{pΓ ∣ wΓ
∗ infix of lin(p)} is simultaneously unbounded in N′ from M′

init However, we still have

to take the final marking into account. To achieve this, we add a new place to N′ that can only

become unbounded as soon as the final marking has been covered. Formally, we add a new

place pfinal to N
′. We add a transition tfinal with in(tfinal) = M′

final that consumes tokens from all

places as specified by the final marking and that produces one token on pfinal (and no token

elsewhere). Finally, we add a transition tpump that consumes one token on pfinal, but produces
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two tokens on pfinal. Let N
′′ denote the resulting net, and let M′′

init be the initial marking for N′′

that coincides with M′
init on the places of N′ and assigns no token to pfinal. The problem PNSU

works on unlabeled nets, but for the proof of correctness later, it will be helpful to consider both

tfinal and tpump to be labeled by ε.

As desired, we obtain that the inclusion holds if and only if the set of places{pΓ ∣ wΓ
∗ infix of lin(p)} ∪ {pfinal} is simultaneously unbounded in N′′. To formally prove

the statement, let us assume that lin(p) = w(0)wΓ1
∗w(1) . . .wk−1wΓk

∗w(k) for some words

w(i) ∈ Σ∗ and subalphabets Γi ⊆ Σ for all i.

9.3.8 Proposition
The inclusion L(lin(p)) ⊆ L(N↓,Minit ,Mfinal) holds iff the places in X = {pfinal} ∪ {pΓi ∣ i ∈ [1, k]}
are simultaneously unbounded in N′′ from M′′

init.

Proof:
Assume that the inclusion holds, and let m ∈ N be arbitrary. We have to show that there

is a marking M with Minit σ M in N′′ and M(pΓi ) ⩾ m for all i and M(pfinal) ⩾ m. Con-

sider the word w = w(0)wΓ1
mw(1) . . .wk−1wΓk

mw(k) obtained by taking m iterations of each wΓ .

We have w ∈ L(lin(p)) by construction, and since we assume that the inclusion holds also

w ∈ L(N↓,Minit ,Mfinal). Recall that the language of the synchronized product is the intersec-

tion of the languages of the original nets. Hence, we have w ∈ L(N′′ ,M′′
init ,M

′′
final), where M′′

final

coincides with M′
final on the places of N′ and requires no token on pfinal. Let us consider a cor-

responding computation M′′
init σ M ⩾ M′′

final of N
′′ with λ(σ) = w. Since the non-ε-labeled

transitions in N′ can only be fired in a synchronized fashion, for each infix wΓi
m the transition

that corresponds to the last letter ofwΓi is firedm times. Hence, wehavem tokens on eachplace

pΓi that will not be consumed by other transitions, and for each i,M(pΓi ) ⩾ m as desired. To also

obtain m tokens on pfinal, we extend the run and consider the firing sequence σ .tfinal .tpump
m .

Note that tfinal is indeed enabled in M since M ⩾ M′′
final, and that firing tpump

m createsm tokens

on pfinal. The marking reached by firing this sequence has the desired properties.

For the other direction, assume that the places in X are simultaneously unbounded. Consider

a wordw ∈ L(lin(p)), sayw = w(0)wΓ1
m1w(1) . . .wΓk

mkw(k). To prove thatw ∈ L(N↓,Minit ,Mfinal),
we first show thatw is in the language of the product net N′.

To this end, we use the assumption that the places in X are simultaneously unbounded. We de-

finem = max{1,maxi∈[1,k]mi}, andobtain a computationMinit σ M ofN′′ such thatM(p) ⩾ m
for all p ∈ X . Wemay assume wlog. that σ is of the shape σ = σ ′ .tfinal .tpump

mpump , where σ ′ does

not contain tfinal and tpump. Indeed, any sequence that is not of this shape can be reordered

while preserving its validity (since executing tfinal later yields greater intermediary markings)

and the word that is generated (since tfinal and tpump are labeled by ε). Note that σ needs to

contain occurrences of tfinal and tpump because we had M(pfinal) ⩾ m. If tfinal occurs multiple

times in σ , we simply drop all occurrences but one.
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Consider the computation Minit σ ′ M′, which we may see as a computation of the product

net N′. It produces the sameword, andwe haveM′ ⩾ M′
final since tfinal was enabled inM′. Hence,

λ(σ) = λ(σ ′) ∈ L(N′ ,Minit ,M
′
final) = L(lin(p)) ∩ L(N↓,Minit ,Mfinal) ,

using that the language of the synchronized product is the intersection of the languages.

Since we have M′(pΓi ) ⩾ m for all i, each infix wΓi occurs at least m times in λ(σ). We have that

λ(σ) = w(0)wΓ1
m′

1w(1) . . .wΓk
m′
kw(k), wherem′

i ⩾ m ⩾ mi for each i. Hence, thewordw ∈ L(lin(p))
that we started with is a subword of λ(σ). We obtain that λ(σ) ∈ L(N ↓,Minit ,Mfinal) implies

w ∈ L(N↓,Minit ,Mfinal), which we wanted to show. ⬛

With the proposition at hand, it only remains to combine all ingredients.

Proof of Theorem 9.3.2:
The inclusion L(sre) ⊆ L(N,Minit ,Mfinal)↓ holds if and only if L(p) ⊆ L(N,Minit ,Mfinal)↓ holds for

each product p of the SRE sre. The number of products is polynomial in the size of the SRE.

For each product p, it is easy to construct lin(p) in polynomial time. In general, an automaton

representing a regular expression can be substantially larger than the expression [GH15]. For

the expression lin(p)which has nesting-depth at most 2, however, it is easy to construct first an

automaton and then a Petri net instance (Np ,Minit,p ,Mfinal,p). This net is of size polynomial in the

size of p, and it has the same language as lin(p). By definition, the net N↓ is of size polynomial

in the size of N. Combining the two facts yields that the size of the product net N′ and also the

size of the net N′′ are polynomial in the input size.

Altogether, we obtain that to decide the inclusion, we need to invoke a polynomial number

of queries for instances of the problem PNSU of polynomial size. We use that PNSU can be

solved in EXPSPACE, Theorem 9.3.6, and that the calling polynomially many exponential space

algorithms still results in an exponential space algorithm to deduce that the overall procedure

runs using exponential space.

The correctness results directly from Lemma 9.3.5 and Proposition 9.3.8. ⬛

With theproof of Theorem9.3.2 completed and thematching lower bound,wehave shown that

PN-SREDC is EXPSPACE-complete as stated in Theorem 9.3.1. Note that since the lower bound

is based on the lower bound for coverability, the result also holds if we consider Petri nets to be

encoded in unary.
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9 Downward closures

9.4 SRE inclusion in the downward closures for BPP nets

It should come as no surprise that the final section of this chapter combines the two restricted

versions of the downward closure computation into a single problem. We study the complexity

of checking whether the language of a given SRE is contained in the downward closure of the

language of a given BPP net.

SRE inclusion in the downward closure for BPP nets (BPP-SREDC)

Given: A labeled BPP net instance (N,Minit ,Mfinal), an SRE sre.

Question: L(sre) ⊆ L(N,Minit ,Mfinal)↓?
We prove that the complexity of the problem is the same as the problem BPP-SREUC in the

case of the downward closure: BPP-SREDC is complete for the class of problems solvable in

polynomial time by a nondeterministic algorithm.

9.4.1 Theorem
BPP-SREDC is NP-complete.

While the statement is similar, the proof is vastlymore complex than the proof of Theorem 8.4.1.

The same reasoning as in Section 9.3 applies: A downward-closed language cannot be repre-

sented by finitely many maximal words. Hence, to solve the problem, it is not sufficient to con-

duct a finite number ofmembershipqueries. Beforewego intodetail about theproof approach,

let us briefly comment on the lower bound.

Lower bound

The NP-hardness of BPP-SREDC is a direct consequence of the NP-hardness of coverability in

BPP nets, Lemma 6.4.4. The formal reasoning is similar to the one for the EXPSPACE-hardness

of PN-SREUC (see Lemma 8.3.4) and PN-SREDC, and the NP-hardness of BPP-SREUC.

Upper bound

With the lower bound out of the way, it remains to show that BPP-SREDC can be solved by a

nondeterministic algorithm in polynomial time.

9.4.2 Theorem
BPP-SREDC is in NP.

Theproofof this theorem is themost complexproof in this part of the thesis. It combines various

insights that we have gathered in the previous chapters.
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Let us start by considering theproof of the EXPSPACE-membership ofPN-SREDC, Theorem9.3.2,

and understand which parts of it can be reused. The proof proceeds in four steps: (1) Observe

that instead of checking L(sre) ⊆ L(N,Minit ,Mfinal)↓, we can check L(p) ⊆ L(N,Minit ,Mfinal)↓
for each of the polynomially many products of the SRE. (2) Instead of checking this inclusion,

we can check L(lin(p)) ⊆ L(N,Minit ,Mfinal)↓where lin(p) is the linearization of the product from

Definition 9.3.3. (3) Construct the product of N↓, the downward closure of the given net, and Np,

a net with language L(lin(p)). (4) Construct an instance of the simultaneous unboundedness

problem PNSU based on this product.

The first two steps carry over. The fact that the inclusion canbe checked for eachproduct aswell

as Lemma 9.3.5 remain unchanged if we consider an input net that is a BPP net. Unfortunately,

there is a problemwith the third step. While N↓ and Np both are BPP nets, their product will not

be a BPP net. Even if it would be a BPP net, there is also a problem with the reduction to PNSU.

The problem PNSU is EXPSPACE-complete, so we would not get the desired complexity.

The question whether PNSU becomes NP-complete if we restrict the input net to be a BPP net

arises naturally. One could approach this problem by first using Theorem 6.4.7 which yields

that the reachability set of a BPP net is effectively semi-linear, and then trying to encode simul-

taneous unboundedness as a Presburger formula. While the latter seems to be easy, one will

obtain a formula that contains a universal quantification, so we cannot use Theorem 3.4.2, the

NP-completeness of existential Presburger arithmetic. We conjecture that the proof that we

will present in the rest of this section could be adapted to show that PNSU is NP-complete for

BPP nets. However, since this result would not help us settle themain question, we refrain from

investigating this further.

We come back to the problem under consideration. The following proposition is the result that

we need. Together with the first to steps from the proof of Theorem 9.3.2 as outlined above, it

proves Theorem 9.4.2.

9.4.3 Proposition
Given a product p and a BPP net N, one can decide whether the inclusion

L(lin(p)) ⊆ L(N,Minit ,Mfinal)↓ holds in NP.

The proof of the proposition combines various techniques: In addition to the linearization from

Section 9.3, it also uses the tricks that we have used to show that theword problem for BPP nets

is in NP, Proposition 6.4.6, and the pumping lemma for BPP nets, Lemma 9.2.3.
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9 Downward closures

Let (N,Minit ,Mfinal) be the given BPP net, and let p be the given product. We assume that the

linearization of p is

w(0)(wΓ1 )∗w(1) . . .w(m−1)(wΓm )∗w(m)
with words w(i) ∈ Σ∗ and subalphabets Γi ⊆ Σ for all i. The idea is the following: We check

that there is a computation for words from the linearization in which the parts corresponding

to (wΓi )∗ can be repeated. This means that we require that after seeing (wΓi ) once, we are in a

larger marking than before.

We want to encode this property in Presburger arithmetic. To avoid having to express un-

bounded markings, we use the exponential constant

k = (∥Minit∥1 + 2) ⋅ ((∣P∣ + 1) ⋅ ∥N∥∞)(∣T ∣+2)
from Lemma 9.2.3. For two markings M,M′, we write M ⩽k M′ if for all places p ∈ P we have

that M′(p) < k implies M(p) ⩽ M′(p).
Using this notation, we can formalize the above explanation.

9.4.4 Definition
A witness for lin(p) is a covering computation

Minit = M0 σ0 M′
0 τ1 M1 σ1 M′

1 τ2 . . .M′
m−1 τm Mm σm M′

m ⩾ Mfinal ,

of N↓where σi , τi ∈ T
∗ are firing sequences so that (1) λ(σi) = w(i) for all i ∈ [0,m], (2) λ(τi) = wΓi

for all i ∈ [1,m], and (3) M′
i ⩽

k Mi+1 for all i ∈ [0,m − 1].
Note that unlike in the rest of this thesis, σi and τi denote firing sequences instead of single

transitions here. The first twoproperties express that thewordgeneratedby the computation is

w(0)wΓ1 . . .wΓmw(m). The last propertymeans that each infix τi that correspond to theoccurrence

of some wΓi can be repeated. Because we only require M′
i ⩽

k Mi+1 (instead of M′
i ⩽ Mi+1) we

might need to insert pumps, as in the proof of Theorem 9.2.2.

With the definition of a witness at hand, the proof of Proposition 9.4.3 decomposes into two

steps. We first show that checking the inclusion between the linearization of a product and the

language of N↓ amounts to checking the existence of a witness. Then, we show how the latter

can be checked in NP by encoding it into an existential Presburger formula.

9.4.5 Lemma
The inclusion L(lin(p)) ⊆ L(N↓,Minit ,Mfinal) holds if and only if lin(p) has a witness.
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9.4 SRE inclusion in the downward closures for BPP nets

Proof:
Let us assume that the computation

Minit = M0 σ0 M′
0 τ1 M1 σ1 M′

1 τ2 . . .M′
m−1 τm Mm σm M′

m ⩾k Mfinal ,

of N↓ is a witness for lin(p). Consider the word w = w(0)(wΓ1 ) j1 . . . (wΓm ) jmw(m) ∈ L(lin(p)). Our

goal is to show that w ∈ L(N↓,Minit ,Mfinal). The firing sequence σ0 .τ1
j1 .σ1 . . . τm

jm .σm has the

correct label and intuitively should induce a covering computation of N↓. However, we have

not required M′
i ⩽ Mi+1 in the definition of a witness, but only M′

i ⩽
k Mi+1.

Instead of using Lemma 9.2.3 to insert pumps as in the proof of Theorem 9.2.2, we simply

use Theorem 9.2.2: We have shown that the downward closures of the language of N and of

L>k(N,Minit ,Mfinal), the [0, k]-ω-overapproximation coincide. We first project the transition se-

quence back to the net N, meaning that we use the non-ε-labeled variant of each transition

wherever needed. This sequence then induces an accepting run of the automaton A>k with

L(A>k) = L>k(N,Minit ,Mfinal) on a superword of w. Indeed, the automaton is defined to ignore

the precise value of markings on places where bound k has been exceeded. Hence, requiring

M′
i ⩽k Mi+1 is sufficient to show that the transitions can be repeated. Altogether, we have

w ∈ L>k(N,Minit ,Mfinal)↓= L(N↓,Minit ,Mfinal).
For the other direction, define l = (k + 2)∣P∣, and consider the word

w(0)(wΓ1 )lw(1) . . .w(m−1)(wΓm )lw(m) ∈ L(lin(p)) .
Since we assume that the inclusion holds, N↓ has a computation

Minit = M0 σ0 M′
0 τ1 M1 σ1 M′

1 τ2 . . .M′
m−1 τm Mm σm M′

m ⩾ Mfinal ,

where λ(σi) = w(i) for all i and λ(τi) = (wΓi )l for all i.

This computation already covers the final marking and satisfies the first property from Defini-

tion 9.4.4. For the other twoproperties, we essentially need to identify for each τi an infix τ′i such

that themarking before firing τ′i is ⩽
k-smaller than themarking after firing τ′i . The number lhas

been chosen so that this is possible.

Let us focus on one infix M′
i−1 τi Mi . Since λ(τi) = (wΓi )l, we may split it into

M′
i−1 = M

(0)
τ(1) M(1)

τ(2) . . . τ(l) M(l) = Mi

where λ(τ( j)) = wΓi for each j and τi = τ(1) . . . τ(l). Now observe that the set ([0, k] ∪ {ω})P has

cardinality (k + 2)∣P∣ = l. This means that if we identify all numbers strictly greater than k with

each other, there are only ldifferent markings. The sequence M(0) ,M(1) , . . . ,M(l) of markings

from the above computation contains l+ 1 markings. Hence, there need to be indices j < j′
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9 Downward closures

such that M( j) and M( j′) assign more than k tokens to the same places, and coincide on the rest

of the places. This in particular means that M( j) ⩽k M( j′).
We may rewrite M′

i−1 τi Mi as

M′
i−1 τ(1)⋯τ( j) M( j)

τ( j+1)⋯τ( j′) M( j′)
τ( j′+1)⋯τ(l) Mi .

To obtain a witness, it remains to get rid of superfluous letters. Recall that in N↓, each transition

has an ε-labeled variant. We thus may define τ′i to be obtained from τ(1) . . . τ( j) by replacing

all non-ε-labeled transitions by their ε-labeled variant, τ′′′i by applying the same to τ( j′+1) . . . τ(l),
and finally τ′′i to be obtained from τ( j+1) . . . τ( j′) by keeping the non-ε-labeled transitions in τ( j′),
but applying the replacement to all other transitions. We obtain λ(τ′i) = λ(τ′′′i ) = ε, λ(τ′′i ) = wΓi .

To finish the construction, we replace τi by τ
′
i .τ

′′
i .τ

′′′
i , thenmerge τ′i with the preceding sequence

σi−1 and τ′′′i with σi . This means we replace

Mi−1 σi−1 M′
i−1 τi Mi σi M′

i

by

Mi−1 σi−1 .τi ′ M( j) τi ′′ M( j′) τi ′′′.σi M′
i ,

where we have λ(σi−1 .τ′i) = ai−1, λ(τ′′i ) = wΓi , λ(τ′′′i .σi) = ai , and M( j) ⩽k M( j′).
Applying this replacement to each τi yields a witness. ⬛

With the lemmaproven, it remains to check the existence ofwitnesses in nondeterministic poly-

nomial time. To solve this problem, we construct a formula ϕ in existential Presburger arith-

metic that is satisfiable if and only if a witness exists. We proceed similar to the proof of NP

membership of the word problem for BPP nets, Proposition 6.4.6. The formula is a conjunction

of the formula characterizing reachability in amodified net N′ and several formulas that express

the conditions that we impose on a witness.

Consider the word

w = w(0)wΓ1w(1) . . .w(m−1)wΓ1w(m) ∈ L(lin(p))
in which we take one iteration of each wΓi . The proof of Proposition 6.4.8 yields a formula

ϕ = ϕ(N↓,Minit ,Mfinal),w in existential Presburger arithmetic of size polynomial in the input size that

is satisfiable if and only ifw ∈ L(N↓,Minit ,Mfinal).
We recall the construction on a high level of abstraction: For each of the letters wi of w, the

formula guesses the transition ti of N↓ with λ(ti) = wi that will generate it. To take care of the

sequences of ε-labeled transitions between the letters, we use the characterization of reacha-

bility in BPP nets by an existential Presburger formula. Intuitively, for each letterwi , the formula
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9.4 SRE inclusion in the downward closures for BPP nets

existentially quantifies over the marking that will be reached before resp. after transition ti has

been fired. To implement this, we consider the net Nε obtained from N↓ by removing all non-

ε-labeled transitions. For each letter wi of w, we create two copies of N ↓. In one copy, the

sequence of ε-labeled transitions before ti is executed. The initial marking for this copy should

be the marking reached after firing the transition corresponding to the letter before wi . Since

we do not have this marking at hand, we add transitions that allow a computation to popu-

late the copy with an arbitrary initial marking. These transitions generate the samemarkings in

both copies. The other copy does not have any transitions; it is simply used to keep the initial

marking available for the formula.

The formula ϕ that we construct then checks that there is a marking that is reachable in the

modified net (which in particular implies that in each copy, the transition relation of net N↓ has

been respected), the marking reached in the copy for letter wi enables transition ti , the initial

marking of the copy for the next letter afterwi is populated with the marking that results from

firing transition ti , and the final marking reached in the last copy covers Mfinal.

To be able to use the construction from the proof of Proposition 6.4.8, we need to incorporate

a small modification. The formula ϕmakes available to us the markings that occur before and

after each of the letters of the word w in the form of its free variables. However, the markings

Mi andM
′
i that we need to considerwhen checking for the existence of awitnessmay occur not

directly before or after a proper letter, but in the midst of a sequence of ε-labeled transitions.

To overcome this problem, we change the construction so that for the last letter of each infix

wΣ i , the formula actually makes available to us two markings: The marking that occurs after

the transition corresponding to the letter, and another marking that is seen after a (potentially

empty) sequenceof ε-transitions. Similarly, for the first letter of each infixwΣ i , we assume that in

addition to themarkingdirectly before the transition corresponding to the letter, we also have a

marking fromwhich the first can be reached by ε-transitions available. Formally implementing

this is an extension of the proof of Proposition 6.4.8 that is straightforward. We simply insert

additional copies of the nets at the appropriate locations and extend the formulas to ensure

that these copies are populated correctly.

With the modification in place, we can assume that the modified formula ϕmakes available to

us the followingmarkings in the formof free variables: Mi , the freshly introducedmarking in the

corresponding copy of Nε before (a sequence of ε-transitions before) the first letter of wΓi , and

Mi+1, the marking reached in the copy for the last letter ofwΓi (and a sequence of ε-transitions).

Finally, we construct a new formula ϕ ∧ ψ that checks for the existence of a witness, where ψ

checks Condition (3),M′
i ⩽

k Mi+1: Themarking before seeingwΓi should be ⩽k-smaller than the

marking after seeingwΓi . Formally, we have

ψ = ⋀
i∈[1,m] ⋀p∈P(M′

i(p) < k) ⟹ Mi(p) ⩽ Mi+1(p) .
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We claim that this formula can be constructed in polynomial time. The only critical part is the

encoding of k. Number k = (∥Minit∥1 + 2) ⋅ ((∣P∣ + 1) ⋅ ∥N∥∞)(∣T ∣+2) is exponential, but its binary
encoding is of size polynomial in the size of the input.

Altogether, the construction proves the following lemma.

9.4.6 Lemma
We can construct in polynomial time a formula in existential Presburger arithmetic that is satis-

fiability if and only if there is a witness for lin(p).
With that lemma at hand, we simply need to collect all our results to get the proof of Proposi-

tion 9.4.3, which implies Theorem 9.4.2.

Proof of Proposition 9.4.3:
Consider a product p and a BPP net (N,Minit ,Mfinal) for which we want to check the inclusion

L(lin(p)) ⊆ L(N,Minit ,Mfinal)↓. By Lemma 9.4.5, it holds if and only if there is a witness for lin(p).
With Lemma 9.4.6, we can construct a formula in existential Presburger arithmetic of polyno-

mial size that is satisfiable if and only if a witness exists. By the NP-completeness of EPA-SAT,

Theorem 3.4.2, this can be checked in nondeterministic polynomial time. ⬛

This completes this section and the proof of Theorem 9.4.1. Note that the problem remains

NP-complete in the unary case since the lower bound continues to hold, as in Section 8.4.

Altogether, this finishes our study of the downward closure of Petri net coverability languages.

We have proven all results regarding upward closures that we mentioned in Section 7.3.
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10 Being upward/downward closed and
regular containment

We complement our study of computing the upward/downward closure of Petri net coverabil-

ity languages by considering the problems of checking whether such a language is upward

resp. downward closed. If this is the case, the regular downward resp. upward closure, a repre-

sentation of which we are able to compute, is actually the language of the Petri net.

In Section 1.2, we have motivated our interest in the upward and downward closures of lan-

guages by situations in which we want to take the lossy or gainy behavior of a system into

account. Let us assume a situation in which we have incorporated this lossiness or gaininess

into the model. For example, wemay have constructed a Petri net that models a lossy network,

where the fact that messages can be dropped is already integrated into the model. In this case,

one part of verifying the model could consist of checking that the language of the Petri net is

indeed downward closed, which means that it is equal to its downward closure.

We start by formally defining the problems PN-BEINGUC and PN-BEINGUC.

Being upward closed (PN-BEINGUC)

Given: A labeled Petri net instance (N,Minit ,Mfinal).
Question: L(N,Minit ,Mfinal) = L(N,Minit ,Mfinal)↑?
Being downward closed (PN-BEINGDC)

Given: A labeled Petri net instance (N,Minit ,Mfinal).
Question: L(N,Minit ,Mfinal) = L(N,Minit ,Mfinal)↓?

The goal of this chapter is to prove that both problems are decidable. For the proof of decidabil-

ity, we consider regular containment, theproblemof checkingwhether agiven regular language

is contained in given Petri net language. This problem is of independent interest: One the prac-

tical side, it allows us to solve verification tasks in which the goal is to show that a given set of

behaviors can actually occur. On the theoretical side, other interesting problems like universal-

ity can be reduced to regular containment. Proving its decidability will imply the decidability

of PN-BEINGUC and PN-BEINGDC.

10.0.1 Theorem
PN-BEINGUC and PN-BEINGDC are decidable.
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10 Being upward/downward closed and regular containment

Assume that we want to check L(N,Minit ,Mfinal) = L(N,Minit ,Mfinal)↑ for some given Petri net

instance (N,Minit ,Mfinal). Note that the inclusion L(N,Minit ,Mfinal) ⊆ L(N,Minit ,Mfinal)↑ always

holds. It remains to check whether L(N,Minit ,Mfinal)↑⊆ L(N,Minit ,Mfinal) is true. Here, the lan-

guage L(N,Minit ,Mfinal)↑ is effectively regular, i.e. it is regular and Theorem 8.1.2 allows us to

compute an NFA representing it. The situation is similar in the case of PN-BEINGDC: Theo-

rem 9.1.2 yields computability of the downward closure.

Therefore, once we prove that checking whether L(A) ⊆ L(N,Minit ,Mfinal) holds for some arbi-

trary NFA A is decidable, the decidability of PN-BEINGUC and PN-BEINGDC immediately follows.
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10.1 Regular containment

As mentioned before, the problem of checking whether a given regular language is contained

in a Petri net coverability language is of independent interest. We formalize it as follows.

Regular containment (PN-REGCONT)

Given: A labeled Petri net instance (N,Minit ,Mfinal), an NFA A.

Question: L(A) ⊆ L(N,Minit ,Mfinal)?
In the rest of the section, our goal is to prove that PN-REGCONT is decidable.

10.1.1 Theorem
PN-REGCONT is decidable.

Before giving the proof, we discuss the consequences of this result. Wehave alreadymentioned

potential practical applications in the previous sections.

Firstly, note that the decidability of PN-REGCONT implies the decidability of other interesting

computational problems. In particular, we get the decidability of the universality problem for

the coverability languages of Petri nets, i.e. checking whether Σ∗ = L(N,Minit ,Mfinal), as an

immediate consequence. This is, to the best of the author’s knowledge, a new result. In fact,

Wimmel [Wim08] conjectures that this problem is undecidable even for Petri nets that do not

use ε as transition label. The results extend the known decidability of universality for freely la-

beled Petri nets, i.e. Petri nets inwhich each transition has a distinct non-ε label. The latter holds

for several acceptance conditions, including coverability and reachability. It contrasts with the

undecidability of universality in the case of non-freely labeled Petri nets with reachability as the

acceptance condition [Wim08].

Secondly, the decidability is surprising in that the proof approach that is commonly used to

show the decidability of the regular containment problem does not apply in the case of Petri

net languages. Usually, one uses that L1 ⊆ L2 holds if and only if there is no counterexample

to inclusion, i.e. L1 ∩ L2 is empty. This approach requires L2 to stem from a class of languages

that canbeeffectively complemented. It iswell-known that the class of Petri net coverability lan-

guages is not closed under complement [MKRS98b; MKRS98a]. For some other classes that are

not closed under complement, e.g. the context-free languages, the regular containment prob-

lem is undecidable. Also, several other problems that could be solved if an effective comple-

mentation of Petri net languages would be possible, are known to be undecidable. These prob-

lems include the inclusion problem, i.e. the question of whether L(N1) ⊆ L(N2) holds for two

given Petri nets N1 , N2, even in the simple case that the nets do not use ε as label and that the
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10 Being upward/downward closed and regular containment

acceptance condition is trivial, i.e. it is coverability with respect to the zero vector. The undecid-

ability of the inclusionproblemcanbededucedusing a technique introducedby Jančar [Jan95],

see e.g. [Wim08] for a proof.

Trace containment

Let us turn to the proof of Theorem 10.1.1. It strongly relies on a result by Jančar, Esparza, and

Moller [JEM99] that shows that the containment problem is decidable for trace languages of

finite-state automata resp. Petri nets. A trace of an automaton is a finite word that occurs along

a computation from the initial state, regardless of whether it reaches a final state. Formally, we

define the trace language of an NFA A as

T (A) = {w ∈ Σ∗
»»»»»» qinit

w
−−→ q for some q ∈ Q} .

Similarly, we define the trace language of a Petri net N together with an initial marking Minit by

T (N,Minit) = {λ(σ) ∈ Σ∗ ∣ Minit σ } .
Observe that T (A) is the language of A if we assume that all states are final. Similarly, the trace

language of the Petri net is the coverability language with the zero vector as the final mark-

ing, T (N,Minit) = L(N,Minit , 0⃗). An important property of trace languages that limits their

expressiveness is that they are necessarily prefix closed: If w = w1 . . .wn ∈ T (A), then also

w1 . . .wk ∈ T (A) for all k ⩽ n.
The trace containment problem is a variant of regular containment in which we restrict both

languages to be trace languages.

Trace containment (PN-TRACECONT)

Given: A labeled Petri net with initial marking (N,Minit), an NFA A.

Question: T (A) ⊆ T (N,Minit)?
The result that we rely on is the decidability of this problem.

10.1.2 Theorem (Jančar, Esparza, and Moller [JEM99])
PN-TRACECONT is decidable.

Wehavearguedabove that analgorithm for containment cannot simply complement aPetri net

coverability language. The same reasoning holds in the case of trace containment. We briefly

discuss the algorithmproving Theorem10.1.2. Let us assume that A is a DFA, which in particular

means that it has no ε-labeled transitions. The algorithm simultaneously explores the behavior

of the automaton and the net, in a fashion that is similar to the construction of the Karp-Miller

tree, see Section 9.3. It constructs a tree whose nodes are labeled by pairs (q,M), where q is a
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10.1 Regular containment

state of the automaton andM is a set of incomparable generalized markings. This means that

M ⊆ P(NP
ω), and for M,M′ ∈ M, neither M ⩽ M′ nor M′ ⩽ M holds.

The root node is labeled by the initial state and the singleton set consisting of the initial mark-

ing. Successors of a node (q,M) are constructed by picking an applicable transition of the

automaton, say q
a
−→ q′, and then constructing the finite set of maximal markings from the set

M′ = {M′ ∈ N
P
ω ∣ ∃M ∈ M, ∃σ∶ λ(σ) = a,M σ M′}. Note that there are potentially infinitely

many candidates for σ , since we allow ε-labeled transitions in the net. Altogether, we obtain

the successor (q′ ,M′).
If we have constructed a successor of the shape (q′ ,∅), trace containment is violated. Indeed,

the path from the root node to (q′ ,∅) can be pumped to obtain a witness for a word that is

contained in T (A), but not in T (N,Minit). If we have constructed a successor (q′ ,M′) such that

on the path from the root node to (q′ ,M′), there is a node (q′ ,M) such that the control states

are equal and for every M′ ∈ M′, there is M ∈ M with M′ ⩽ M, (q′ ,M′) becomes a leaf for

which we do not have to construct further successors.

The soundness of the algorithm is not hard to prove. The difficult part is showing that the suc-

cors can be constructed in finite time, and that the tree is necessarily finite. This part of the

proof relies on well-quasi ordering arguments. Hence, a naive complexity analysis of the algo-

rithm yields a non-primitive recursive complexity. The literature provides us with a matching

non-primitive recursive lower bound: In [HT18], it was shown that trace universality, a variant

of trace containment, is Ackermann-complete even for Petri nets in which just a single place is

unbounded.

Reducing regular containment to trace containment

To prove Theorem 10.0.1, we show how to reduce an instance of PN-REGCONT to an instance

of PN-TRACECONT. Let (N,Minit ,Mfinal) be the labeled Petri net instance of interest, and let

A = (Q ,→, qinit , QF ) be the NFA for which we want to check language containment. As argued

above, we have T (N,Minit) = L(N,Minit , 0⃗). Hence, we consider the zero vector as the new fi-

nal marking. To take the original final marking Mfinal into account, we will use a new transition

with a fresh label that can only be fired once Mfinal has been covered. Similarly, we will add

transitions with this label to the automaton that witness that a final state has been reached.

More formally, let a /∈ Σ be a fresh letter and define Σa = Σ ∪⋅ {a}. We define N.a to be the

labeled Petri net over Σa that is obtained from N by adding an a-labeled transition ta that pro-

duces no token and consumes Mfinal, i.e. in(ta) = Mfinal, out(ta) = 0⃗. Similarly, we construct

an automaton A.a over Σa for the language L(A).a. For the proof, it will be important that A.a

is reduced in these sense that it has a unique final state that is reachable from all states. This

property guarantees that each word w ∈ T (A.a) is the prefix of a word from L(A.a). To ensure

it, we construct A.a from A as follows: (1) We add a fresh final state qfinal, then (2) add a-labeled

transitions from all other final states to this state, (3) make all other states non-final, and finally

(4) remove all states from which qfinal is not reachable.
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10 Being upward/downward closed and regular containment

The net N.a and the automaton A.a have been constructed so that we can use them to reduce

regular containment to trace containment, as stated by the following lemma.

10.1.3 Lemma
L(A) ⊆ L(N,Minit ,Mfinal) holds iff T (A.a) ⊆ T (N.a,Minit) holds.
Proof:
Assume L(A) ⊆ L(N,Minit ,Mfinal) to hold. We prove that trace containment holds. Let

v ∈ T (A.a), and let q be some state of A.a such that qinit
v
−→ q. Since the unique final state

is reachable from every state of A.a by construction, there is some word w with q
w
−−→ qfinal.

Hence, we have v .w ∈ L(A.a) = L(A).a, and we may write v .w = x .a for some x ∈ L(A). By

assumption, x ∈ L(N,Minit ,Mfinal), so there is a computation Minit σ M ⩾ Mfinal of N with

λ(σ) = x . This computation is also a computation of N.a, and it reaches a marking greater

than Mfinal. Hence, we have that σ .ta is a valid firing sequence from Minit. We obtain that

λ(σ .ta) = x .a ∈ T (N.a,Minit). Recall that v is a prefix of v .w = x .a, and that trace languages are

prefix-closed. Hence, we obtain v ∈ T (N.a,Minit) as desired.
For the other direction, assume T (A.a) ⊆ T (N.a,Minit) to hold. Let w ∈ L(A), and consider

w .a ∈ L(A.a) ⊆ T (A.a). By assumption, we havew .a ∈ T (N.a,Minit), so we may choose a com-

putationMinit σ M of N.awith λ(σ) = w .a. Note thatw is aword over Σ and does not contain

a. Hence, σ is of the shape σ = σ ′ .ta , where σ ′ only uses transitions from the original net N. We

get thatMinit σ ′ M is a computation of N reaching amarking inwhich transition ta is enabled,

which implies M ⩾ Mfinal. Hence, λ(σ ′) = w ∈ L(N,Minit ,Mfinal), as we wanted to prove. ⬛

Combining the reduction from regular containment to trace containment, Lemma 10.1.3, with

the decidability of trace containment, Theorem 10.1.2, yields the desired decidability of regular

containment, Theorem 10.1.1.

This also finishes the proof of Theorem 10.0.1. With this proof, all results mentioned in Sec-

tion 7.3 have been shown and our study of the computability and complexity of the upward

and downward closures of Petri net coverability languages is complete.
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Part IV.
Separability

In Section 1.1 of the introduction, we have explained that the (regular) separability problem is

related to the compositional verification of concurrent systems. This part of the thesis is con-

cerned with studying regular separability for well-structured transition systems (WSTSes).

Outline

We start by providing the basic definitions regarding separability and regular separability in

Chapter 11. We also discuss related work from the literature and summarize the results that we

will show in this part of the thesis.

Before actually considering the separability problem for the class of languages of WSTSes, we

study the relations among various subclasses thereof in Chapter 12. These results widen the

applicability of our main result, which we will present in Chapter 13. We will prove that under

mild preconditions, any two disjoint WSTS languages are regularly separable. We first prove a

technical core result that relates a certain type of invariant of the state space of a WSTS to the

existence of a regular separator. Then, we use the ideal completion of aWSTS to prove that such

an invariant always has to exist.

In Chapter 14, we demonstrate our result on regular separability by applying it to Petri net cov-

erability languages, a subclass of the class of WSTS languages. We explicitly provide the con-

struction of a regular separator, which yields a triply exponential state complexity. Furthermore,

we prove a doubly exponential lower bound for that space complexity.

Publication

The content we present in this section is mostly taken from the publication [CLMMKS18]

(resp. its full version [CLMMKS18a]). We will discuss the author’s contributions to this paper

in Chapter 20.
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11 Separability and regular separability
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In Section 1.1, we have motivated our interest in separability by its potential applications in

compositional verification. In this chapter, which serves as an introduction to this part of the

thesis, we will elaborate on the theoretical background of the separability problem. This in-

cludes giving the formal definition. Afterwards, we discuss some results from the literature that

settle the status of decidability of the separability problem for several language classes. Finally,

we outline the results that we will prove in this part of the thesis.

11.1 Basic definitions

The separability problem can be seen as an extended version of the intersection-emptiness

problem. The intersection-emptiness problem asks whether two given languages are disjoint.

Usually, we fix the classes from which the languages should come beforehand and expect that

the languages are given in the form of an effective representation, e.g. we expect context-free

languages to be given as context-free grammars.

Intersection-emptiness forF ,F ′

Given: Language L ⊆ Σ∗ fromF , LanguageK ⊆ Σ∗ fromF ′.

Question: Are L andK disjoint, i.e. L ∩K = ∅?

For their usage in verification, two variants of this problem are considered to be particularly

interesting. The first is the case in which one of the classes is the class of regular languages

and the other class is a class beyond the regular languages. This models the verification prob-

lem inwhichwe have a system, represented by the potentially non-regular language consisting

of its possible executions, and a specification, represented by the language of executions that

violate it. The latter can be assumed to be regular because the expressive power of specifica-

tion languages (e.g. the logics LTL [Pnu77] and S1S [Büc62] on finite words) is typically at most

equal to the regular languages. The system violates the specification if it has an execution vio-

lating the specification, i.e. the intersection of the languages is non-empty. This variant of the

intersection-emptiness problem is decidable for many classes of languages. Assuming that the
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11 Separability and regular separability

class that we are considering is effectively closed under regular intersection, we canmodify the

given system. We obtain a system whose language is the intersection of the original language

with the regular language. Then, we invoke a decider for the emptiness problem for that sys-

tem. The assumptions that we have used here are met for example in the case of context-free

languages and in the case of Petri net languages with both coverability and reachability as ac-

ceptance conditions.

In the second interesting variant of the intersection-emptiness problem, we consider two lan-

guages coming from the same class of languages F ; we speak of the intersection-emptiness

problem forF . This problem can be used tomodel a setting in which we consider a concurrent

system. Let us for the sake of simplicity assume that the system only has two components. We

model each of the components by a language that contains all executions that (1) respect the

behavior of the corresponding component, (2) are arbitrary with respect to the other compo-

nent, and (3) violate the specification. See Section 1.1 for a more in-depth explanation of the

latter two aspects. We obtain two languages whose intersection is non-empty if and only if

there is an execution that respects the behavior of both components of the concurrent system

but violates the specification.

This version of the intersection-emptiness problem is typically much more complicated than

the intersection-emptiness problem where one of the classes is the class of regular languages.

As in the rest of this thesis, we are interested in an algorithm that does not only decide the

problem, but also provides a certificate. In the case of the two languages not being disjoint, a

natural candidate for this certificate is a word in the intersection of the languages. Consider for

example the intersection-emptiness problem for context-free languages, which is well-known

to be undecidable (see e.g. [HU79] for a proof). If we manage to identify a word that is in the

intersection, it is easy to verify the output by onemembership query for each of the languages.

The problem of providing a certificate for the emptiness of the intersection of two languages

is much more involved. To this end, the notion of a separator can be used. A separator for two

languages L,K ⊆ Σ∗ is a third language R ⊆ Σ∗ that fully contains L and is disjoint from K,

i.e. L ⊆ R, K ∩ R = ∅. Obviously, the existence of a separator is equivalent to intersection-

emptiness: If the languages are not disjoint, a separator cannot exist. Otherwise, L is a separa-

tor. Hence, it only makes sense to study separators if we restrict them to come from a simpler

class – one with less expressive power – than L andK do. We call a separator that comes from

language class S an S-separator, and we say that L and K are S-separable if an S-separator

exists. The decision problem of checking the existence of such a separator is the following.

S-separability forF ,F ′

Given: Languages L ⊆ Σ∗ fromF andK ⊆ Σ∗ fromF ′.

Question: Are L,K S-separable, i.e. is thereR ⊆ Σ∗ from S with L ⊆ R andK ∩R = ∅?
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We are mostly interested in the case that both given languages come from the same class F ,

which we call the S-separability problem for F . A positive answer to intersection emptiness is

necessary for a positive answer to S-separability, independent of the choice of S . If we chose

S to be F , the two problems are equivalent as mentioned before. If we pick S to be a sim-

pler class, the problem becomes interesting. Assume that we have an algorithm solving the S-

separability problem for some classF that is constructive in the sense that it outputs a represen-

tation of the separator if one exists. This algorithm can be seen as an algorithm for intersection-

emptiness that produces a certificate in the case that the intersection is indeed empty. Here, we

use that checking that a given languageR is a separator is typically – depending on the choice

of class S – much simpler than checking intersection-emptiness. However, one has to be care-

ful since intersection-emptiness does not imply the existence of a separator if the class S is too

restrictive. Consider for example the context-free languagesL = {anbn ∣ n ∈ N} andK = L that

are complements of each other. The languages are obviously disjoint, but notS-separable if we

choose S to be a subclass of the context-free languages that does not contain L, the regular

languages for example.

From the perspective of verification, the most important variant of the separability problem is

regular separability, i.e. checking the existence of a separator from the class of regular languages.

In this case, we call the separators regular separators and we call two languages that have such

a separator regularly separable. We formally state regular separability as a decision problem.

Regular separability ofF
Given: Languages L,K ⊆ Σ∗ fromF .

Question: Are L,K regularly separable,

i.e. is thereR ⊆ Σ∗ regular with L ⊆ R andK ∩R = ∅?

Its importance stems from the fact that regular languages admit a plethora of representations

and algorithms that work on these. On the theoretical side, this means that given a regular

candidate language R, the problem of checking whether R is indeed a regular separator is

decidable for many language classes. We have argued above that the intersection-emptiness

problem is decidable in many cases when one of the classes is the class of regular languages.

This allows us to checkK∩R = ∅. We can then use that the class of regular languages is closed

under complement and check L ⊆ R by checking L ∩ R = ∅. Another nice property of the

regular separability problem is that it is symmetric in the input: IfR is a regular separator for L
andK, then its complementR is a regular separator forK andL. Most language classes beyond

the regular languages do not satisfy these properties, a statement that we will make formal in

the form of Corollary 13.1.5.
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REG✓

OCN✓ [CL17] VOCA× [CCLP17a]

OCA× [CL17]

VPL× [Kop16]

DCFL× [SW76]

CFL×

HORS×

PNCov✓

PNReach?WSTS✓ [CLMMKS18]

Figure 11.2.a: An overview of the decidability status of the regular separability problem for
various languages classes. Boxes represent classes, arrows represent inclusions
among classes. The symbol on the left-hand side of each box shows whether reg-
ular separability is decidable (✓), undecidable (×), or whether the decidability sta-
tus is unknown (?).

11.2 Related work

We summarize results from the literature regarding separability and regular separability.

The separability of regular languages by subclasses of the regular languages is a widely studied

problem, but beyond the scope of this thesis. Let us briefly mention that the decision prob-

lem of S-separability of regular languages is decidable if S is the class of piecewise-testable

languages [CMM13; PRZ13b], or the class of locally testable or locally threshold-testable lan-

guages [PRZ13a], or the class of languages definable in first-order logic [PZ16], or one of certain

classes in the higher levels of the first-order hierarchy [PZ14]. There has also been interest in

the separability of languages classes beyond the regular languages by subclasses of the regu-

lar languages, see e.g. [CMRZZ17].

We will be exclusively interested in regular separability in this thesis. Figure 11.2.a contains an

overview of the results that have been established. We will discuss these results in detail in the

following.

Undecidable cases

A classical result by Szymanski and Williams [SW76] shows that regular separability is undecid-

able for the class DCFL, the deterministic context-free languages. This class is a strict subclass of

CFL, the class of context-free languages, that is defined by deterministic pushdown automata.
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Theundecidability forDCFL implies undecidability for all superclasses, includingCFL,HORS (the

languages of higher-order recursion schemes), and the class of Turing machine languages RE.

Kopczynski [Kop16] has shown that the problem is also undecidable for VPL, the class of lan-

guages of visibly pushdown automata (VPAs). A VPA over an input alphabet that is partitioned

into push-letters, pop-letters, and internal letters, acts like a pushdown automaton, but in each

step, the type of letter that is read determines the type of stack operation that should be per-

formed. The undecidability for VPL is surprising because VPL shares many closures properties

and the resulting algorithmic properties with the regular languages. In particular, VPL is closed

under complementation and intersection-emptiness for VPL can be decided (assuming that

both languages use the same partitioning of the alphabet) [AM04].

Czerwiński and Lasota [CL17] have shown that regular separability is also undecidable forOCA,

the class of languages of one-counter automata. A one-counter automaton is an automaton

that uses a single non-negative counter as storage in addition to its finitely many control states.

The classOCA is a subclass of CFL – one-counter automata can be seen as pushdown automata

over two stack symbols, where one is exclusively used to mark the bottom-of-stack – that is

incomparable to VPL.

Finally, the paper [CCLP17a] strengthens the aforementioned results by showing that regular

separability is undecidable even for languages of visibly one-counter automata (VOCA), one-

counter automata for which each letter that is read determines the counter operation that is

performed. This type of automata defines a class of languages that is a strict subclass of both

VPL andOCA. This shows that regular separability becomes undecidable for classes that extend

the regular languages towards the context-free ones, even if the extension is very restricted.

Decidable cases

The paper by Czerwiński and Lasota [CL17] exhibits a case in which regular separability is decid-

able. It is decidable for OCN, the class of one-counter nets, one-counter automata that cannot

check their counter value during runtime. Alternatively, these may be seen as Petri nets with

reachability as the acceptance condition inwhich all placesbutoneonly containone token in to-

tal. The decidability forOCN is interesting because regular separability is non-trivial in this case:

There are disjoint languages from OCN that are not regularly separable. In the paper, checking

the existence of a regular separator is reduced to checking whether a specific approximation is

a separator for some constant determining the precision of the approximation. The latter can

be reduced to reachability in 2-dimensional vector addition systems (or, equivalently, Petri nets

with 2 unbounded places), which is PSPACE-complete [BFGHM15]. Regular separability inherits

this complexity.

To thebest of the author’s knowledge, it hasnot yetbeendeterminedwhether regular separabil-

ity is decidable in the case of Petri net reachability languages. However, there are subclasses for

which the problem has been shown to be decidable. We have already elaborated on the result

for one-counter nets. In [CCLP17a], the authors prove that the problem is decidable for Parikh
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automata, or equivalently, integer Petri nets with reachability as the acceptance condition. An

integer Petri net is a Petri net that is executed on what we have called pseudo-markings, mark-

ings thatmay assignnegativenumbers of tokens. Additionally, the regular separability problem

has been shown to be decidable for the class of commutative closures of Petri net reachability

languages [CCLP17b]. Equivalently, it is decidablewhether two Petri net reachability languages

can be separated by the commutative closure of a regular language. The paper [CZ20] provides

a generalized approach that can be used to prove some of the aforementioned results.

The rest of this part of the thesis is dedicated to showing results related to regular separability

for Petri net coverability languages, another important subclass of the Petri net reachability

languages. In fact, we will show that under mild assumptions, regular separability is decidable

even for the languages of WSTSes, a class that extends the Petri net coverability languages and

is incomparable to the Petri net reachability languages [GRV07]. We will discuss these results,

which stem from the publication [CLMMKS18] in the next section.

Related problems

We conclude our overview of the related work from the literature by comparing regular separa-

bility to other decision problems for language classes. There are two candidate problems that

seem to be closely related to regular separability. The first one is the intersection-emptiness

problem for which we have already extensively discussed why it is related to regular separabil-

ity. The second one is the regularity problem, the problem of checking whether the language

of a given system is regular. Its relation to regular separability stems from the fact that if a lan-

guage and its complement are from the same class of languages, then these languages are

regular if and only if they are regularly separable. This is because in that case, the language it-

self is the only possible candidate for a regular separator; we will later formally prove this state-

ment in the form of Corollary 13.1.3. However, it has been shown that both problems are in-

dependent of regular separability in general. The decidability or undecidability of regularity or

intersection-emptiness does not imply the decidability or undecidability of regular separability

and vice versa.

The result by Kopczynski [Kop16] on visibly pushdown languages exhibits a case in which

intersection-emptiness is decidable, but regular separability is undecidable. Recently, Thin-

niyam and Zetzsche [TZ19] have constructed a setting in which regular separability is decid-

able while intersection-emptiness is undecidable. A notable property of their construction is

that they consider the intersection-emptiness problem and regular separability problem for

two classes of input languages that are not equal. Formally defining the classes of languages

for which they show the result is rather involved and beyond the scope of this thesis.

Regarding regularity, it has been observed that regular separability is undecidable for deter-

ministic one-counter automata [CL17], while regularity is decidable even for deterministic push-

down automata [Val75]. For the other direction, one observes that regularity is undecidable for

Parikh automata [CFM11], while regular separability is decidable [CCLP17a].
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11.3 Results

The main result that we will show in this part of the thesis is the following: Under mild assump-

tions, any two disjoint WSTS languages are regularly separable. The mild assumptions are in the

case of upward-compatible WSTSes that one of the languages is the language of a WSTS that

is finitely branching, deterministic, or ω2. The result also applies in the case of downward-

compatible WSTSes (DWSTSes). Here, we need that one of the languages is the language of

a deterministic DWSTS or the language of an ω2-DWSTS. We have not yet formally defined the

restriction of being ω2; we will do so in Section 12.1. For now, it suffices to know that virtually

all WSTSes that occur in practice are ω2-WSTSes. In particular, our result applies to Petri net

coverability languages.

In Chapter 12, we will study several restricted versions of WSTSes and prove inclusions among

their languages classes. We obtain that the aforementioned restriction have in common that

they allow us to determinize the corresponding WSTS.

We will use this fact in Chapter 13 when proving our results. Firstly, we show a technical core

result that relates certain invariants on the level of configurations to the existence of a regular

separator on the level of languages. This result is stated on the level of upward-compatible

LTSes, which then allows us to apply it to both DWSTSes and to WSTSes.

Our result on regular separability implies that checking regular separability amounts to check-

ing disjointness, which can be done under mild assumptions. Furthermore, it is constructive in

the sense that from a certain type of proof of disjointness, one can construct a regular separa-

tor. Hence, it provides the desired certificate for intersection-emptiness, which was our initial

motivation for studying regular separability.

Wewill demonstrate the construction in Chapter 14 in the case of Petri nets with coverability as

the acceptance condition. We obtain a triply exponential upper bound for the state complexity

of a regular separator. Furthermore, we complement this by providing a doubly exponential

lower bound. We will comment on the fact that the bounds do not match and on several other

open questions regarding our results throughout this part of the thesis.
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In this chapter, we study the relations amongvarious classes ofWSTS languages that aredefined

by imposing restrictions on the WSTSes. This correlates with our analysis of separability for

WSTS languages, the main goal of this part of the thesis, in the following sense: Many of the

results that we will prove in this chapter will widen the applicability of our results on WSTS

separability. We will comment on this in more detail in the next chapter.

12.1 ω2-WSTSes

In Section 4.1, we have defined finitely branching and deterministic LTSes. These restrictions

also apply toWSTSes, leading to the notions of finitely branching and deterministic WSTSes. In

this section, we will introduce ω2-WSTSes, another restricted version of WSTSes. In contrast to

deterministic and finitely branching WSTSes, ω2-WSTSes are defined exclusively by restricting

the underlying order. To define what an ω2-WQO is, we will need some notation. For a quasi-

order (X , ⩽), we denote by P↓(X) the downward-closed subsets of X ,

P↓(X) = {D ⊆ X ∣ D is downward closed} = {Y↓ ∣ Y ⊆ X} .
Similarly, we define P↑(X) to be the upward-closed subsets of X .

The formal definition of ω2-WQOs, see e.g. [Mar94], is technical. Instead of giving it, we use the

following characterization that was proven by Jančar [Jan99].

12.1.1 Lemma(X , ⪯) is an ω2-WQO iff (P↓(X), ⊆) is a WQO.

Phrased differently, a WQO is ω2 if applying the powerset construction results in a WQO. This

property holds for all WQOs that we have introduced so far, but not for all WQOs. Jančar [Jan99]

has shown that any WQO that is not ω2 embeds an isomorphic copy of the Rado order [Rad54](N2 , ⩽Rado), an ordering on tuples of natural numbers that is a WQO but not ω2. We define

a WSTS to be an ω2-WSTS if the underlying order is an ω2-WQO, similar for ω2-DWSTSes. The

class ofω2-WQOs and the correspondingWSTSes provides a framework underlying the forward
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12 WSTS expressiveness

analysis of WSTSes that was developed in [GRB06; FG09; FG12]. In our case, we will use the fact

that applying thepowerset construction to anω2-WQOresults in aWQOtodeterminizeWSTSes,

similar to the well-known powerset construction for finite automata.

Let us provide some examples for ω2-WQOs.

12.1.2 Example

a) Consider (Σ, =), a finite alphabet ordered by equality. This order is not only a WQO, see Ex-

ample 6.5.1, but also ω2: The set P↓(Σ) is finite, so any quasi-order on it is a WQO. Also note

that P↓(Σ) is equal to P(Σ).
b) Consider (N, ⩽). A downward-closed subset ofN falls into one of three cases: (1) it is empty,

or (2) it is infinite, inwhich case it is necessarilyN itself, or (3) it is finite, inwhich case it is of the

shape n↓ for some number n ∈ N. Hence, (P↓(N), ⩽) is isomorphic to (N∪ {⊥,⊤}, ⩽), the nat-

ural numbers extendedby abottomand a top element, where each number n represents n↓,

⊥ represents∅, and⊤ represents the setN. This order is aWQO, which can be shown similar

to Part b) of Example 6.5.1. Hence, (N, ⩽) is an ω2-WQO.

One can also show that ω2-WQOs are closed under taking Cartesian products and under taking

the subsequence ordering on finite sequences [FG09; FG12]. In particular, the product ordering(Nk , ⩽) and the subword ordering (Σ∗ ,⪯) are ω2-WQOs.

Note that the class of ω2-WQOs is not closed under applying the powerset construction: There

is a WQO (X , ⩽) that is ω2 such that (P↓(X), ⊆) is not ω2, meaning that (P↓(P↓(X)), ⊆) is not

a WQO [Jan99]. To remedy this issue, one can consider the class of better-quasi orderings

(BQOs) [Nas68]. Any BQO (X , ⩽) is an ω2-WQO, and (P↓(X), ⊆) is a BQO again. The formal def-

inition of BQOs is beyond the scope of this thesis. Let us just mention that the orders from

Example 12.1.2 are BQOs and that BQOs are also closed under taking the Cartesian product and

the subsequence ordering.

Parts of the literature do not consider the downward-closed subsets ordered by inclusion, but(P↑(X), ⊇), the upward-closed subsets ordered by reverse inclusion, or (P(X), ⊑), where Y ⊑ Z

iff Y↓⊆ Z↓. The former is clearly isomorphic to (P↓(X), ⊆), as witnessed by the order-preserving

bijectivemap D ↦ X \D. The latter becomes equal to (P↓(X), ⊆) after identifying sets that have

the same downward closure (and hence are equivalent with respect to ⊑).

In the following, we will have to apply the powerset construction to aWQO that may not be ω2.

To obtain aWQO, we use a restricted version of the powerset construction. Let (X , ⩽) be a quasi-

order and define P↓fin(X) = {Y↓ ∣ Y ⊆ X , Y is finite} to be the set of downward-closed subsets

of X that occur as the downward closure of finitely many elements. In contrast to (P↓(X), ⊆),
the order (P↓fin(X), ⊆) always inherits the property of being aWQO. However, it may bemissing

some elements. For example,N is not an element of (P↓fin(N), ⊆).
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12.1 ω2-WSTSes

12.1.3 Lemma(X , ⩽) is a WQO iff (P↓fin(X), ⊆) is a WQO.

Proof:
Assume that (P↓fin(X), ⊆) is aWQO.We show that every infinite sequence x1 , x2 , . . . of elements

of X contains an increasing pair. The infinite sequence {x1}↓, {x2}↓, . . . in P↓fin(X) contains an

increasing pair i < j with {xi}↓⊆ {x j}↓ by assumption. We conclude xi ⩽ x j as desired.

For theother direction, assume that (X , ⩽) is aWQO.UsingHigman’s lemma, Lemma7.1.1, (X∗ ,⪯)
is a WQO. Now consider any infinite sequence in P↓fin(X), which we may write as Y1↓, Y2↓, . . .,

where each Yi = {y i1 , . . . , y in i } is a finite set. We represent each Yi ↓ by the finite sequence

y i1 . . . y
i
n1 ∈ X

∗ and consider the infinite sequence

y11 . . . y
1
n1 , y

2
1 . . . y

2
n2 , . . .

in X∗. Using the fact that (X∗ ,⪯) is a WQO, we obtain i < j such that y i1 . . . y
i
n i ⪯ y j1 . . . y

j
n j . From

the definition of⪯we obtain Yi ⊆ Yj. ⬛
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12 WSTS expressiveness

12.2 Results onWSTS expressiveness

With the notion of beingω2 introduced, we can state our results onWSTS expressiveness. In the

following, we identify a type of WSTS with the class of languages of such WSTSes. For example,

when we write “deterministic WSTS = finitely branching WSTS”, we mean that each language

of a deterministic WSTS is also the language of a finitely branchingWSTS and vice versa. We do

not claim that every finitely branching WSTS is deterministic.

To be able to state the result, we will also need the following notation. The reverse of a word

a1 . . . ak is defined as expected, rev(a1 . . . ak) = ak . . . a1. We extend the notion to languages,

rev(L) = {rev(w) ∣ w ∈ L}. Two LTSes M,M′ with L(M) = rev(L(M′)) are called reversely equiva-

lent. We will use the symbol ⊆rev between languages classes to express that for every language

L language in the class on the left-hand side of the symbol, the class on the right-hand side

contains rev(L).
The following theorem summarizes our results on the relations among various classes of lan-

guages defined by WSTSes and their restrictions.

12.2.1 Theorem
The following relations hold among the WSTS language classes:

ω2-WSTS ⊆ deterministic WSTS = finitely branching WSTS ⊆ WSTS ,

ω2-DWSTS ⊆ deterministic DWSTS ⊆ finitely branching DWSTS = DWSTS ,

ω2-WSTS ⊆rev deterministic DWSTS ,

ω2-DWSTS ⊆rev deterministic WSTS .

In words, ω2-(D)WSTSes determinize and reversely determinize; finitely branching WSTSes de-

terminize too, and unrestricted DWSTSes are equivalent to finitely branching DWSTSes.

The inclusions

• deterministic WSTS ⊆ finitely branching WSTS ⊆ WSTS, and

• deterministic DWSTS ⊆ finitely branching DWSTS ⊆ DWSTS

follow directly from the definitions. We state and prove each of the other inclusions as a sepa-

rate lemma:

• ω2-WSTS ⊆ deterministic WSTS is Lemma 12.2.4,

• finitely branching WSTS ⊆ deterministic WSTS is Lemma 12.2.6,

• ω2-DWSTS ⊆ deterministic DWSTS is Lemma 12.2.5,
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12.2 Results on WSTS expressiveness

• DWSTS ⊆ finitely branching DWSTS is Lemma 12.2.7,

• ω2-WSTS ⊆revdeterministic DWSTS is Lemma 12.2.8, and

• ω2-DWSTS ⊆revdeterministic WSTS is Lemma 12.2.9.

At the end of this chapter, we will comment on whether the inclusions are strict.

Internal downward closure

Before proving the results that constitute Theorem 12.2.1, we introduce a normal form for

WSTSes that will simplify some proofs. We say that a WSTS W is internally downward closed

if the following two conditions are met. (1) The set of initial configuration is downward closed.

(2) If c
a
−→ d for some configurations c, d, then there is also a transition c

a
−→ d ′ for all d ′ ∈ d↓.

The latter condition can be rephrased by requiring post(a, c) to be downward closed.

If a WSTS W = (Γ , ⩽, T , Γinit , Γfinal) is not internally downward closed, we may replace it by its

internal downward closureW▽ = (Γ , ⩽, T ′ , Γinit↓, Γfinal)where the transitions are defined by

T ′ = {c a
−→ d ′

»»»»»» ∃d∶ d ′ ⩽ d and c
a
−→ d in T} .

As the name suggest, the internal downward closure is internally downward closed. It is easy

to check that the internal downward closure is indeed a WSTS. The operation preserves the

language of the WSTS, i.e. we always have L(W) = L(W▽). The inclusion L(W) ⊆ L(W▽) is
implied by Γinit ⊆ Γinit↓ and T ⊆ T ′, the other one follows from the following lemma.

12.2.2 Lemma
Letw ∈ Σ∗. If c ⩽ c′ and c w

−−→ d inW▽, then c′
w
−−→ d ′ inW for some configuration d ′ with d ⩽ d ′.

Proof:
We proceed by induction on w. The base case is w = ε, and the statement is trivial since we

have c = d and may pick d ′ = c′. For the induction step, consider w .a with c
w
−−→ d

a
−→ e inW▽,

and let c ⩽ c′. By induction, there is some d ′ with d ⩽ d ′ such that c′
w
−−→ d ′ inW . Since we have

d
a
−→ e inW▽, there is some e′ with e ⩽ e′ such that d

a
−→ e′ inW . We use d ⩽ d ′ and the upward

compatibility of WSTS to obtain that there is some e′′ with e′ ⩽ e′′ (and hence e ⩽ e′′) so that

d ′
a
−→ e′′. Altogether, we obtain c′

w
−−→ d ′

a
−→ e′′ with e ⩽ e′′ as desired. ⬛

Using the lemma, we can now prove L(W▽) ⊆ L(W). Assume that c
w
−−→ d is an accepting run

of W▽, which means c ∈ Γinit↓ and d ∈ Γfinal. By definition, there is some c′ ∈ Γinit with c ⩽ c′.

Applying the lemma yields a run c′
w
−−→ d ′ of W with d ⩽ d ′. Since the final configurations are

upward closed, we obtain d ′ ∈ Γfinal, which completes the proof.
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12 WSTS expressiveness

Remark
We have used the term internal downward closure to express that we apply the downward clo-

sure to the internal behavior of the system, i.e. the configurations and transitions, while preserv-

ing the language. This has nothing to the with the construction introduced in Section 7.2 that

takes e.g. a Petri net and yields one whose language is the downward closure.

12.2.3 Example
Consider a labeled Petri net instance (N,Minit ,Mfinal) and theWSTSW = (NP , ⩽, TN ,Minit ,Mfinal↑)
that corresponds to the coverability language of that net. This WSTS is not internally down-

ward closed in general; constructing the internal downward closure results in the WSTS

W▽ = (NP , ⩽, T ′N ,Minit↓,Mfinal↑)where

T ′N = {M a
−→ M′ »»»»»» M t M′′ for some t,M′′ with λ(t) = a and M′′ ⩾ M′} .

In the original system, the goal was to cover Mfinal, or phrased differently, to reach Mfinal by

dropping some superfluous tokens at the end of the computation. In W▽, tokens can also be

dropped at the beginning of the computation (by starting from a marking in Minit↓ that is not

Minit) and after each transition. Themonotonicity of the transition relation of Petri nets ensures

that any computation that drops tokens early can be simulated by one in which all tokens are

dropped at the end.

The internal downward closure preserves the underlying order of the original WSTS, and hence

also the property of beingω2. In general, it does not preserve the properties of being determin-

istic or finitely branching.

We can define a similar notion for downward-compatible WSTSes. We call a DWSTS internally

upwardclosed if its set of initial configurations andpost(a, c) are upward closed for all symbols a

and all configurations c. For a givenDWSTSM, wemayenforce theseproperties by constructing

its internal upward closure M△, a DWSTS that has Γinit↑ as its set of initial configurations and in

which the a-successors of a configuration c arepostM(a, c)↑. The languagesof the twoDWSTSes

coincide, L(M) = L(M△). The proof from the case of WSTS carries over: To see that this is true,

note that theproof of Lemma12.2.2 has not used theWQOproperty, so adualized versionholds

for DWSTSes.

Proof of Theorem 12.2.1

We now have all preliminaries at hand to state and show a sequence of lemmas that prove the

non-trivial inclusions stated in Theorem 12.2.1.

We start with the inclusion of the class of languages ofω2-WSTSes andω2-DWSTSes in the class

of languages of deterministic WSTSes and DWSTSes, respectively. In both cases, we use a pow-
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12.2 Results on WSTS expressiveness

erset construction to determinize the given WSTS. The given (D)WSTS being ω2 ensures that

the result is well-quasi-ordered.

12.2.4 Lemma
Every ω2-WSTS is language-equivalent to a deterministic WSTS.

Proof:
Let W = (Γ , ⩽, T , Γinit , Γfinal) be a WSTS. We may assume that W is internally downward-closed,

since taking the internal downward closure does not change the order and hence preserves the

property of being ω2.

We construct a deterministic WSTSW ′ = (P↓(Γ), ⊆, T ′ , {Γinit}, Γ ′final) by what essentially is a pow-

erset construction. Note that (P↓(Γ), ⊆) is a WQO since we assumed (Γ , ⩽) to be ω2. The final

configurations in the new WSTS are sets of configurations of the original WSTS that contain a

final configuration,

Γ ′final = {C ∈ P↓(Γ) »»»»» C ∩ Γfinal ≠ ∅} ,
and the deterministic transition relation is defined by the post operation,

C
a
−→ postW (a, C) .

Note thatW ′ is well-defined, i.e. Γinit ∈ P↓(Γ) and postW ′(a, C) ∈ P↓(Γ) for all C ∈ P↓(Γ), because
we assumedW to be internally downward closed.

WSTS W ′ is deterministic by definition. To see that it indeed accepts the same language, one

can prove that for each wordw ∈ Σ∗, we have reachW ′(w) = {reachW (w)}. The base case as well

as the inductive step follow directly from the definition ofW ′. ⬛

12.2.5 Lemma
Every ω2-DWSTS is language-equivalent to a deterministic DWSTS.

Proof:
The proof is very similar to the proof of Lemma 12.2.4. Let M = (Γ , ⩽, T , Γinit , Γfinal) be the given

DWSTS, and assume that it is internally upward closed. Otherwise, replace it by its internal

upward closure. We construct M′ = (P↑(Γ), ⊇, T ′ , {Γinit}, Γ ′final) with C
a
−→ postW (a, C) for all

C ∈ P↑(Γ), andC ∈ Γ ′final ifC∩Γfinal ≠ ∅. To see that (P↑(Γ), ⊇) is aWQO (andhenceM′ is aDWSTS),

note that (P↑(Γ), ⊆) and (P↓(Γ), ⊆) are isomorphic, as witnessed by the order-preserving bijec-

tive function defined by C ↦ Γ \ C . Hence, (P↑(Γ), ⊇) is a WQO since we assume (Γ , ⩽) to be ω2.

To see that the language is preserved, L(M) = L(M′), one shows reachM′(w) = {reachM(w)} by
induction. ⬛
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12 WSTS expressiveness

We continue with the inclusion of the class of languages of finitely branchingWSTS in the class

of deterministic WSTS, which proves that the two classes are equal.

12.2.6 Lemma
Every finitely branching WSTS is language-equivalent to a deterministic WSTS.

In principle, the proof is a version of the proof of Lemma 12.2.4 that uses the finitely repre-

sented downward-closed subsets (P↓fin(Γ), ⊆) instead of (P↓(Γ), ⊆). The assumption that the

given WSTS is finitely branching guarantees that considering these subsets is sufficient.

However, there is a technical difficulty that we have to overcome. In the proof of Lemma 12.2.4,

we have assumed the given WSTS to be internally downward closed, a property that can eas-

ily be enforced by applying the internal downward closure. However, the internal downward

closure of a finitely branching WSTS may not be finitely branching. Hence, we will have to es-

sentially incorporate a proof similar to the one of Lemma 12.2.2 here.

Proof:
Let W = (Γ , ⩽, T , Γinit , Γfinal) be the given finitely branching WSTS. We construct a deterministic

WSTSW ′ = (P↓fin(Γ), ⊆, T ′ , {Γinit↓}, Γ ′final) that has the finitely represented downward-closed sub-

sets of Γ as configurations. Since Γinit is finite by assumption, Γinit↓ is such a set. A set C ∈ P↓fin(Γ)
is in Γ ′final if it contains a final configuration of the original WSTS, C ∩ Γfinal ≠ ∅. The transition

relation is defined by applying the post-operation and then taking the downward closure,

C
a
−→ postW (a, C)↓ .

If C = {c1 , . . . , ck}↓, and for each ci , we have that ci1 , . . . , cim i are the finitely many configura-

tions such that ci
a
−→ ci j in W , then we have postW (a, C)↓= {c11 , . . . , c1m1 , . . . , ck1 , . . . ckmk }↓

using that W is finitely branching and upward-compatible. Hence, W ′ is a well-defined tran-

sition system. Checking upward-compatibility and that W ′ is deterministic is straightforward.

Since (P↓fin(Γ), ⊆) is always a WQO if (Γ , ⊆) is, see Lemma 12.1.3, we conclude thatW ′ is a WSTS.

It remains to show that W and W ′ are language-equivalent. We first show the following claim

by induction: For eachw ∈ Σ∗, we have

reachW ′(w) = {reachW▽(w)} ,
whereW▽ is the internal downward closure ofW .

230
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The base case is by definition, since reachW ′(ε) = {Γinit↓} = reachW▽(ε). For the inductive step,

consider a wordw .a. We have

reachW ′(w .a) = postW ′(a, reachW ′(w))
= postW ′(a, {reachW▽(w)})
= {postW (a, reachW▽(w))↓} ,

where we use the definition of reach, the induction hypothesis, and the definition of the transi-

tion relation ofW ′. To complete the proof of the claim, we have to show

postW (a, reachW▽(w))↓= reachW▽(w .a) .
Assume that d ∈ postW (a, reachW▽(w)) ↓, i.e. d ⩽ d ′ for some d ∈ postW (a, reachW▽(w)).
This in turn means that there is some c′ ∈ reachW▽(w) with c′

a
−→ d ′ in W . Hence, we

have c
a
−→ d in W▽ by the definition of being internally downward closed. We conclude

d ∈ postW▽(a, reachW▽(w)) = reachW▽(w .a) as required.
For the other direction, let d ∈ reachW▽(w .a), i.e. there is some c ∈ reachW▽(w) with c

a
−→ d

inW▽. By the definition ofW▽, there is some d ′ with d ⩽ d ′ such that c
a
−→ d ′ inW . We conclude

c ∈ postW (a, reachW▽(w)), which implies the desired statement (since the downward closure

of any set contains that set).

With the claim established, we get that L(W ′) = L(W▽). The latter language is equal to L(W).
⬛

Let us now show that every DWSTS language is also the language of a finitely branchingDWSTS.

The idea is to represent the set of configurations that can be reached along a certain word in

the original DWSTS by the finitelymanyminimal configurations from that set. Since it is not our

goal to determinize, we do not need to introduce a powerset construction.

One might wonder why we do not use the finitely represented upward-closed sets, similar to

P↓fin(Γ) in Lemma 12.2.6. By Property (3) from Lemma 6.5.3, every upward-closed set can be

finitely represented. However, the upward-closed sets are not well-quasi-ordered by reverse

inclusion (which is the order that we would need to consider) unless we require the underlying

order to be ω2.

12.2.7 Lemma
Every DWSTS is language-equivalent to a finitely branching DWSTS.

Proof:
LetM = (Γ , ⩽, T , Γinit , Γfinal)beagivenDWSTS.Weassumewlog. that it is internally upwardclosed.

We constructM′ = (Γ , ⩽, T ′ ,min Γinit , Γfinal)where the order, the set of configurations, and the set
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12 WSTS expressiveness

of final configurations are unchanged. The initial configurations of the new DWSTS are a set of

minimal initial configurations of the old one. The transition relation T ′ is defined by

postM′(a, c) = minpostM(a, c) .
Indeed,M′ is finitely branching sincemin C is finite for any upward-closed set C↑⊆ Γ of configu-

rations, Property (3) of Lemma 6.5.3, and Γinit and postM(a, c) are upward closed by the assump-

tion that M is internally upward closed.

To show L(M) = L(M′), we first prove the following for all wordsw ∈ Σ∗ using induction:

reachM′(w)↑= reachM(w) .
In the base case, we have reachM′(ε)↑= (min Γinit)↑= Γinit = reachM(ε). The inductive step is

reachM′(w .a)↑ = postM′(a, reachM′(w))↑
= minpostM(a, reachM′(w))↑
= minpostM(a, reachM(w)↑)↑ ,

using the definition of reach, the definition of the transition relation of M′, and the induction

hypothesis.

We observe that in an internally upward-closed DWSTS, we have post(a, Y) = post(a, Y ↑)
for any set Y . One direction is immediate; to see post(a, Y ↑) ⊆ post(a, Y), we first

deduce post(a, Y ↑) ⊆ post(a, Y) ↑ using downward compatibility, and then use that

post(a, Y)↑= post(a, Y) since the DWSTS is assumed to be internally upward closed.

Applying this equality, we obtain

reachM′(w .a)↑ = minpostM(a, reachM(w)↑)↑
= minpostM(a, reachM(w))↑
= min reachM(w .a)↑= reachM(w .a)

as desired.

Finally, we conclude L(M) = L(M′): A word w is in L(M′) if and only if reachM′(w) contains a

final configuration. Because the set of final configurations of a DWSTS is downward closed, this

is the case iff reachM′(w) ↑= reachM(w) contains a final configuration. The latter condition is

equivalent tow ∈ L(M). ⬛

It remains to prove that ω2-WSTSes can be reversely determinized to DWSTSes and vice versa.

The construction simulates the system in the reverse direction to convert from WSTSes to

DWSTSes and combines this with a powerset construction to determinize.

232



12.2 Results on WSTS expressiveness

12.2.8 Lemma
Every ω2-WSTS is reversely equivalent to a deterministic DWSTS.

Proof:
Let W = (Γ , ⩽, T , Γinit , Γfinal) be the given ω2-WSTS. We construct a DWSTS that simulates W re-

versely on upward-closed subsets. We define M = (P↑(Γ), ⊇, T ′ , {Γfinal}, Γ ′final), where the config-

urations of M are upward-closed sets of configurations ofW , ordered by reverse inclusion. The

unique initial configuration is the set of final configurations ofW . A configuration ofM is final if

it contains an initial configuration ofW : C ∈ P↑(Γ) is in Γ ′final if C ∩ Γinit ≠ ∅. It remains to define

the (deterministic) transition relation T ′: We have

C
a
−→ preW (a, C) .

Note that if C is final, then so is any larger set C ′with C ′ ⊆ C . By upward compatibility, preW (a, C)
is necessarily upward closed if C is upward closed. We verify thatM′ satisfies downward compat-

ibility: If C ′ is larger than C , meaning C ′ ⊆ C , then we have preW (a, C ′) ⊆ preW (a, C) as required.
The order (P↑(Γ), ⊇) is a WQO since it is isomorphic to (P↓(Γ), ⊆) andwe assume that (Γ , ⩽) is ω2,

as in the proof of Lemma 12.2.5. Hence, M is indeed a well-defined DWSTS.

To conclude the proof, we need to show thatL(W) = rev(L(M)). We prove that for eachw ∈ Σ∗,
the following holds:

reachM(w) = {reach−1W (rev(w))} .
We proceed by induction onw. In the base case, we have

reachM(ε) = {Γfinal} = {reach−1W (ε)} = {reach−1W (rev(ε))} .
For the induction step, considerw .a. We have

reachM(w .a) = postM(a, reachM(w))
= postM(a, {reach−1W (rev(w))})
= preW (a, {reach−1W (rev(w))})
= {reach−1W (a.rev(w))}
= {reach−1W (rev(w .a))}

by using induction, the definition of T ′, and the fact that rev(w .a) = a.rev(w).
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12 WSTS expressiveness

Using the proven equality, we can establish the following sequence of equivalences for any

wordw ∈ Σ∗:

w ∈ L(M) iff reachM(w) ∈ Γ ′final
iff reach−1W (rev(w)) ∈ Γ ′final
iff reach−1W (rev(w)) ∩ Γinit ≠ ∅
iff rev(w) ∈ L(W) .

⬛

12.2.9 Lemma
Every ω2-DWSTS is reversely equivalent to a deterministic WSTS.

Proof:
The proof is the dual of the proof of Lemma 12.2.8. Given the DWSTSM = (Γ , ⩽, T , Γinit , Γfinal), we

construct theWSTSW = (P↓(Γ), ⊆, T ′ , {Γfinal}, Γ ′final)with C ∈ Γ ′final if C ∩ Γinit ≠ ∅ and T ′ is defined

by C
a
−→ preW (a, C).

The proofs that show that W is a well-defined WSTS and that L(W) = rev(L(M)) are as in

Lemma 12.2.8. ⬛

With all lemmas stated and proven, the proof of Theorem 12.2.1 is completed.

The question of whether the inclusions among language classes are strict is left open. In partic-

ular, we do not know whether there is a WSTS language that cannot be generated by a finitely

branching (or, equivalently, deterministic) WSTS. We know that if such a language exists, it can

only be generated by infinitely branching WSTSes whose underlying order is not ω2. We were

unable to construct counterexamples to show that the inclusions are strict, as well as unable to

extend the constructions to show that some of the inclusions are in fact equalities. It is imagin-

able that the differences e.g. between ω2-WQOs and non-ω2-WQOs cannot be exhibited using

languages ofWSTSes consisting of finite words, and hence the corresponding classes are equal.

However, these open problems are largely of theoretical nature. It has been observed that al-

most all WQOs that occur in practice are BQOs, which implies that they are ω2. In fact, the

paper [Fin16] states that finite graphs ordered by the graphminor relation are the only WQO of

practical interest that is not known to be a BQO. This means that for all (D)WSTSes that occur

in practice, we can apply the results on ω2-(D)WSTSes from Theorem 12.2.1 to determinize or

reversely determinize these systems.
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The goal of this chapter is proving the results that we have outlined in Section 11.3. We will

start by formally stating the results and discussing their consequences. Then, we will prove a

technical core theorem from which we can directly conclude our result on the separability of

languages of DWSTSes. Finally, we will introduce ideals and the ideal completion of a WSTS,

concepts that will allow us to also apply our core result to upward-compatible WSTSes.

13.1 The results and their consequences

The main result regarding upward-compatible WSTSes that we will prove in this chapter is the

following.

13.1.1 Theorem
Two disjoint WSTS languages, at least one of them the language of a deterministic WSTS, are

regularly separable.

In Section 11.3, we have promised proving that undermild assumptions, any two disjointWSTS

languages are regularly separable. Requiring one of the twoWSTSes to be deterministic seems

to be an assumption that is quite restricting. However, we may use the expressiveness result

from Chapter 12 to see that it is in fact enough to require one of the two WSTS to be finitely

branching or ω2. In particular, recall that virtually all WSTSes that are of practical interest satisfy

theω2-condition. Hence, the following generalization of the result applies to almost allWSTSes.

13.1.2 Corollary
Two disjoint WSTS languages, at least one of them the language of a finitely branching WSTS

or of an ω2-WSTS, are regularly separable.
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13 Regular separability for WSTSes

Once we have proven Theorem 13.1.1, the corollary follows immediately using Theorem 12.2.1.

One shouldemphasize thatwe simply requireboth languages tobeWSTS languages. Wedonot

require them to come from the same class of WSTSes. For example, one could be the language

of a Petri net, the other could be the language of a lossy channel system.

It is also noteworthy that our result means that regular separability as a decision problem is es-

sentially equivalent to intersection-emptiness. Luckily, intersection-emptiness can be decided

under mild assumptions. To be precise, it has been shown that the coverability problem for

unlabeledWSTSes, the problem of checking whether a final configuration is reachable from an

initial one, is decidable under mild assumptions [AJ93; GRB06]. In the world of labeledWSTSes,

this corresponds to checking language-emptiness. Checking intersection-emptiness amounts

to checking language-emptiness for the product system. Luckily, if both given WSTSes satisfy

the requirements for the decidability of coverability, then so does the product system,meaning

we can decide intersection-emptiness.

Our result is constructive for most WSTSes. We will construct a finite automaton whose lan-

guage is the required regular separator from the so-called ideal decomposition of an invariant.

Such a set is effectively computable in many cases, as demonstrated e.g. in [Fin16; LS15a].

Furthermore, our result has some interesting language-theoretic consequences. In Section11.2,

we have mentioned that separability is related to the regularity problem. The following corol-

lary to our result makes this relationship precise.

13.1.3 Corollary
If a language is a deterministic WSTS language and its complement is a WSTS language (or vice

versa), then both are necessarily regular.

Proof:
Assume that L(W) is the language of a finitely branching WSTS W , and its complement

L(W) = L(W ′) is the language of a WSTS. These languages are disjoint, so by Theorem 13.1.1,

there is a regular separator R. From L(W) ⊆ R and L(W) ∩ R = ∅, we conclude R = L(W).
Hence, L(W) is regular and so is its complement. ⬛

Again, we may apply Theorem 12.2.1 to obtain the following generalization.

13.1.4 Corollary
If a language is the language of a WSTS that is finitely branching or ω2, and its complement is a

WSTS language, then both are necessarily regular.

It has been shown before that Petri net coverability languages have this property [MKRS98b;

MKRS98a]. A more pointed phrasing of our result is the following weaker statement.
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13.1.5 Corollary
No subclass of the finitely branching or ω2-WSTS languages beyond REG is closed under

complement.

Proof:
Towards a contradiction, assume F is such a class. Take any non-regular language L from F .

By assumption, L is also in F . Both are finitely branching (or ω2) WSTS languages, so Corol-

lary 13.1.4 yields that L is regular, a contradiction. ⬛

Results for DWSTS

We will show similar results for downward-compatible WSTSes.

13.1.6 Theorem
Twodisjoint DWSTS languages, at least one of them the language of a deterministic DWSTS, are

regularly separable.

With Theorem 12.2.1, we can generalize the result and require one of the DWSTSes to be ω2

instead of requiring it to be deterministic. Unlike in the case of upward-compatible WSTSes, it

does not seem to be sufficient to require one of the two DWSTSes to be finitely branching.

13.1.7 Corollary
Two disjoint DWSTS languages, at least one of them the language of a deterministic DWSTS or

an ω2-DWSTS, are regularly separable.

Wealso obtain corollaries that are similar to theCorollaries 13.1.3 and13.1.4. Theproofs of these

corollaries are as in the case of (upward-compatible) WSTSes.

13.1.8 Corollary

a) If a language is the language of a DWSTS that is deterministic or ω2 and its complement is a

DWSTS language (or vice versa), then both are necessarily regular.

b) No subclass of the deterministic or ω2-DWSTS languages beyond REG is closed under

complement.

We leave the question of whether the assumptions that wemake are necessary unanswered. It

would be desirable to prove that any two disjointWSTS languages are regularly separable, with-

out requiring one of the two generatingWSTSes to be ω2 or finitely branching. This problem is

closely related to the unknown strictness of the inclusions in our result onWSTS expressiveness,

Theorem 12.2.1, on which we have commented at the end of Section 12.2. If one could extend
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13 Regular separability for WSTSes

Theorem 12.2.1, e.g. by showing that any WSTS language is the language of a finitely branch-

ing WSTS, this also immediately extends our result on regular separability. If it turns out that

the inclusions among WSTS language classes are strict, whether the results on regular separa-

bility can be extended remains an open problem. However, one would hope that the proof of

strictness allows us to gain new insights. Let us emphasize that virtually all WSTSes of practical

interest are known to be ω2, meaning that our results can be applied.
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13.2 Technical core

13.2 Technical core

Both main results, Theorem 13.1.1 and Theorem 13.1.6, will follow from a technical core result.

We will prove this technical core in this section and then immediately obtain the regular sep-

arability of language-disjoint DWSTSes. The result in the case of upward-compatible WSTSes

will requiremorework. To state the technical core, we need the notion of an inductive invariant

that we will introduce in the following.

An invariant is a property that holds for all reachable configurations. We may see it the set of

configurations that satisfy the property. We will take this view in the rest of the section and see

an invariant as a set of configurations containing the reachable ones. In particular, the set of

reachable configurations itself is an invariant.

Wewill be only interested in invariants that are safe. Normally, the notion of safetymeans that a

certain set of bad configurations cannot be reached. Here, we will see the set of final configura-

tions of an LTS as the set of configurations that should not be reachable: A safe invariant is a set

of configurations that contains all reachable configurations, but no final configuration. Hence,

a safe invariant is a certificate for language-emptiness. If the language of an LTS is empty, then

the set of reachable configurations itself is a safe invariant.

In the following, whenever we use the notion invariant, we imply that it is safe. The above

discussion yields the following characterization: For an LTS W = (Γ , T , Γinit , Γfinal) with empty

language, the invariants are precisely the sets X so that

reachW ⊆ X ⊆ Γ \ Γfinal .
In particular, reachW and the complement of Γfinal are invariants.

When checkingwhether a given set X (representing someproperty) is an invariant, it is useful to

impose a restriction thatmakes this task easier. We call an invariant inductive if for any configura-

tion in the invariant, all its successors are also in the invariant: If c ∈ X , then post(Σ, c) ⊆ X . This
property simplifies the check because it can now be conducted in a local fashion: One checks

that if a configuration satisfies the property defining the invariant, then the property still holds

after doing a step in the transition system. Invariants, and inductive invariants in particular, are

a standard technique used for safety verification of programs [MP95].

Checking whether a set X is an inductive invariant amounts to checking (1) that X contains the

initial configurations, (2) that if c ∈ X , thenpost(Σ, c) ⊆ X , and that (3) X∩Γfinal = ∅. Properties (1)

and (2) together imply that X contains the reachable configurations.

While reachW is always an inductive invariant if the given LTS has empty language, the same

is not true for Γ \ Γfinal. It may contain the predecessor of a final configuration, which violates

inductivity. We exclude all ancestors of final configurations and obtain that Γ \ reach−1W is the
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13 Regular separability for WSTSes

greatest inductive invariant. The inductive invariants of an LTSwith empty language are exactly

the inductive sets X with

reachW ⊆ X ⊆ Γ \ reach−1W .

In the case of ordered LTS, we can additionally require X to be downward closed. In fact, if X

is an inductive invariant, then so is its downward closure X↓. Condition (1) is maintained when

adding configurations, Condition (3) is maintained since we assume the set of final configura-

tions to be upward closed. For inductivity, assume that c ∈ X↓, i.e. c ⩽ c′ for some c′ ∈ X . Using

upward compatibility, we have that for any c
a
−→ d, there is some c′

a
−→ d ′ with d ⩽ d ′. We have

d ′ ∈ post(Σ, c′) ⊆ X ⊆ X↓ by assumption and conclude d ∈ X↓ since X↓ is downward closed.

The above discussion justifies the following definition of inductive invariants in the case of or-

dered LTS.

13.2.1 Definition
An inductive invariant for an ordered LTSW = (Γ , ⩽, T , Γinit , Γfinal) is a downward-closed set X ⊆ Γ
with (1) Γinit ⊆ X , (2) Safety: X ∩ Γfinal = ∅, and (3) Inductivity: postW (Σ, X) ⊆ X .
An inductive invariant exists if and only ifL(W) is empty. IfL(W) is empty, then the downward-

closure of the reachable configurations reachW↓ is the least, and the configurations that are not

the predecessor of a final configuration Γ \ reach−1W is the greatest inductive invariant. Note that

the latter set is always downward closed by upward compatibility, whereas reachW may not be

downward closed ifW is not internally downward closed.

In the following, we want to transform an inductive invariant for the product of two language-

disjoint WSTSes into a regular separator for their languages. This will only work if the inductive

invariant has a certain finite representation.

13.2.2 Definition
An inductive invariant X is finitely represented if X = Q↓ for a finite set Q of configurations.

We have explained in Chapter 12 that requiring a downward-closed set to be the downward

closure of finitely many elements imposes a restriction. Consider for example a Petri net with

two places p1 , p2. The initial marking assigns no tokens, the final marking requires a token on

the second place. This means that the set of final configuration is N × (N \ {0}). There is a

single transition that requires no tokens and produces a token on the first place. Obviously, the

set of configurations reachable in the associated WSTS is N × {0}. To be precise, N × {0} is a

downward-closed safe inductive invariant, and it is the only safe invariant. Any smaller set does

not contain all reachable configurations, any bigger set contains a final configuration. However,
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this invariant is not finitely represented as there is no finite set of numbers whose downward

closure isN.

Not every inductive invariant being finitely represented is a problem that we will need to over-

come later. For now, let us state the core result.

13.2.3 Theorem
Let W and W ′ be language-disjoint ordered LTSes, one of them deterministic, such that their

productW ×W ′ admits a finitely represented inductive invariant Q↓. ThenW andW ′ are regu-

larly separable by the language of a finite automaton with Q as its set of states.

One might wonder why the result talks about ordered LTSes instead of WSTSes. The reason is

that when we apply the result, we will first enforce the existence of a finitely represented invari-

ant by applying a preprocessing step. This step will turn the given (D)WSTSes into language-

equivalent ordered LTSes that may not be (D)WSTSes in general.

We turn to the proof of Theorem13.2.3. LetW = (Γ , ⩽, T , Γinit , Γfinal) andW ′ = (Γ ′ , ⩽′ , T ′ , Γ ′init , Γ ′final)
be the givenWSTSes. We assume that their languages are disjoint, L(W) ∩L(W ′) = ∅, and that

W ′ is deterministic. We consider their product

W× = W ×W ′ = (Γ× , T× , ⩽× , Γ×init , Γ×final) ,
and note that L(W×) = ∅ by assumption. Let Q ⊆ Γ× be a finite set such that Q↓ is an inductive

invariant forW×.

We construct an automaton A that has Q as its set of states. Its language will be a regular sepa-

rator for the languages of the two given WSTSes. To be precise, it will contain L(W) and be dis-

joint from L(W ′). Before elaborating on its properties, we explain the construction. Intuitively,

A overapproximates the product WSTSW× using the configurations from Q. Note that the con-

figurations ofW× (and hence the states of A) are tuples of configurations of the original WSTSes.

13.2.4 Definition
The separating automaton induced by Q is A = (Q ,→, Qinit , Qfinal). A state is initial if it is larger

than some initial configuration ofW×,

Qinit = {(q, q′) ∈ Q ∣ (c, c′) ⩽× (q, q′) for some (c, c′) ∈ Γ×init} .
A state is final if itsW-component is final,

Qfinal = {(q, q′) ∈ Q ∣ q ∈ Γfinal} .
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(q, q′)
∈ Q

(c, c′) ∈ W×

(p, p′) ∈ Q

⩽ ×

a
inW×

a
in A

Figure 13.2.a: The transition relation of the separating automaton A.

The transition relation of A overapproximates the transition relation ofW× as follows:

(q, q′) a
−→ (p, p′) in A iff (q, q′) a

−→ (c, c′) inW× for some (c, c′) ⩽× (p, p′) .
The latter part of the definition means that if (q, q′) a

−→ (c, c′) is a transition of the product

and (q, q′) ∈ Q, then A can overapproximate this transition using any state (p, p′) ∈ Q with(c, c′) ⩽× (p, p′). This is depicted in Figure 13.2.a. We do not impose any precision requirement,

but we could obviously require Q to be an antichain. The fact that Q↓ is an inductive invariant

will be sufficient to prove the correctness of the construction.

Remark
Note thatwearedealingwithanNFAwithmultiple initial stateshere. Wehavealreadyexplained

in Section 4.3 that such an NFA can be transformed into an NFAwith a unique initial state while

introducing a single new state.

To prove that A is indeed a separating automaton, we need to show L(W) ⊆ L(A) and

L(W ′) ∩ L(A) = ∅. We will prove the following:

• Any computationofW canbeembedded into a computationofW×, and this computation

in turn is overapproximated by a run of A.

• Any run of A on some word w, projected to the W ′-component, overapproximates the

unique computation ofW ′ forw.

From the first property, we get the inclusion L(W) ⊆ L(A). Here, it is sufficient to assume that

W ′ is complete to obtain that any computation ofW can be embedded into a computation of

the product system. From the second property, we get the disjointness L(W ′) ∩ L(A) = ∅. For

this statement to hold, it is important that W ′ is deterministic. Otherwise, the run of A could

overapproximate a non-accepting computation ofW ′ although an accepting one exists.

We proceed to formally state and prove the two properties, and conclude that L(A) is a regular

separator, which completes the proof of Theorem 13.2.3. We start with a technical lemma that

will be needed to establish L(W) ⊆ L(A).
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13.2.5 Lemma

a) If c ∈ reachW (w), then (c, c′) ∈ reachW×
(w) for some c′.

b) If (c, c′) ∈ reachW×
(w), then (q, q′) ∈ reachA(w) for some (q, q′) ∈ Q with (c, c′) ⩽× (q, q′).

Proof:
For Part a), we have that c′ is in fact predetermined to be the unique configuration reachW ′(w)
sinceW ′ is deterministic. Formally, we prove the statement by induction onw. In the base case,

we have that c ∈ Γinit = reachW (ε) is an initial configuration ofW . We choose c′ = reachW ′(ε) as
the unique initial configuration of W ′. By the definition of the synchronized product, we have(c, c′) ∈ Γ×init = reachW×

(ε) as desired. For the inductive step, consider w .a. A configuration

c ∈ reachW (w .a) is an a-successor of some configuration d ∈ reachW (w). By induction, we have(d , d ′) ∈ reachW×
(w). SinceW ′ is deterministic, there is a unique configuration c′ = reachW ′(w .a)

that is the a-successor of d ′. By the definition of the transition relation of the synchronized

product, we have (d , d ′) a
−→ (c, c′) inW×, and hence (d , d ′) ∈ reachW×

(w .a) as desired.
For Part b), we use that an inductive invariant has to contain all reachable configurations of the

system. Formally, we show the statement by induction on w. In the base case, we have that(c, c′) = reachW×
(ε) is an initial configuration of the product system. By Property (1) of being

an invariant, this means (c, c′) ∈ Q↓. Hence, Q contains some state (q, q′) with (c, c′) ⩽× (q, q′).
By the definition of the initial states of A, we have (q, q′) ∈ Qinit = reachA(ε) as required. For

the inductive step, consider w .a. Any configuration (d , d ′) ∈ reachW×
(w .a) can be written as

an a-successor of a configuration (c, c′) ∈ reachW×
(w), i.e. (c, c′) a

−→ (d , d ′) in W×. By induction,

we obtain that there is some state (q, q′) ∈ reachA(w) with (c, c′) ⩽× (q, q′). Using upward

compatibility, we get that there is some (e , e′) with (q, q′) a
−→ (e , e′) in W× and (d , d ′) ⩽ (e , e′)

By inductivity, Property (3) of being an inductive invariant, we have postW×
(Σ, Q ↓) ⊆ Q ↓.

Since (q, q′) ∈ Q ⊆ Q ↓, we also obtain (e , e′) ∈ Q ↓. Hence, there is some (p, p′) ∈ Q

with (d , d ′) ⩽× (e , e′) ⩽× (p, p′). By the definition of the transition relation of A, we have(q, q′) a
−→ (p, p′) in A as this transition overapproximates the transition (q, q′) a

−→ (e , e′) of W×.

We conclude (p, p′) ∈ postA(a, reachA(w)) = reachA(w .a) and (d , d ′) ⩽× (p, p′) as desired. ⬛

With this lemma at hand, we can immediately conclude that the language of A contains the

language ofW .

13.2.6 Proposition
L(W) ⊆ L(A).
Proof:
Assume that w ∈ L(W), i.e. c w

−−→ d for some c ∈ Γinit and d ∈ Γfinal. By using Statement (1)

of Lemma 13.2.5, we obtain that (d , d ′) ∈ reachW×
(w) for some d ′. Using Statement (2) of the

same lemma, we get that (q, q′) ∈ reachA(w) for a tuple (q, q′) ∈ Q with (d , d ′) ⩽× (q, q′). Since
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d ∈ Γfinal and Γfinal is upward closed, we have q′ ∈ Γfinal and hence (q, q′) ∈ Qfinal. We conclude

that A has an accepting run on wordw as desired. ⬛

We now show that every run of the automaton on some word overapproximates in its second

component the unique run ofW ′ on that word.

13.2.7 Lemma
For everyw ∈ Σ∗ and every (q, q′) ∈ reachA(w)we have reachW ′(w) ⩽′ q′.
Proof:
We proceed by induction on w. In the base case, we have that (q, q′) ∈ reachA(ε) = Qinit is an

initial state of A. By definition, this means (c, c′) ⩽× (q, q′) for some initial configuration (c, c′)
ofW×. Again by definition we have that c′ ∈ Γ ′init is the unique initial configuration ofW ′. Hence,

we have reachW ′(ε) ⩽′ q′.
For the inductive step, consider w .a. We may write (p, p′) ∈ reachA(w .a) as an a-successor of

some state (q, q′) ∈ reachA(w). This means that there is some transition (q, q′) a
−→ (d , d ′) of

the product system with (d , d ′) ⩽× (p, p′). Using induction, we get reachW ′(w) ⩽′ q′. By the

definition of the transition relation of the product system, we have that d ′ = reachW ′(w .a) is the
unique configuration reached byW ′ when readingw .a, and we have d ′ ⩽′ p′ as required. ⬛

We use this lemma to conclude that the languages of A andW ′ are disjoint.

13.2.8 Proposition
L(A) ∩ L(W ′) = ∅.

Proof:
Towards a contradiction, assume that w ∈ L(A) ∩ L(W ′) is a counterexample to disjointness.

Sincew ∈ L(A), there is someaccepting state (q, q′) ∈ reachA(w)∩Qfinal of A that canbe reached

by processingw. Note that (q, q′) ∈ Qfinal means that q ∈ Γfinal is a final configuration of the first

WSTS by definition. Similarly, w ∈ L(W ′)means that the unique configuration reachW ′(w) that
W ′ reaches after processingw is final, i.e. reachW ′(w) ∈ Γ ′final.
Using Lemma 13.2.7, we obtain that reachW ′(w) ⩽′ q′. The set of final configuration of

a WSTS is upward closed, so we can conclude q′ ∈ Γ ′final. Altogether, we obtain that(q, q′) ∈ Γfinal × Γ ′final = Γ×final is a final configuration of the product system. Furthermore, (q, q′)
is an element of Q since it is a state of A. This is a contradiction to the assumption that Q↓ is an

inductive invariant that satisfies safety, i.e. Q↓ ∩ Γ×final = ∅. ⬛

The Propositions 13.2.8 and 13.2.8 together show that the language of A is a regular separator

for the languages ofW andW ′. Hence, the proof of Theorem 13.2.3 is completed.
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Applying the core result to obtain regular separability for DWSTSes

Weconclude this section by showinghowwe canuse Theorem13.2.3 to showourmain result in

the case of DWSTSes. Recall that Theorem13.1.6 states that the languages of any two language-

disjoint DWSTSes, one of them deterministic, are regularly separable.

Our core result speaks of upward-compatible LTSes. To bridge the gap, we dualize the given

DWSTSes by considering the opposite orders. This process turns a downward-compatible

DWSTS into an upward-compatible LTS thatmay not bewell-quasi ordered, which is not a prob-

lem in this case. Additionally, the dualizationmeans that any downward-closed set in the prod-

uct of the dualized DWSTSes is an upward closed set in the product of the original DWSTSes.

We can use that upward-closed sets in a WQO can always be written as the upward closure of

finitely many elements, which makes the requirement of a finitely represented invariant trivial.

Proof of Theorem 13.1.6:
Let M = (Γ , ⩽, T , Γinit , Γfinal) and M′ = (Γ ′ , ⩽′ , T ′ , Γ ′init , Γ ′final) be the given language-disjoint

DWSTSes where M′ is deterministic. We consider the opposite orders ⩾ and ⩾′, obtaining the

(upward-compatible) ordered LTS M−1 = (Γ , ⩾, T , Γinit , Γfinal) and M′−1 = (Γ ′ , ⩾′ , T ′ , Γ ′init , Γ ′final).
Note that these indeed satisfy the requirements: For example, Γfinal being downward closed

with respect to ⩽ means that it is upward closed with respect to the opposite order. The

downward-compatibility of T (wrt. ⩽) implies the upward-compatibility of T wrt. ⩾. Obviously,

the languages and the fact that M′−1 is deterministic remain unchanged. Hence, M−1 and M′−1

are language-disjoint ordered LTS and one of them is deterministic.

To be able to apply Theorem13.2.3, we need to find a finitely represented inductive invariant for

M−1
× = M−1 × M′−1. We claim that the downward closure of the set of reachable configurations

X = reachM−1
×
↓

is such a finitely represented invariant, where the downward closure is takenwith respect to the

product of the orders ⩾ and ⩾′. When we did introduce invariants, we have already discussed

that for an ordered LTS with empty language, this set will always be an inductive invariant. To

see that it is finitely represented, we first observe that X is also the downward closure (with re-

spect to the product of ⩾ and ⩾′) of the reachable configurations in the product of the original

DWSTSes. In a second step, we note that the opposite order of the product of ⩾ and ⩾′ is ac-

tually the product of ⩽ and ⩽′. Hence, the downward closure with respect to the product of ⩾
and ⩾′ is the upward closure with respect to the product of the original orders. We may write

X = reachM×M′↑⩽× .

Since ⩽ and ⩽′ are WQOs, so is their product by Lemma 6.5.2. By Property (3) of being a WQO,

see Lemma6.5.3, every upward-closed set can bewritten as the upward closure of finitelymany

elements. We obtain that X = {x1 , . . . , xk}↑⩽× for suitable x1 , . . . , xk ∈ reachM×M′ . In terms of
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13 Regular separability for WSTSes

the product of the opposite orders, we obtain that X is the downward closure of {x1 , . . . , xk},
proving that X is finitely represented.

Hence, we have that X is a finitely represented inductive invariant for M−1
× , so Theorem 13.2.3

yields that L(M−1) = L(M) and L(M′−1) = L(M′) are regularly separable as desired. ⬛
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13.3 Ideals and the ideal completion

13.3 Ideals and the ideal completion

The goal of this section is proving Theorem 13.1.1. We want to apply our technical core result,

Theorem 13.2.3, but we have to overcome the problem that the existence of a finitely repre-

sented invariant is not guaranteed. To this end, we introduce ideals and the ideal completion

of a WSTS, well-known techniques that have been proven to be very useful in the forward anal-

ysis of WSTSes [FG09; FG12; Fin16].

Consider a WQO (Γ , ⩽). An ideal is a non-empty downward-closed subset I ⊆ Γ that is di-

rected. Being directed means that every pair of elements has an upper bound within the set,

i.e. ∀x , x ′ ∈ I ∃y ∈ I∶ x ⩽ y, x ′ ⩽ y.

Sets of the shape y ↓ are special cases of ideals. These sets are necessarily directed because

they have global upper bound. In particular, y is an upper bound for any pair of elements in the

set y↓. In a sense, the notion of ideals replaces the requirement of the existence of such a global

upper bound within the set by requiring the existence of local upper bounds within the set for

each pair of elements. Hence, while any set of the shape y↓ is an ideal, there can be ideals that

are not of this shape.

We briefly consider the shape of ideals in some of the WQOs that we have introduced.

13.3.1 Example

a) Because (N, ⩽) is a total order, any non-empty downward closed subset ofN is an ideal. This

means that the ideals are precisely the sets of the shape n↓ for some n ∈ N and the set N

itself. The latter is commonly written as ω↓.

b) The ideals in (Σ∗ , ⩽), where ⩽ is the subword ordering are precisely the languages that can

be expressed by regular expressions that consist only of concatenations of expressions of

the shape (a + ε) (where a ∈ Σ) and Σ′∗ (where Σ′ ⊆ Σ is a subalphabet) [FG09]. Note that

this is in fact the original definition of a product in a simple regular expression [ACBJ04].

To determine the ideals in e.g. Nk , one observes that ideals in the product of two WQOs are

products of ideals in the original WQOs. This property will also turn out to be very helpful later

when we are considering the product of two WSTSes.

13.3.2 Lemma (see e.g. Finkel and Goubault-Larrecq [FG09])
Let (Γ , ⩽)and (Γ ′ , ⩽′)beWQOs, and let (Γ× , ⩽×)be their product. The ideals in (Γ× , ⩽×)areprecisely

the sets of the shape I × I ′ where I and I ′ are ideals of (Γ , ⩽) and (Γ ′ , ⩽′), respectively.
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13 Regular separability for WSTSes

13.3.3 Example
The ideals ofNk can be represented as sets of the shape M↓, where M ∈ (Nω)k is a generalized

marking. More formally, we define

M↓= {M′ ∈ N
k »»»»» ∀i ∈ [1, k]∶M′(i) ⩽ M(i)}

where n ⩽ ω holds for all natural numbers n.

The usefulness of ideals comes from the property that any downward closed set is a finite union

of ideals. This crucial property has been observed and used many times in the past in various

contexts. We refer to Section 3.2 of [BFM17] for a more detailed discussion and further refer-

ences. Here, we restrict ourselves tomentioning that in the recent years, ideals have been used

by Finkel and others to design techniques for the forward analysis ofWSTSes. Manywell-known

algorithmic techniques for WSTSes are backward analyses, based on the fact that an upward-

closed set can be represented by a basis, i.e. as a finite union of sets of the shape c↑. Similarly,

designing forward analyses requires an effective representation for downward closed sets. With

the following lemma, finite sets of ideals can be used as such a representation.

13.3.4 Lemma (see e.g. Blondin, Finkel, and McKenzie [BFM17])
In a WQO, every downward-closed set is a finite union of its inclusion-maximal ideals.

For a WQO (Γ , ⩽) and a downward-closed set X ⊆ Γ , we write decompΓ (X) for the ideal decom-

position, the set of inclusion-maximal ideals I ⊆ X ,

decompΓ (X) = {I ⊆ Γ ∣ I ideal of (Γ , ⩽), I ⊆ X , ∄ I ′ ideal with I ⊊ I ′ ⊆ X} .
Using the above lemma, decompΓ (X) is always finite, and we have

X = ⋃decompΓ (X) .
Ideals are irreducible in the sense that any ideal contained in a downward-closed subset is con-

tained in an ideal that occurs in the ideal decomposition.

13.3.5 Lemma (Kabil and Pouzet [KP92])
If I ⊆ X is an ideal, then I ⊆ I ′ for some I ′ ∈ decompΓ (X).
Given a WQO (Γ , ⩽), we may consider its ideal completion (ideals(Γ), ⊆), the quasi order of ideals

ordered by inclusion. Calling this order a completion is justified since the elements x of the

original WQO can be identified with their downward closure x ↓, which is always an ideal as
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discussed above (and indeed x ⩽ y if and only if x↓⊆ y↓). The ideal completion is not a WQO in

general. Just as the order (P↓(Γ), ⩽), it is a WQO if and only if the original WQO was ω2 [FG12].

For some set X ⊆ Γ , decompΓ (X) is the set of inclusion-maximal ideals contained in X . We

may consider the downward closure decompΓ (X)↓ in the order (ideals(Γ), ⊆) to obtain the set

of all ideals I ⊆ X that are contained in X . Unlike decompΓ (X), this downward closure is not

necessarily a finite set of ideals. We have X = ⋃decompΓ (X) = ⋃decompΓ (X)↓.
In [FG12; BFM17], the notion of the ideal completion has been lifted from orders to WSTSes.

Given aWSTS, one constructs an ordered LTSwhose configurations are ideals of the original un-

derlying order. Its runs approximate runs of the original WSTS in the sense that at each point in

time, the ideal that forms the current configuration in the ideal completion contains a configu-

rationof the originalWSTS that canbe reachedby the sameword. Due to upward-compatibility,

taking the ideal completion of a WSTS does not change the language.

The ideal completion can be seen as an alternative to the construction from Lemma 12.2.4 that

we have used to show that an ω2-WSTS can be transformed into a deterministic WSTS with the

same language. The drawback that using (ideals(Γ), ⊆) has compared to using (P↓(Γ), ⩽) is that
we can only ensure that the new LTS is finitely branching, but not that it is deterministic. The

fundamental advantage is that the ideal completion will guarantee that any downward-closed

set of configurations of the original WSTS induces a finitely represented downward-closed set

in the ideal completion.

The formal definition of the ideal completion is as follows.

13.3.6 Definition
LetW = (Γ , ⩽, T , Γinit , Γfinal) be a WSTS. Its ideal completion

compl(W) = (ideals(Γ), ⊆, T ′ , ideals(Γ)init , ideals(Γ)final)
is the ordered LTSwhose configurations are ideals of (Γ , ⩽), whose initial ideals are the inclusion-

maximal ideals in Γinit, ideals(Γ)init = decomp(Γinit↓), and whose final ideals are those that con-

tain a final configuration of W , ideals(Γ)final = {I ∣ I ∩ Γfinal ≠ ∅}. The transition relation is

defined by applying the post-operation ofW and then considering the ideal decomposition. If

the ideal decomposition of a post-set consists of multiple ideals, the ideal completion is nonde-

terministic in that it has a transition to each of them. Formally, we have

postcompl(W)(a, I) = decompΓ (postW (a, I)↓) ,
i.e. I a

−→ I ′ if I ′ is an inclusion-maximal ideal of postW (a, I)↓.
Note that for the initial configurations and the post-sets, we need to apply the downward clo-

sure in (Γ , ⩽) since we have not required these sets to be downward closed. We have, however,
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13 Regular separability for WSTSes

already exploited in the proof of Theorem 12.2.1 that we could make this assumption without

changing the language of the WSTS.

The following lemma summarizes the properties of the ideal completion that we will need in

the following. Even though this is not original work, we will give the proof to emphasize the

importance of the lemma and to show how the properties of ideals come into play.

13.3.7 Lemma (Finkel andGoubault-Larrecq [FG12]; Blondin, Finkel, andMcKenzie [BFM17])

a) The ideal completion compl(W) of a WSTSW is a finitely branching ordered LTS.

b) L(W) = L(compl(W)).
c) If WSTSW is ω2, then compl(W) is a WSTS.

d) If WSTSW is deterministic, then so is compl(W).
Proof of L3MM4 1337:
We first show Part a), i.e. that compl(W) is an ordered LTS. We have to argue that

ideals(Γ)final is upward closed with respect to ⊆: If I ∩ Γfinal ≠ ∅ and I ⊆ I ′, then

I ′ ∩ Γfinal ⊇ I ∩ Γfinal ≠ ∅. Upward compatibility follows from Lemma 13.3.5: Assume I ⊆ I ′

and I a
−→ J in compl(W). This means J ∈ decomp(postW (a, I) ↓), which also means that

J ⊆ postW (a, I ′)↓ since postW (a, I ′) ⊇ postW (a, I). Using Lemma 13.3.5, there is some ideal

J ′ ∈ decomp(postW (a, I ′)↓)with J ⊆ J ′. Hence, I ′ a
−→ J ′ as required. The ideal completion is

finitely branching since decomp(X) is finite for any set and so for postW (a, I)↓ in particular.

For Part c), observe that if the original WSTS is ω2, then the ideal completion of the underlying

order on configurations is a WQO [FG12]. Hence, the ideal completion ofW is a WSTS.

To show Part d), that W = (Γ , ⩽, T , Γinit , Γfinal) being deterministic implies compl(W) being

deterministic, we prove that after reading word w, compl(W) is in the unique configura-

tion reachW (w) ↓. We prove this claim by induction. In the base case, we consider an

ideal in decomp(Γinit ↓). Since W is assumed to be deterministic, we have Γinit = {cinit} for

some configuration cinit. Hence, cinit ↓ is the unique inclusion-maximal ideal of Γinit ↓ and

reachcompl(W)(ε) = decomp(Γinit ↓) = {cinit ↓} = {reachW (ε)}. For the inductive step, con-

sider w .a. By induction, reachcompl(W)(w) is the unique ideal I = reachW (w)↓. We have that

reachcompl(W)(w .a) is an element of decomp(postW (a, I)↓). We claim that postW (a, I)↓ is the

ideal reachW (w .a)↓, and hence its ideal decomposition only consists of this single ideal. It is

clear by definition that reachW (w .a)↓ is a subset of postW (a, I)↓. For the other direction, con-

sider d ∈ postW (a, I)↓. This means there is some c′ ∈ I so that c′
a
−→ d ′ for some d ′ with d ⩽ d ′.

Since I = reachW (w)↓, we in turn have c′ ⩽ c′′ with c′′ = reachW (w). Using upward compatibil-

ity, there are some d ′′ with c′′
a
−→ d ′′, d ′ ⩽ d ′′. We conclude d ′′ = reachW (w .a) and d ⩽ d ′ ⩽ d ′′,

so d ∈ reachW (w .a)↓ as required.
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13.3 Ideals and the ideal completion

To complete the proof, it remains to show Part b), i.e. that the language is preserved. We claim

that for each wordw ∈ Σ∗, the union of the ideals reachable alongw in the ideal completion is

the set of configurations reachable alongw in the original WSTS. Formally, we claim

⋃ reachcompl(W)(w) = reachW (w)↓ .

We prove this claim using induction

In the base case, we have

⋃ reachcompl(W)(ε) = ⋃ ideals(Γ)init = ⋃decomp(Γinit↓) = Γinit↓= reachW (ε)↓
as required.

For the inductive step, consider w .a. Using upward compatibility, induction, and the fact that

unions commute with the post-operation, we obtain

reachW (w .a)↓ = postW (a, reachW (w))↓
= postW (a, reachW (w)↓)↓
= postW (a,⋃ reachcompl(W)(w))↓
= postW

⎛⎜⎜⎝a, ⋃
I ∈ reachcompl(W)(w) I

⎞⎟⎟⎠↓
= ⋃

I ∈ reachcompl(W)(w)postW (a, I)↓ .

Using Lemma Lemma 13.3.4, postW (a, I)↓ is equal to⋃decomp(postW (a, I)↓). With this equal-

ity, the definition of the transition relation in compl(W), the fact that the post-operation com-

mutes with unions, and the definition of reach, we obtain

⋃
I ∈ reachcompl(W)(w)postW (a, I)↓ = ⋃

I ∈ reachcompl(W)(w)⋃decomp(postW (a, I)↓)
= ⋃

I ∈ reachcompl(W)(w)⋃postcompl(W)(a, I)
= ⋃postcompl(W)(a, reachcompl(W)(w))
= ⋃ reachcompl(W)(w .a)

as desired.

Using the claim that we just have established, proving language equivalence is easy. For

any word w, the condition w ∈ L(W) is equivalent to the existence of a configuration

c ∈ reachW (w) ∩ Γfinal. Since Γfinal is upward closed, this is equivalent to reachW (w)↓ ∩Γfinal ≠ ∅.

Using the claim, this is equivalent to the existence of an ideal I ∈ reachcompl(W)(w) such that

I ∩ Γfinal ≠ ∅, which means I ∈ ideals(Γ)final. This in turn meansw ∈ L(compl(W)). ⬛
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13 Regular separability for WSTSes

Recall that the advantage of the ideal completion of a WSTS, in comparison to its determiniza-

tion using the operator P↓(−), is that it guarantees the existence of finite representations of

downward-closed sets. We formalize this is in the following by showing that any inductive in-

variant X of a WSTS induces a finitely represented inductive invariant in the ideal completion.

This will enable us to apply the technical core result Theorem 13.2.3 to prove Theorem 13.1.1.

13.3.8 Proposition
If X ⊆ Γ is an inductive invariant ofWSTSW , then decomp(X)↓ is a finitely represented inductive

invariant for the ideal completion compl(W).
Proof:
Assume X to be an inductive invariant forW . Recall that this implies (1) Γinit ⊆ X , (2) Γfinal∩X = ∅,

and (3) postW (Σ, X) ⊆ X . We claim that decomp(X)↓ is a finitely represented inductive invariant

for compl(W). Observe that decomp(X) ↓ is finitely represented since decomp(X) is finite by

Lemma 13.3.4 It remains to verify the properties of being an invariant.

(1) First, we show ideals(Γ)init ⊆ decomp(X)↓. For any ideal I ∈ ideals(Γ)init, we have I ⊆ Γinit by
definition. Since Γinit ⊆ X by Property (1) of X being an inductive invariant, we conclude that I
is an ideal in X , and hence I ∈ decomp(X)↓ since decomp(X)↓ is the set of all such ideals.

(2) Towards a contradiction, assume that there is an ideal I ∈ ideals(Γ)final ∩ decomp(X)↓. This
means that I ⊆ X and that I ∩ Γfinal ≠ ∅. We conclude X ∩ Γfinal ≠ ∅, a contradiction to the

safety of X .

(3) We need to check the inclusion postcompl(W)(Σ, decomp(X) ↓) ⊆ decomp(X) ↓. Pick any

J ∈ postcompl(W)(Σ, decomp(X) ↓). By definition, there is some I ∈ decomp(X) ↓ and some

letter a ∈ Σ such that I a
−→ J in compl(W). This means that J ∈ decomp(postW (a, I)↓), so in

particular J ⊆ postW (a, I)↓. Since we have I ⊆ X and postW (Σ, X) ⊆ X holds by assumption,

we get J ⊆ X . Hence, J is contained in decomp(X)↓ as required. ⬛

Beforewe can finally prove ourmain result forWSTSes, we need to overcome aminor challenge.

Theorem 13.2.3, our technical core results, expects a finitely represented invariant for the prod-

uct of two ordered LTSes. Our intention is to use the products of the ideal completions of the

given WSTSes. Proposition 13.3.8, however, guarantees the existence of a finitely represented

invariant in the ideal completion of a singleWSTS. Luckily, the operations of taking the product

and taking the ideal completion commute: The product of the ideal completions is the ideal

completion of the product.

13.3.9 Lemma
LetW ,W ′ be twoWSTSes. The ideal completion of their product compl(W ×W ′) is the product

of their ideal completions compl(W) × compl(W ′).
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Proof:
The proof essentially follows from the fact that every ideal in the product domain is a product

of ideals and vice versa, see Lemma 13.3.2. Hence, the configuration sets of compl(W ×W ′) and
compl(W)×compl(W ′) are equal. Using the definition of the synchronized product, it is straight-

forward to check that the identity also preserves the order and the initial and final sets of config-

urations. It remains to show that the transition relation is preserved. Consider a product of ide-

alsI×I ′. The a-successors of this product in compl(W×W ′) are the ideals (which themselves are

products) in decomp(postW×W ′(a, I ×I ′)↓); the a-successors of I ×I ′ in compl(W)× compl(W ′)
are the products of ideals in decomp(postW (a, I)↓) × decomp(postW ′(a, I ′)↓). Using the defi-

nition of the transition relation of the synchronized product and the fact that taking the down-

ward closure and taking the ideal decomposition both commute with the product operation,

we can prove the equality of these sets:

decomp(postW×W ′(a, I × I ′)↓) = decomp((postW (a, I) × postW ′(a, I ′))↓)
= decomp(postW (a, I)↓ ×postW ′(a, I ′)↓)
= decomp(postW (a, I)↓) × decomp(postW ′(a, I ′)↓) .

This completes the proof. ⬛

We can now finally prove the main result. Recall that Theorem 13.1.1 states that two disjoint

WSTS languages, at least one of them the language of a deterministic WSTS, are regularly sepa-

rable.

Proof of Theorem 13.1.1:
Assume that W ,W ′ are WSTSes with disjoint languages, L(W) ∩ L(W ′) = ∅, and W ′ is deter-

ministic. We consider their ideal completions compl(W) and compl(W ′). Using Lemma 13.3.7,

compl(W ′) is guaranteed to be deterministic. Furthermore, L(W) = L(compl(W)) and

L(W ′) = L(compl(W ′)).
Since the languages of W and W ′ are disjoint, the language of their product W × W ′ is empty.

Hence, there is an inductive invariant forW ×W ′, e.g. reachW×W ′↓, that is not necessarily finitely

represented. With Proposition 13.3.8, the ideal completion of the product compl(W × W ′) has
a finitely represented inductive invariant, e.g. decomp(reachW×W ′↓)↓⊆. With Lemma 13.3.9, the

ideal completion of the product is equal to the product of the ideal completions. Hence, we

have found finitely represented inductive invariant for the product of the ideal completions.

By applying the technical core result, Theorem 13.2.3, we obtain that the languages of the ideal

completions –which are equal to the languages of the originalWSTSes – are regularly separable

as desired. ⬛
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We conclude this section by demonstrating that with the concepts that we have introduced in

this thesis, it does not seem possible to get rid of the assumption that one of the two WSTSes

is deterministic. The above proof combines various state-of-the-art techniques, ones from the

literature and freshly developed ones, in a specific order. It is assembled with care to achieve

the intended result. Various ways to re-arrange the ingredients of the proof that might seem

promising at first glance turn out to be incorrect.

Consider for example the idea of first using e.g. the operator P↓(−) to make one of the WSTSes

deterministic before applying the development detailed in this section. This might seem

promising since our technical core result only requires ordered LTSes instead of WSTSes. How-

ever, this approach makes the given systems lose the WQO property too early: After applying

the operatorP↓(−) as in Lemma 12.2.4 to aWSTS that is not guaranteed to beω2 will yield an or-

dered LTS that may not be a WSTS. However, Lemma 13.3.4, the fact that all downward-closed

sets decompose into finitely many ideals, is reliant on the finite antichain property of WQOs,

Property (4) in Lemma 6.5.3. Hence, applying the ideal completion to an LTS that is not a WSTS

may yield a system forwhich sets of the shape decomp(X) can be infinite and Proposition 13.3.8

breaks. A similar problem occurs if we try to start by making one of the given systems finitely

branching, e.g. using the ideal completion.

Another idea that comes to mind is replacing the ideal completion by the operator P↓(−)
throughout this section. The resulting system sharesmany of the propertieswith the ideal com-

pletion: It preserves the language and ensures the existence of finitely represented invariants:

If X ⊆ Γ is a downward-closed inductive invariant, then so is X↓⊆ ⊆ P↓(Γ). The problem here is

that an equivalent of Lemma 13.3.9 does not hold in this case: The downward-closed subsets in

P↓(Γ × Γ ′) are not simply products of downward-closed subsets in P↓(Γ) and P↓(Γ ′), but rather
unions of such products.

The author conjectures that the key to overcoming the requirement of one of the given systems

having to be deterministic, or realizing that the requirement is in fact necessary, is understand-

ingwhether the inclusions in our result onWSTS expressiveness, Theorem12.2.1, are strict. This

would require a deeper understanding of the expressive power of WSTSes that are neither ω2

nor finitely branching.
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Thegoal of this chapter is todemonstrate that the separator constructionoutlined inChapter 13

is constructive. For many types of WSTSes, it is possible to actually construct an invariant in the

ideal completion which then can be turned into a separator. Here, we consider the case of Petri

nets with coverability as the acceptance condition. We show how to construct an NFA whose

language is a regular separator with a number of states that is at most triply exponential. We

complement this result by a doubly exponential lower bound. Unfortunately, the bounds are

not tight, a fact on which we will briefly comment later.

14.1 Upper bound

Our upper bound is the following theorem.

14.1.1 Theorem
Two labeled Petri net instances with disjoint languages can be separated by a regular language

with triply exponential state complexity.

Our proof of the theorem will be constructive in the sense that it provides an invariant in the

ideal completion from which one can construct a separating automaton as specified by Defini-

tion 13.2.4. Before we present the construction, we need to deal with two problems. The first

one is theminor technicality that we have allowed ε-transitions in Petri nets, but not inWSTSes.

The second one is the requirement of one of the systems being deterministic. We will discuss

the latter in more detail after solving the first problem.

Throughout the rest of this section, let (N1 ,Minit1 ,Mfinal1) and (N2 ,Minit2 ,Mfinal2) be two labeled

Petri net instances over some alphabet Σ of size n1 and n2, respectively. We assume that the

coverability languages of the two nets are disjoint.
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Eliminating ε-transitions

Unlike in Petri nets, we have not allowed ε-transitions in WSTSes for reasons that we explained

in Remark 6.5.5. The construction that we will apply to determinize one of the nets will also

eliminate ε-transitions in that net as a by-product. To handle ε-transitions in the other net, we

apply a preprocessing step. It is designed so that it does not change the fact that the nets are

language-disjoint, and it has no substantial influence on the size of the separating automaton.

Assume that net N1 contains transitions labeled by ε. To eliminate them, we consider a fresh

letter a /∈ Σ and define Σa = Σ ∪⋅ {a}. We relabel all ε-transitions in N1 by letter a, resulting in

the net N′1. The initial and final marking remain unchanged.

To account for the changes to N1 in the other net, we add a fresh transition ta to N2 that is

labeled by a and that does neither consume nor produce any tokens, in(ta) = out(ta) = 0⃗. Let

the resulting net be N′2. Again, we do not change the initial or the final marking.

Firstly, observe that the size ofN1 andN2 is polynomial in the size ofN1 andN2, respectively. Sec-

ondly, we will prove that a separator for the original nets can be turned into a separator for the

modified nets and vice versa, where both transformations impose a blow up of the separating

automaton that is at most polynomial.

14.1.2 Lemma
The languages of N1 and N2 are regularly separable iff the languages of N′1 and N′2 are.

Proof:
Assume that A is an NFA over Σ whose language L(A) is a regular separator for

L(N1 ,Minit1 ,Mfinal1) and L(N2 ,Minit2 ,Mfinal2). We define A′ over Σa by adding an a-labeled self-

loop q
a
−→ q to every state q of A. Clearly, the size of A′ is polynomial in the size of A. It remains

to show that its language separates L(N′1 ,Minit1 ,Mfinal1) and L(N′2 ,Minit2 ,Mfinal2).
We first show L(N′1 ,Minit1 ,Mfinal1) ⊆ L(A′). Consider a covering computation

Minit1 σ M ⩾ Mfinal1 of N′1. It is also a covering computation of N1, because the two

nets differ only in their transition labels. Hence, λ(σ) ∈ L(A) since L(A) is assumed to be a

separator. By using the a-labeled self-loops that are present in A′, we turn an accepting run

of A on λ(σ) in into an accepting run of A′ on λ′(σ), which completes the argument.

To see that L(A′) ∩ L(N′2 ,Minit2 ,Mfinal2) = ∅, assume towards a contradiction that some word

w ′ ∈ Σ∗a is contained in the intersection. Define word w ∈ Σ∗ by projecting w ′ to Σ, i.e. by

removing all occurrences of letter a. We claim that w ∈ L(A) ∩ L(N2 ,Minit2 ,Mfinal2). The only

way of generating letter a in automaton A′ is using the a-labeled self-loops. By removing all of

them, we turn an accepting run of A′ onw ′ into an accepting run of Aonw. Similarly, a covering

computation of N′2 for w ′ can be turned into a covering computation of N2 for w by removing

all occurrences of transition ta . Hence,w ∈ L(A) ∩ L(N2 ,Minit2 ,Mfinal2)which is a contradiction

to the assumption that L(A) is a separator.
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For the other direction, assume that the language of someNFA A′ separatesL(N′1 ,Minit1 ,Mfinal1)
and L(N′2 ,Minit2 ,Mfinal2). We define A by relabeling all a-transitions of A′ to ε. The resulting

automaton has the same size as A′, but may contain ε-transitions. However, it is well-known

that these transitions can be eliminated without introducing additional states.

We show that L(N1 ,Minit1 ,Mfinal1) ⊆ L(A). Assume w ∈ L(N1 ,Minit1 ,Mfinal1), and consider a

coveringcomputationMinit1 σ M ⩾ Mfinal1 ofN1with λ(σ) = w. Wemay see this computation

as a computation of N′1 that produces the wordw ′ = λ′(σ), and use the assumption thatL(A′) is
a separator to concludew ′ ∈ L(A′). Becausew is obtained fromw ′ by removing all occurrences

of letter a, we obtainw ∈ L(A) as desired.
Finally, we show L(N2 ,Minit2 ,Mfinal2) ∩ L(A) = ∅. Assume that word w is contained in L(A).
We define w ′ to be a word that is obtained from w by inserting occurrences of letter a so that

w ′ ∈ L(A′). It has to exist by thedefinitionof the automaton A. Using thatL(A′) is a separator, we

obtain thatw ′ is not contained inL(N′2 ,Minit2 ,Mfinal2). Hence, the wordw that is re-obtained by

removing all occurrences of a cannot be contained in the language of N2: A covering computa-

tionofN2 producingwwould imply theexistenceof a covering computationofN′2 producingw
′

by inserting occurrences of ta . This finishes the proof. ⬛

Altogether, we have shown how to eliminate ε-transitions from one of the nets while only in-

troducing a polynomial blowup to the size of the nets and the size of the separator. In the rest

of this section, we can assume without loss of generality that both Petri nets do not contain

ε-labeled transitions.

Enforcing determinism

Theorem 13.1.1, our result that shows that the languages of disjoint WSTSes are regularly

separable requires one of the two WSTSes to be deterministic. In general, the WSTSes in-

duced by a labeled Petri net will not satisfy this requirement. Because the underlying or-

der (Nk , ⩽) of such a WSTS is ω2, we could use our results on expressiveness, Lemma 12.2.4

in particular, to obtain a deterministic language-equivalent WSTS. The construction from the

proof of Lemma 12.2.4 would provide a WSTS whose underlying order is (P↓(Nk), ⊆). This

poses a problem. The ideals of (P↓(Nk), ⊆) are well-understood: They are of the shape

D↓⊆= {D′ ⊆ D ∣ D′ is downward closed inN
k}, where D ranges over the non-empty downward-

closed subsets ofNk [LS15a]. However, we thenwould need to obtain a boundon the size of the

ideal decomposition of an invariant in this order to obtain a bound on the size of the separating

automaton. The author did not succeed in proving such a result. It seems that themethods that

have been developed by Lazic and Schmitz [LS15a] in the context of alternating and branching

vector addition systems do not apply here.

To circumvent the outlined problems, we do not use the construction from the proof of

Lemma 12.2.4. Instead, we apply another preprocessing step to one of the Petri net which leads

to the induced WSTS becoming deterministic. This leads to a separator for the modified nets,
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14 Bounds on the separator size for Petri nets

but it is not straightforward to obtain the desired separator for the original ones. Wewill discuss

this problem in detail after giving the construction.

Enforcing uniqueness

Assume again that (N1 ,Minit1 ,Mfinal1) and (N2 ,Minit2 ,Mfinal2) are the given Petri net instances.

Themain challenge in enforcing theWSTS induced by N1 to be deterministic is the requirement

that the transition relation has to be unique. This requirement is violated as soon as N1 contains

two transitions that have the same label, because there is necessarily a marking that is large

enough so that both transitions are enabled. Hence, we have to equip N1 with the free labeling,

a labeling that labels each transition by its own name. In the freely labeled variant N′1 of N1, the

set of transitions T1 is the alphabet and the labeling function is the identity id∶ T1 → T1.

It remains to create a modification N′2 of N2 that also uses T1 as the alphabet. In the product

of N1 and N2, a transition t1 of N1 can synchronize with all transitions of t2 that have the same

label, λ1(t1) = λ2(t2). The idea behind the construction of N′2 is to preserve this property. To

this end, we replace each transition t2, say with label λ2(t2) = a, by a bunch of copies t2(t1) of
t2 in N′2, one copy for each transition t1 of N1 with label λ1(t1) = a. The incoming and outgoing

multiplicities of each copy t2(t1) are equal to those of t2. The places, the initial marking, and the

final marking of N′2 coincide with N2. Net N′2 uses T1 as its alphabet, and each transition t2(t1) is
labeled by t1.

We argue that this construction accomplishes its intended purpose. Firstly, observe that if two

transitions t1 in N1 and t2 in N2 can synchronize in the product of the nets, meaning that they

have the same label, then the transition t1 in N′1 can synchronize with transition t2(t1) in N′2, the
t1-labeled copy of t2.

Secondly, the transition relation of N′1 (and theWSTS inducedbyN′1) is unique since there is only

one transition with a specific label. However, it is not yet deterministic, since we are missing

completeness: There may be markings in which the unique transition with a specific label is

not enabled. This is a minor issue that we will handle later.

Thirdly, there is a strong connection between the languages of N1 and N2 and the lan-

guages of N′1 and N′2. Consider the labeling function of N′1, extended into a homomor-

phism λ1∶ T
∗
1 → Σ∗. We have that L(N1 ,Minit1 ,Mfinal1) = λ1(L(N′1 ,Minit1 ,Mfinal1)) and

L(N2 ,Minit2 ,Mfinal2) = λ1(L(N′2 ,Minit2 ,Mfinal2)). This in particular means that the languages of

N1 and N2 are disjoint if and only if the languages of N′1 and N′2 are. It is easy to see that a word

σ ∈ T∗1 that is in the languages of N′1 and N′2 leads to λ1(σ) being in the language of N1 and N2.

For the other direction, consider a word w ∈ Σ∗ in the intersection of the languages of N1 and

N2, and consider firing sequences σ ∈ T∗1 , τ ∈ T∗2 that induce the covering computation. We

immediately get that σ is in the language of N′1. To see that σ is also in the language of N′2,

one can use the covering computation induced by the firing sequence τσ whose ith transition

is τi(σi), the σi-labeled copy of τi in N
′
2.
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The most important property is that a regular separator for the languages N′1 and N′2 can be

turned in to a regular separator for the languages of the original nets. One might expect that if

R ⊆ T∗1 is a regular language separating the languages of the modified nets, then λ1(R) is the

desired separator over Σ∗. However, this turns out to be wrong. Applying a homomorphism

to two disjoint languages can result in two languages with a non-empty intersection. Assume

that R is disjoint from the language of N′2, R ∩ L(N′2 ,Minit2 ,Mfinal2) = ∅. Nevertheless, there

may be a word w ∈ λ1(R) ∩ λ1(L(N′2 ,Minit2 ,Mfinal2)), which means that λ1(R) is not disjoint

from λ1(L(N′2 ,Minit2 ,Mfinal2)) = L(N2 ,Minit2 ,Mfinal2). Since we assume thatR and the language

of N′2 are disjoint, we know that w is not the image of a word over T1 that is both in R and in

the language of N2. However, there may be two words that both have w as their image under

λ1 such that one of them is in R and the other is in the language of N′2. Phrased differently,

we need that any word in λ1(R) has no preimage in the language of N′2, which is a stronger

property than disjointness.

This problem can be overcome by using complementation. More precisely, let R ⊆ T∗1 be

a regular language that separates N′2 and N′1 in the sense that L(N′2 ,Minit2 ,Mfinal2) ⊆ R and

L(N′1 ,Minit1 ,Mfinal1) ∩R = ∅. Then λ1(R) is a regular separator for the languages of N1 and N2.

Note that the order of the two input languages is swapped to account for the complementation.

14.1.3 Proposition
If R regularly separates the languages of N′2 and N′1, then λ1(R) regularly separates the lan-

guages of N1 and N2.

Proof:
Firstly, observe that our candidate separator is indeed a regular language because the class

of regular languages is closed under complementation and homomorphisms. Secondly,

we prove L(N1 ,Minit1 ,Mfinal1) ⊆ λ1(R). Since R separates the languages of N′2 and N′1,

its complement R separates the languages of N′1 and N′2. This in particular means that

L(N′1 ,Minit1 ,Mfinal1) ⊆ R. Inclusions are preserved under homomorphisms, so we may use

L(N1 ,Minit1 ,Mfinal1) = λ1(L(N′1 ,Minit1 ,Mfinal1)) to deduce the desired statement.

Finally, we show that λ1(R) is disjoint from L(N2 ,Minit2 ,Mfinal2). Towards a contradiction, as-

sume that there is a word w ∈ Σ∗ in the intersection of the languages. On the one hand,

this means that there is some sequence τ ∈ R with λ1(τ) = w. Note that this sequence con-

sists of (the names of) transitions of N1. On the other hand, there is a covering computation

Minit2 σ M ⩾ Mfinal2 of net N2 with λ2(σ) = w. We turn this computation into a computation

στ of N
′
2 as follows: We replace the ith transition σi ∈ T2 of N2 by σi(τi), the copy of transition σi

in N′2 that is labeled by τi ∈ T1. This copy indeed exists because after applying the respective

labeling functions, we have λ2(σi) = λ1(τi) = wi . The result is a sequence στ of transitions of

N′2 that still induces a covering computation, hence λ1(στ) ∈ L(N′2 ,Minit2 ,Mfinal2). Furthermore,

the construction ensures that the labeling of στ under the labeling function of N′2 is τ ∈ R. This
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14 Bounds on the separator size for Petri nets

is a contradiction to the assumption thatR and the language of N2 are disjoint becauseR is a

regular separator. ⬛

Unfortunately, applying complementation and a homomorphism has a severe impact on the

complexity. We will prove that for two Petri nets, one of them freely labeled, one can construct

a separator with a doubly exponential state complexity. This means that we can represent its

complement by a DFA with at most triply exponentially many states. Applying a homomor-

phism to this DFA introduces a polynomial blowup to its size, but we lose determinism. The

final result is an NFA of triply exponential size, proving Theorem 14.1.1. A priori, the index of

the separator may be quadruply exponential.

Wewill later prove a doubly exponential lower bound for the state complexity of regular separa-

tors for coverability languages of non-freely labeled Petri nets. Thismatches theupper bound in

the case that oneof thenets is freely labeled, but not in thegeneral case. The author conjectures

that the determinization construction in this section can be improved to avoid the exponential

blowup introduced by the complementation.

Enforcing completeness

The definition of deterministic WSTSes imposes two restrictions on the transition relation,

uniqueness and completeness. The above construction ensures that eachmarking has at most

one a-labeled successor in theWSTS associated to a Petri net. To get determinism, we need also

need to guarantee that there is at least one a-labeled successor. Luckily, enforcing complete-

ness is typicallymuch easier than enforcing uniqueness. For example, anNFA canbe completed

by introducing an additional error state. A similar trick works in the case of WSTSes.

Let W = (Γ , ⩽, T , Γinit , Γfinal) be a labeled WSTS over some alphabet Σ. We define the WSTS

W ′ = (Γ ∪⋅ {⊥}, ⩽, T ′ , Γinit , Γfinal) that is obtained by adding a special bottom configuration ⊥.

The order ⩽ on Γ is extended to Γ ∪⋅ {⊥} by defining⊥ ⩽ c for all c ∈ Γ ∪⋅ {⊥}. This order is aWQO

assuming that (Γ , ⩽) is a WQO. The new configuration is neither initial nor final.

The transition relation T ′ is a superset of T defined as follows. If c ∈ Γ is a configuration that

has no a-successor in T , then we have c
a
−→ ⊥ in T ′. Additionally, we have ⊥

a
−→ ⊥ in T ′ for

all letters a. Upward compatibility is satisfied since ⊥ ⩽ d for all d ∈ Γ . The definition of T ′

ensures completeness, i.e. each configuration has at least one a-successor. If T is unique, then

T ′ is deterministic.

Since the new configuration⊥ is absorbing, meaning a computation that enters it cannot leave,

but it is not final, we haveL(W) = L(W ′). IfW is theWSTS associated to a freely labeled Petri net,

then W ′ is a deterministic WSTS with the same language. With respect to regular separability,

the two can be used interchangeably.

When considering the size of the separator, however, it is important to understand the impli-

cations that the construction ofW ′ has on the ideal completion. If J is an ideal in (Γ ∪⋅ {⊥}, ⩽),
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then it is of the shape I ∪⋅ {⊥}, where I ⊆ Γ is an ideal of (Γ , ⩽) or the empty set. Similarly, if I is

an ideal of (Γ , ⩽), then I ∪⋅ {⊥} is an ideal of (Γ ∪⋅ {⊥}, ⩽). To see that both statements are true, we

use the fact that ⊥ is a bottom element, which implies that it is contained in every non-empty

downward-closed subset.

Consequently, if X is an invariant for W , and its ideal decomposition decompΓ (X) has size k,

then X ∪ {⊥} is an invariant forW ′ and its ideal decomposition has size k + 1. The latter consists

if the ideals I ∪ {⊥} where I ∈ decompΓ (X) and the additional ideal {⊥}. This means that

applying the preprocessing step that makes a WSTS complete only adds a single ideal to the

ideal decomposition of an invariant.

An upper bound assuming determinism

The final step in proving Theorem14.1.1 is showing that if N1 and N2 are language-disjoint Petri

nets where N1 is freely labeled, then their languages can be separated by the language of an

NFA with doubly exponentially many states. To this end, we will consider the size of the ideal

decomposition of an invariant for the products of the nets.

The main ingredient to showing a doubly exponential bound for the size of this invariant is the

following result by Bozzelli and Ganty [BG11]. It provides a doubly exponential bound on the

size of a representation of reach−1WN
, whereWN is theWSTS associated to a Petri net N. The result

has been obtained by inspecting Abdulla’s backward search [ACJT96].

14.1.4 Theorem (Bozzelli and Ganty [BG11])
Consider a Petri net instance (N,Minit ,Mfinal) and the associated WSTSWN . One can construct a

representation reach−1WN
= {M1 , . . . ,Mk}↑, where k as well as all ∥Mi∥∞ are bounded by

g = (∣T ∣ ⋅ (∥N∥∞ + ∥Minit∥∞ + ∥Mfinal∥∞ + 2))2O(∣P∣⋅log∣P∣)
.

Here, ∥N∥∞ = max{∥in∥∞ , ∥out∥∞} is the maximum multiplicity of any transition. Our chal-

lenge in the following will be to convert this bound on a representation of the upward closed

set reach−1WN
into a boundon the size of the ideal decomposition of its complementNP \reach−1WN

.

This set is guaranteed to be an invariant sinceWN has empty language in our case.

We have already briefly mentioned in Section 13.3 that the ideals in N
d are of the shape M↓,

where M ∈ N
d
ω is a generalized marking. In this section, we will additionally need to consider

(1) how to construct a representation of the intersection of two ideals, and (2) how to construct

the ideal decomposition of the setNd \ M↑, where M is a marking. The following lemma states

the well-known solution to both problems.
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14 Bounds on the separator size for Petri nets

14.1.5 Lemma (see e.g. Lazic and Schmitz [LS15a])

a) For ideals M1↓,M2↓ ofNd , their intersection M1↓ ∩ M2↓ is the ideal M↓where M is specified

by M(i) = min{M1(i),M2(i)} for all i ∈ [1, d].
b) For a marking M ∈ N

d , the ideal decomposition of Nd \ M ↑ is {Mi ↓ ∣ i ∈ [1, d]} where

Mi(i) = M(i) − 1 and Mi( j) = ω for j ≠ i.

The proof is straightforward in both cases. The representation of the intersection simply for-

malizes the fact that an element of the intersection needs to be smaller in every component

than the representations of the intersected ideals. For b), each ideal in the ideal decomposi-

tion ofNd \ M↑ describes all markings that are smaller than M in some component, and hence

contained in the complement of M↑.

With the preliminaries at hand, we can state and prove the main result.

14.1.6 Proposition
Let N1 , N2 be languages-disjoint Petri nets, and letW× be the WSTS associated to their product.

The ideal decomposition of the invariantNP \ reach−1W×
has size at most doubly exponential.

Proof:
Let (N1 ,Minit1 ,Mfinal1) and (N2 ,Minit2 ,Mfinal2) be the given Petri net instances. Let W× be the

WSTS associated to the product of the nets, and let d be the total number of places. Since

the two Petri nets are language disjoint, X = N
d \ reach−1W×

is a safe inductive invariant, see

Section 13.2. Hence, the downward closure Y↓ of its ideal decomposition Y = decomp(X) is a

finitely represented invariant in the ideal completion by Proposition 13.3.8.

With Theorem 14.1.4 applied to W×, we have reach−1W×
= {M1 , . . . ,Mk}↑ for suitable markings

M1 , . . . ,Mk . We may write

X = N
d \ reach−1W×

= N
d \ {M1 , . . . ,Mk}↑ = N

d \ ⋃
i∈[1,k]Mi↑ = ⋂

i∈[1,k]N
d \ Mi↑ .

With Part b) of Lemma 14.1.5, we can rewrite each N
d \ Mi ↑ to ⋃ j∈[1,d] Mi , j ↓, where

Mi , j( j) = Mi( j) − 1 and Mi , j(l) = ω for l ≠ j. Altogether, we have

X = ⋂
i∈[1,k] ⋃

j i∈[1,d]Mi , j i↓ .

We use distributivity to swap the intersection and the union, resulting in

X = ⋃
j⃗∈[1,d]k ⋂

i∈[1,k]Mi , j⃗(i)↓ .
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We can use Part a) of Lemma 14.1.5 to compute for each j⃗ a single ideal M j⃗ with

M j⃗ ↓= ⋂i∈[1,k] Mi , j⃗(i) ↓. Altogether, we obtain X = ⋃ j⃗∈[1,d]k M j⃗ ↓. Some ideals in this union

might be redundant, but in any case, we obtain that the ideal decomposition of X consists of at

most dk ideals. Note that we have k ⩽ g, where g is the doubly exponential bound specified in

Theorem 14.1.4. Unfortunately, this only provides a triply exponential bound dg.

To get the desired bound, we use that Theorem 14.1.4 also specifies ∥Mi∥∞ ⩽ g for all i. By the

constructionof thegeneralizedmarkingsMi , j, wehave∥Mi , j∥∞ ⩽ ∥Mi∥∞ ⩽ g, whereweextend

the infinity norm to generalized markings by treating ω-components as zero. Finally, we have

that eachM j⃗ which represents the intersection of some of theMi , j↓ also satisfies ∥M j⃗∥∞ ⩽ g by

definition. Hence, any non-ω component of M j⃗ is bounded by g from above.

There are only (g + 2)d different generalized d-dimensional marking in which all non-ω compo-

nents are bounded by g. Hence, after removing redundant ideals, the ideal decomposition of

X has size at most (g + 2)d . Inserting the definition of g from Theorem 14.1.4 yields the bound

∣Y∣ ⩽ (g + 2)d = ((∣T×∣ ⋅ (∥N×∥∞ + ∥Minit×∥∞ + ∥Mfinal×∥∞ + 2))2O(∣P×∣⋅log∣P∣)
+ 2)d .

Here T× , N× and so on specify the components of the product net of N1

and N2 that induces the WSTS W×. Using the power laws, the number(∣T×∣ ⋅ (∥N×∥∞ + ∥Minit×∥∞ + ∥Mfinal×∥∞ + 2))2O(∣P×∣⋅log∣P∣)
is at most exponential in ∣N1∣ + ∣N2∣,

even if ∥N×∥∞, ∥Minit×∥∞, and ∥Mfinal×∥∞ may already be exponential in ∣N1∣ + ∣N2∣. Hence,

we get the desired doubly exponential bound. ⬛

14.1.7 Remark
The aboveproof of Proposition 14.1.6 using the result by Bozzelli andGanty [BG11] is amodified

version of the proof in the original publication [CLMMKS18; CLMMKS18a]. With the results by

Lazic and Schmitz [LS15a], Corollary 4.6 in particular, a simpler proof would be possible. The

authors of that paper show that one can compute the invariantNd \ reach−1WN
as the fixed point

of the descending chain

N
d \ Mfinal↑ ⊇ N

d \ pre(Σ⩽1 ,Mfinal↑) ⊇ N
d \ pre(Σ⩽2 ,Mfinal↑) ⊇ . . . ,

based on a technique that uses ideals. They establish a doubly exponential upper bound for

the smallest number i such that Nd \ reach−1WN
= N

d \ pre(Σ⩽i ,Mfinal↑,) and mention that this

implies that the ideal decomposition of the invariant is also of doubly exponential size.

Recall that our upper bound, Theorem 14.1.1, states that two labeled Petri net instances with

disjoint languages can be separated by a regular language with triply exponential state com-

plexity. We can now assemble its proof by using the various techniques that we have presented

in this section.
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Proof of Theorem 14.1.1:
Let N1 , N2 be two given language-disjoint Petri nets. We use the above construction to elimi-

nate all ε-transitions in N2, resulting in the nets N′1 , N
′
2. We then consider N′′1, the freely labeled

variant of N′1, and N
′′
2, the correspondingmodification of N′2. Note that being freely labeled also

implies that N′1 has no ε-transitions. The techniques that we have applied preserve language-

disjointness, so the intersection of the languages of N′′1 and N′′2 are disjoint. This means that the

languageof theWSTSW× associated to their product is empty, and the setNd\reach−1W×
(Mfinal×↑)

is an inductive invariant. With Proposition 14.1.6, the size of the ideal decomposition of this in-

variant is at most doubly exponential.

The transition relation of the WSTS associated to N′′1 is unique, but not complete. However, we

may apply apreprocessing step as described above andobtain adeterministicWSTSWN′′1complete

with the same language. Compared to the original WSTS, this WSTS has one additional ideal.

This means that the ideal decomposition of the invariant forW× translates into an ideal decom-

position of an invariant for the product ofWN′′1complete andWN′′2
that is larger only by a polynomial

factor. This product satisfies the assumption of Theorem 13.2.3, proving that the languages of

WN′′1complete and WN′′2
can be separated by the language of an NFA with doubly exponentially

many states.

ApplyingProposition14.1.3 yields that the languagesofN′1 andN
′
2 canbe separatedbya regular

separator with triply exponential state complexity. Finally, we apply the construction from the

proof of Lemma 14.1.2 to obtain separator for the languages of the original nets N1 and N2 with

the desired triply exponential state complexity. This completes the proof. ⬛
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14.2 Lower bound

We complement our findings on the regular separability of Petri net coverability languages by

a lower bound.

14.2.1 Theorem
Regular separators for Petri net coverability languagesmay have doubly exponential state com-

plexity and triply exponential index.

The lower bound does not match the upper bound: Theorem 14.1.1 provides a separator with

triply exponential state complexity (and hence quadruply exponential index). We have already

commented on the fact that this additional exponent is caused by the construction that we

have introduced for determinizing one of the nets. The author conjectures that using a suitable

technique, this additional blowup can be avoided. This would imply that the lower bound that

we are going to prove in this section is optimal.

To prove the theorem, we show a proposition that provides for each n ∈ N two language-

disjoint Petri nets of size polynomial in n. The regular separators of their coverability languages

can be shown to have minimal state complexities and indices as required by the lower bound.

14.2.2 Proposition
For all n ∈ N, there are Petri nets N0(n), N1(n) of size polynomial in n with disjoint languages

such that any regular separator for the coverability languages L(N0(n)) and L(N1(n)) has state

complexity at least 22
n

and index at least 22
2n

.

The statement on the index is a strictly stronger statement than the one on the state complexity.

If we show that anyDFA separating the languages has at least 2k states, this implies that anyNFA

with this property has at least k states. Otherwise, we could take an NFA with less than k states

and determinize it to obtain a DFA with less than 2k states. Hence, it will be sufficient to prove

the statement on the index of a separator in the following.

The proof consists of two ingredients. The first ingredient are two special Petri net instances(Ninc ,Minitinc , 0⃗) and (Ndec , 0⃗,Mfinaldec) that come from Lipton’s proof of the EXPSPACE-hardness

of coverability [Lip76]. We have stated the properties of these nets in Proposition 6.2.3.

With these two nets, it would be possible to show that the languages {am ∣ m < k} and{am ∣ m ⩾ k} for k = 22
n

are the coverability languages of Petri nets of size polynomial

in n. These languages are regular languages that are the complement of each other and

have state complexity k. Hence, they could be used to show the statement on the state

complexity of separators.
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14 Bounds on the separator size for Petri nets

To also show the stronger statement on the index of separators requires a second ingredient. It

is the classical result that a language that can be represented by a small NFAmight need a large

DFA that we have briefly mentioned in Example 4.3.2. We consider the binary alphabet {0, 1}.
For x ∈ {0, 1} and a number k ∈ N, k > 0, the languageLx@k is the set of all words whose k-last

letter is x ,

Lx@k = {w ∈ {0, 1}⩾k »»»»»w∣w∣−(k−1) = x} .
It is well-known that this language has state complexity k + 1, but index 2k . An NFA for the

language can guess the occurrence of the k-last letter, check that it is indeed x , and then verify

that it is followed by exactly k − 1 letters. A DFA for the language, however, cannot the occur-

rence of the k-last letter. It needs to store at each point in time the k last letters, which requires

2k states. Kozen [Koz06] mentions this example without proof. We will formally prove it in the

context of the proof of Proposition 14.2.2.

Combining the two ingredients yields two Petri nets N0(n), N1(n) such that the language of

Nx (n) is essentially Lx@k for the doubly exponential number k = 22
n

. This means that any DFA

whose language separates the two coverability languages is a DFA for Lx@k , which means that

it needs at least 2k states.

By using ε-transitions, we could enforce that the language of Nx (n) equals Lx@k . To show that

the lower boundholds even ifwedonot allow ε-transitions, we consider the extended alphabet{0, 1, a, b}. The language of net Nx (n) will be a subset of a∗ .b.Lx@k .b.a
∗, where the prefix a∗

and the suffix a∗ correspond to a computation of Ninc and Ndec, respectively. Since the prefix

and the suffix are the same for N0(n) and N1(n), they do not influence the size of the separator.

In the following, wewill first explain the construction of the nets Nx (n) and then prove that they

satisfy the required properties.

The construction of Nx (n)
We state the construction of the Petri net instance (Nx (n),Minit ,Mfinal). It is parametric in the

size n and in x ∈ {0, 1}. Let (Ninc ,Minitinc , 0⃗) and (Ndec , 0⃗,Mfinaldec) be the Petri net instances for

the chosen n whose properties are specified in Proposition 6.2.3. These nets are independent

of x ; the rest of the construction will be independent of n. The net Nx (n) consists of the disjoint

union of Ninc, Ndec, and a constant number of additional places and transitions. It is depicted

schematically, i.e. with the internal behavior of Ninc and Ndec hidden, in Figure 14.2.a.

The places of Nx (n) are the places of Ninc, the places of Ndec, and four places p1 , . . . , p4. These

additional places act as control states: The computations of the net will proceed in four phases

such that in phase i, place pi carries one token and the places p j for j ≠ i donot carry any tokens.

The initial marking assignsMinitinc to the places of Ninc, one token to p1 and no token elsewhere.

The finalmarking that shouldbe covered requires a tokenon p4 and requires tokens as specified

by Mfinaldec on the places of Ndec.
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14.2 Lower bound

Instead of formally specifying the transitions of Nx (n), we describe the phases that form its com-

putations. The transitions that can be used in each phase are disjoint. Each transition t that is

used in phase i checks that the control place pi carries a token, i.e. in(t, pi) = out(t, pi) = 1.

1. The first phase is a computation of Ninc. We assume that all transitions of Ninc are labeled

by a and that they check the existence of a token on p1.

Recall that the copy of Ninc(n) is initialized with the correct initial marking. From Proposi-

tion 6.2.3 we get that Ninc has two special places phaltinc , poutinc such that if the computa-

tion reaches a marking that assigns a token to phaltinc, poutinc carries exactly 22
n

tokens.

A b-labeled transition signals the beginning of the second phase. It moves a token from

p1 to p2 and consumes a token from phaltinc. This means that poutinc carries 22
n

tokens.

2. The second phase uses two transitions that are labeled by 0 and 1, respectively. Besides

checking for the control token on p2, they have no effect.

Intuitively, the second phase generates a prefix of a word fromLx@k ⊆ {0, 1}∗, namely all

but the last k letters of a word from this language.

x . The second phase ends with an x-labeled transition that moves the control from p2 to

p3. It also moves one token from the place poutinc of Ninc to the place pindec of Ndec. Note

that this is the only transition that depends on x ∈ {0, 1}, i.e. it is the only part of the

construction in which N0(n) and N1(n) differ.
Intuitively, firing this transition corresponds to the k-last letter of a word from Lx@k .

3. The third phase consist of two transitions labeled by 0 and 1, respectively. These transi-

tions check for the control token on p3 and move one token from poutinc to pindec.

Intuitively, the third phase generates the suffix of length k − 1 of a word from Lx@k .

p1 p2 p3 p4

Ninc Ndec

a apoutinc

phaltinc

pindec

b x b

0 1 0 1

Figure 14.2.a: A schematic representation of the Petri net Nx (n).
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14 Bounds on the separator size for Petri nets

The last phase starts with a b-labeled transition that moves the control from p3 to p4.

4. The last phase is essentially a computation of Ndec. We assume that all transitions of Ndec

are labeled by a and that they check the existence of a token on p4.

Recall that a computation of Ndec can only cover the final marking Mfinaldec if initially, we

had at least 22
n

tokens on pindec.

We claim that the language of Nx (n) is
L(Nx (n),Minit ,Mfinal) = Linc .b.Lx@22

n .b.Ldec

where Linc ,Ldec ⊆ a
∗ correspond to computations of Ninc , Ndec.

By the description of the phases of Nx (n) above, any word in the language of Nx (n) has the

shapewinc .b.w .b.wdec wherewinc ,wdec ∈ a
∗. To see that we also havew ∈ Lx@k , we argue that

the structure of the net ensures that the k-last letter of w is x . We may write w ′ .x .w ′′, where

w ′ ,w ′′ ∈ {0, 1}∗ correspond to the letters generates by Phase 2 and Phase 3, respectively. To

complete the argument, we show thatw ′′ has length k − 1.

At the beginning of Phase 2, poutinc carries k = 22
n

tokens and pindec carries no token. At the

beginning of Phase 3, i.e. after generating w ′ .x , place poutinc carries k − 1 tokens and pindec

carries one token. The final marking of Ndec, and hence the final marking of Nx (n), can only be

covered if pindec carries k token at the beginning of Phase 4. Thus, w ′′ needs to have length at

least length k − 1 to move at least k − 1 tokens from poutinc to pindec. Since there are only k − 1

tokens on available on poutinc, this also limits the length ofw ′′ by k − 1.

We have shown that any word from the language of Nx (n) is of the shape a∗ .b.Lx@22
n .b.a∗.

For the other direction, one would need to argue that for any word w ∈ Lx@22
n , the word

winc .b.w .b.wdec obtained by pre- and appending suitable pre- and suffixes is in the language of

Nx (n). This can be shown easily by picking suitable transitions in the Phases 2 and 3.

To finish the proof of Proposition 14.2.2, we have to show that the languages of N0(n) and N1(n)
cannot be separated by a regular language of index less than triply exponentially. Since the

languages share the prefix a∗ .b and the suffix b.a∗, this boils down to proving that L1@22
n and

L0@22
n cannot be separated by a DFA with less than triply exponentially many states. We pro-

ceed to show this using the well-known fooling-set technique [Bir92; Bir93].

Proof of Proposition 14.2.2:
Let k = 22

n

and assume that L(A) is the language of a DFA with strictly less

than 2k states that separates the given languages, i.e. L(N0(n),Minit ,Mfinal) ⊆ L(A) and

L(N1(n),Minit ,Mfinal) ∩ L(A) = ∅. Towards a contradiction, we consider the set of words {0, 1}k .
Since its size is larger than the number of states of the DFA A, there are distinct words that lead

to the same state, a fact that we will exploit later.
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14.2 Lower bound

Let winc ∈ a∗ be a word generated by a computation of Ninc that creates a token on phaltinc.

Similarly, letwdec ∈ a
∗ be a word generated by a covering computation of Ndec, assuming that

it starts from a marking that places k tokens on pindec.

We use the set of words {winc .b.w ∣ w ∈ {0, 1}k} as the fooling set. For each word winc .b.w, let

qw be the unique state in which A is after reading it. Since ∣{0, 1}k∣ = 2k is strictly larger than

the number of states of A, there are two distinct words w ,w ′ with w ≠ w ′ such that qw = qw ′ .

Sincew ≠ w ′, there is some position i withwi ≠ w
′
i . Wlog., we assumewi = 0,w ′

i = 1. We define

wfill = 0i−1 as a suitable suffix such that the ith position ofw andw ′ becomes the k-last position

inw .wfill andw
′ .wfill. In particular, we havew .wfill ∈ L0@k ,w

′ .wfill ∈ L1@k . This implies

winc .b.w .wfill .b.wdec ∈ L(N0(n),Minit ,Mfinal) ⊆ L(A) ,
meaning that the unique run of A on that word is accepting. Since the state qw after reading

winc .b.w respectivelyw.b.w
′ is the same and the suffixeswfill .b.wdec are equal, we also get

winc .b.w
′ .wfill .b.wdec ∈ L(A) .

However, this word contained inL(N1(n),Minit ,Mfinal), a contradiction to the assumption that A

is a separating automaton with L(A) ∩ L(N1(n),Minit ,Mfinal) = ∅. ⬛

With the proof of the lower bound completed, all results outlined in Section 11.3 have been

shown. Our study of the regular separability of WSTS languages has been completed.
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Part V.
Games

This part of the thesis is concerned with solving games. We have argued in Section 1.3 of the

introduction that games whose game arenas are defined by automata are related to the area of

program verification. In particular, the task of a solving synthesis problem can be approached

by translating it into an equivalent game.

Outline

We start by formally defining board games for two players with perfect information in Chap-

ter 15. Wediscuss the intricacies that arise fromconsidering inclusiongameswhere thewinning

condition is membership in a given target language.

Before we actually turn to solving games, we explain effective denotational semantics in Chap-

ter 16. Effective denotational semantics is an approach to solving decision problems that is

based on computing the least solution to a system of equations, and it will be our preferred

course of action throughout the rest of this part. We demonstrate how to use effective denota-

tional semantics by applying it to the regular inclusion problem for context-free languages and

the ω-regular inclusion problem for ω-context-free languages.

In Chapter 17, we consider the problem of solving context-free inclusion games, games whose

game arena is defined by a context-free grammar andwhosewinning condition ismembership

in a regular target language. Wepresent an algorithmsolving suchgameswith theoptimal time

complexity that is based on effective denotational semantics.

In Chapter 18, we extend this approach to games defined by higher-order recursion schemes.

In addition to solving such games, we study effective denotational semantics for verification

problems based on higher-order schemes on amore general level, proving an exact fixed-point

transfer result that is of independent interest.

Finally, Chapter 19 is concerned with studying the frontier of the decidability of games. To this

end, we use the model of valence systems, a type of automaton that generalizes well-known

models like pushdown automata and Petri nets. We will prove a classification result that shows

that context-free games are essentially the only decidable type of reachability games that can

be modeled using valence systems over graph monoids. We propose using bounded context

switching as an approach to obtain decidability in a wider range of cases.
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Publication

This part of the thesis is based on the publications [HMM16] (resp. its full ver-

sion [HMM16a]), [HMM17] (resp. its full version [HMM17a]), [MMZ18] (resp. its full ver-

sion [MMZ18a]), and [MMN17]. At the beginning of each chapter, we will provide more

detailed information about which paper the chapter is based on. In Chapter 20, we will discuss

the contributions the author made to these publications.
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15 Games with perfect information

Thegoal of this part of the thesis is studying certificate-generatingalgorithms for solvinggames.

We will use this chapter to give some basic definitions regarding games and to introduce the

corresponding notation. Most of thematerial is standard, it can be found e.g. in [KN01], but the

presentation does not follow any particular source.

Games with perfect information

A game is a system whose behavior is influenced by several independent entities, called play-

ers. Games can be divided into two categories, namely games with perfect and games with

imperfect information. In a gamewith perfect information, each of the players knows the rules

of the game, and, whenever it is their turn to pick a move, they know the history and the cur-

rent state of the game. We also require perfect-information games to be sequential; we do not

allow concurrent games in which multiple players have to make a choice simultaneously like

in the well-known prisoner’s dilemma [Pou92]. We will exclusively consider perfect-information

games in this thesis since they provide a sufficiently expressive model for the problems in ver-

ification and synthesis that we are interested in. Games with imperfect information, which are

predominantly studied in economic sciences for their capability of modeling a market, and the

corresponding notions like equilibria are beyond the scope of this thesis.

A consequence of the players having perfect information is that it is typically sufficient to con-

sider at most two players. Assume that in a k-player game, there is a global winning condition

that a coalition of players tries to satisfy, while the opposition, the rest of players, is trying to pre-

vent this from happening. This game is equivalent to the two-player game in which all players

in the coalition and opposition have been merged into a single player each. Here, it is crucial

that the players do not have any private information that is hidden from the other players in the

same group.

Finally, we require games to be discrete in the sense that they are turn-based. This allows us to

model games as board games, i.e. based on directed graphs. The nodes of the graph represent

states of the game and the choices of a player in a certain state are represented by the choice

among the outgoing edges of the corresponding node.

In Section 1.3 of the introduction, we have already given several examples ofwhere such games

play a role in computer science. We have briefly mentioned game semantics and a proof of

Rabin’s tree theorem that relies on games, and we have talked extensively about how games

can be used to model synthesis problems.
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15 Games with perfect information

Basic definitions

We turn to providing formal definitions for the aforementioned concepts. A sequential two-

player boardgamewith perfect information, shortly referred to as game, consists of a gamearena

and awinning condition. A game arena is a transition system S = (Γ , T ) together with a function

owner∶ Γ → { , }
that assigns each configuration its owner, either the universal player or the existential player .

In the context of games, we often refer to configurations c ∈ Γ as positions and to transitions

t ∈ T ⊆ Γ × Γ as moves of the game.

The owner function induces a partitioning of the positions Γ = Γ ∪⋅ Γ into the sets

Γ = {c ∈ Γ ∣ owner(c) = } and Γ = {c ∈ Γ ∣ owner(c) = }. We usually write a game

arena as S = (Γ ∪⋅ Γ , T ), where the owner function is implicitly given by the partitioning of the

set of all positions Γ = Γ ∪⋅ Γ .

Beforewecan formally definewinning conditions, weneed tounderstandhowagame is played.

A play (from position cinit) is a finite or infinite path in the game arena that starts with cinit. For-

mally, an infinite play is a sequence of positions p = p0p1 . . . such pi ∈ Γ for all i, p0 = cinit,

and for each i ∈ N, (pi , pi+1) ∈ T is a valid move in the game. For finite plays, the definition

is adapted accordingly. Intuitively, we think of a token that is initially placed on position cinit.

The game then proceeds in sequential steps. In each step, the owner of the current position c

is active and can move the token from c to a new position by picking a move of the game that

originates in c.

We call a playmaximal if it is either infinite or it is finite and ends in a position that is a deadlock,

i.e. it has no successors in the arena. The set Playsmax ⊆ Γ∗ ∪ Γω is the set of all such plays.

Note that here, we use Γ∗ and Γω to refer to the set of finite and infinite sequences of positions,

respectively, even if Γ is not finite. For a finite play p, we use the notation plast to denote the

position p∣p∣−1.
A winning condition is a function win∶ Playsmax → { , } that assign to each maximal play a

winner. A game is of the shape (G ,win)whereG is a game arena andwin is a winning condition

for plays on that arena.

The winning condition allows us to determine the winner of a play. Our main interest, however,

is to determine whether one of the players has a systematic way of playing so that she wins all

resulting plays, independent of the choices of her opponent. If so, we say that this player wins

the game. To formalize this idea of playing systematically, we introduce the notion of strategies.

A strategy for player ∈ { , } is a function s that takes a finite play p that ends in an active

position of player and assigns a successor of the current position. Formally, we can see it as

a function s ∶ Γ∗Γ → Γ such that if p is a finite play where plast ∈ Γ is not a deadlock, then(plast , s (p)) ∈ T is a valid move. Intuitively, a strategy tells a player whenever she is active
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which move she should make. Accordingly, we say that a play p conforms to strategy s if for

all pi with pi ∈ Γ , pi ≠ plast, we have pi+1 = s (p0 . . . pi).
A strategy s is called a winning strategy for a game from position cinit if any play that starts in

cinit and conforms to s is won by player . The set of positions c from which player has a

winning strategy is called the winning regionW of that player.

It is easy to see that the winning regions of the two players have to be disjoint. Assume both

players have a winning strategy from the same position. We can inductively construct the

unique maximal play that conforms to both strategies by querying after each move the strat-

egy for the active player. If both strategies are winning, the resulting play has to be winning for

both players. This is a contradiction to the winning condition assigning a unique winner to all

maximal plays. The question arises whether the set of positions is partitioned into the winning

regions. A game that has this property, i.e. a gamewith Γ = W ∪⋅W , is calleddetermined. In the-

ory, it is possible to construct undetermined games in which positions exist from which none

of the players has a winning strategy [MS62]. However, all the games that we will consider in

this thesis are determined, which can be proven using the Borel determinacy theorem [Mar75].

Hence, we can turn from the theoretical question of determinacy to more practical questions.

Given agameand an initial position in that game, canwe computewhichplayerwins thegame?

When we talk about solving or deciding a game, we are interested in an algorithm that takes (a

description of) the game arena and thewinning condition. It should either also take a given ini-

tial position and return thewinner from that position, i.e. the player who has awinning strategy,

or it should produce a description of the winning regions of one or both of the players.

In addition to just computing the winner, we also want to compute the correspondingwinning

strategies. These strategies serve as certificates as explained in Section 1.3. This also means

that we are interested in simple winning strategies. One particularly simple type of strategies

are positional strategies that assign the next move only depending on the current position and

not on the history. Formally, a strategy s is positional if for any two plays p, p′ that end in the

same position, plast = p
′
last, we have s (p) = s (p′). Note that we may see a positional strategy

as a function with signature s ∶ Γ → Γ . A game is called positionally determined if for each

initial position, exactly one of the players has a positional winning strategy. We will elaborate

on other types of simple strategies at the end of this chapter.

Reachability games

We consider the two types of winning conditions that aremost commonly considered in the lit-

erature andwill play a large role in the rest of this part of the thesis, startingwith the reachability

winning condition.

A reachability game is given by a game arena together with a subset Γfinal ⊆ Γ of the position,

the so-called target set. A play p is won by the existential player if and only if it visits a position

from that set, win(p) = if there is i ∈ N such that pi ∈ Γfinal. Reachability games are the
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15 Games with perfect information

game-theoretic analogue of the usual acceptance condition in an automaton that processes

finite words. However, infinite plays are allowed here, although any play that is won by can

already be identified as such after a finite prefix.

Reachability games are well-known to be positionally determined. In fact, both the winning re-

gions and the positional winning strategies can be constructed using the well-known attractor

construction.

The attractor of the target set Γfinal is the smallest subset of Γ that contains Γfinal and satisfies the

following property. If a position owned by the existential player has a successor contained in

the attractor, it is also contained in the attractor. The same is true for a position owned by the

universal player that is not a deadlock and has all its successor contained in the attractor. For

gameswith finite out-degree, the attractor can be constructed as the fixedpoint of an inductive

backwards construction that startswith Γfinal andadds ineach stepall positionsownedby that

have some successor in the set and all positions owned by that are not deadlocks and have

all their successors in the set.

The attractor is exactly the set of positions fromwhich the existential player can enforce visiting

the target set within finitely many steps. Hence, it is her winning region and its complement is

thewinning regionof theuniversal player. The correspondingwinning strategy for theuniversal

player simply picks for each position that is not in the attractor a successor that is also not in

it. The definition of the attractor ensures that this is possible. The winning strategy for the

existential player is more involved since it needs to ensure that Γfinal is reached after finitely

many steps. To this end, if theplay is currently in a position thatwas added to the attractor in the

ith step of the aforementioned inductive construction, the strategy needs to pick a successor

that was added in the (i − 1)st step of the construction or earlier. This ensures that the play

eventually reaches a position that is contained in the zero-step attractor, which is the target set.

Parity games

In the same way that reaching a final state is an acceptance condition that is insufficiently ex-

pressive for automata that process infinite words, the reachability winning conditions is not

useful whenever a winner should be assigned to an infinite play. Most of the acceptance condi-

tions that have been defined for automata on infinitewords have been used to define analogue

winning conditions for games, including the Büchi, parity, and Muller conditions. Here, we ex-

clusively consider the parity condition since it is very commonly used in the literature and in

tools (see e.g. the seminal paper by Zielonka [Zie98]). Oftentimes, games with other winning

conditions can be transformed into parity games. (However, the transformationmay introduce

a blowup. For example, Muller games can be converted into equivalent parity games with ex-

ponentially more positions [DJW97].)

A parity game is given by a game arena and a priority function Ω∶ Γ → N that assigns to each

position of the game one of finitely many priorities. For the sake of simplicity, we assume that

the game arena is deadlock-free, whichmeans that every maximal play is infinite. Such a play p
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is won by the existential player if and only if the largest priority that occurs infinitely often in

the sequence Ω(p) = Ω(p0)Ω(p1)Ω(p2) . . . is odd.
If we only allow finitely many priorities, choosing smaller or larger priorities to be dominating

is arbitrary. Considering a more general setting is beyond the scope of this thesis.

Similar to reachability games, parity games are positionally determined [Mos91; EJ91]. How-

ever, the proof is much more involved. Zielonka [Zie98] observed that from the proof of posi-

tional determinacy, one can extract an algorithm that constructs the winning regions and cor-

responding positional strategies. This improves an earlier algorithm by McNaughton [McN93]

that was based on the weaker result that parity games admit finite-memory winning strate-

gies [GH82] which we will define below.

Zielonka’s algorithm iswell known to consumeexponential time in theworst case. Determining

the precise complexity of solving parity games is one of themost important unsolved problems

in theoretical computer science. The problem is known to be in (a subclass of )NP∩ coNP, since

one can guess a positional strategy for one of the players and verify whether it is winning in

polynomial time [EJS01; Jur98]. The membership in this intersection strongly suggests that

the problem is not NP-complete for complexity-theoretic reasons. To this date, no polynomial-

time algorithm is known. A recent breakthrough [CJKLS17] has provided the first algorithm that

is both quasi-polynomial and fixed-parameter tractable. The former property means that the

algorithmsolvesparity games in time log(2nk ), where n is the sizeof the input and k is a constant.

The lattermeans that the algorithm is exponential only in the highest occurring priority, but not

in the size of the game arena.

Games on the transitions systems induced by automata

In general, it is impossible to compute the winner of a game on an infinite game arena within

finite time. However, games on infinite arenas occur in some applications like the synthesis

problem for programs that we mentioned in the introduction. To overcome the problem, we

use the concept of automata.

In Section 4.1, we have defined automata as finite descriptions for potentially infinite transition

systems. More precisely, we have considered transition systems whose configurations are of

the shape (q,m), consisting of one of finitely many control states and a potentially unbounded

memory value. The transitions of the systems are induced by a finite set of rules whose applica-

bility is depending only on a bounded amount of information on the currentmemory value. We

apply this concept to games and define games on the transitions systems induced by automata.

Consider the finite syntax of an automaton together with a partitioning Q = Q ∪⋅ Q of its

control states. The partition turns the semantics of the automaton, i.e. the transition system

induced by it, into a game arena. The owner of some position (q,m) in that arena is induced by

the partitioning of the control states and independent of thememory value. This concept gives

us a chance of computing thewinner of a game that is played on such an arena byworkingwith

the finite description.
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15 Games with perfect information

Similar to the definition of the arena, one can define winning conditions based on the control

state: In a control-state reachability game, one specifies a target set of control states that should

be reached with arbitrary memory value. In a parity game on the transition system induced

by an automaton, one typically assumes a priority assignment to the control states that then

induces a priority assignment to all configurations based on their control states. However, we

will later also consider games in which the goal is reaching a specified configuration, i.e. we fix

both the target control state and the target memory value.

For each type of automaton, solving games with a certain type of winning condition is harder

than solving verification problems with the same type of acceptance condition. We may see

a deterministic automaton as a special case of a nondeterministic automaton, and a nondeter-

ministic automaton as a special case of a game in which all control states are owned by the ex-

istential player. Consequently, there is no hope of solving reachability games on the transition

systems induced by Turing machines. We will later see that context-free games, games whose

arenas are induced by pushdown automata or by context-free grammars, can be solved. Petri

nets form an interesting case: While coverability and reachability are decidable, we will prove

that games defined by Petri nets with the corresponding winning conditions are undecidable.

Remark
In Section 3.2, we have provided a definition of alternating Turing machines and later intro-

duced nondeterministic Turing machines as special cases. With the notions introduced in this

section, we could take the opposite approach: An alternating Turing machine is a nondeter-

ministic Turing machine with a partitioning of the control states, and its semantics is the corre-

sponding control-state reachability game.

Inclusion games

We have argued before, e.g. in Section 4.1, that it is beneficial to consider labeled systems in-

stead of unlabeled ones. By taking this approach, properties of the behavior of a system trans-

late into properties of its language. Correspondingly, instead of checking properties of the be-

havior of a system, solving a verificationproblemamounts to checkingproperties of a language.

For example, solving the reachability problem for a system typically translates into checking

language-emptiness. Additionally, the language-theoretic approach allows us to compare dif-

ferent systems by considering problems like language inclusion and intersection-emptiness as

long as the systems are labeled over the same alphabet. It seems like an obvious choice to also

do this for games for exactly the same reasons, although this approach togames is less common

in the literature.

Formally, we assume that the game arena under consideration is equippedwith a labeling func-

tion λ∶ T → Σ∗ that assigns to each transition a finite word. Note that we do not allow multiple

transitions that differ only in their label for the sake of simplicity. The labeling of the transitions

induces a labeling of plays: If p = p0p1p2 . . . is a play, then λ(p) = λ(p0 , p1)λ(p1 , p2) . . . is the
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word obtained by concatenating the labels of the transitions used in the play. This word is fi-

nite if p is finite or if p is infinite, but only finitelymany transitions arenot labeledby ε. Otherwise,

λ(p) is an infinite word.

In the case of a game arena based on the transition system inducedby an automaton, the transi-

tion labels in the game come from the labeling of the transitions of the automaton as expected.

We will be mostly interested in inclusion games. Their winning condition is specified by a target

languageL over the same alphabet that is used by transition labels. For now, let us consider the

case that L ⊆ Σ∗ is a language of finite words. A maximal play p of the inclusion game is won

by the existential player if its label λ(p) is a finite word not contained in L. Otherwise, the play

is won the universal player. The motivation for this definition is that we think of the existential

player as a representation of the demonic nondeterminism and of the languageL to represent

valid behavior. To prove that the system is incorrect, the existential player has to enforce a play

that exhibits illegal behavior.

If the target language L ⊆ Σω is a language of infinite words, we follow a similar convention.

The existential player wins a play if it generates an infinite word not in the language. If a play

generates a finite word or an infinite one contained in L, the universal player wins.

In Section 1.3 of the introduction, we had considered synthesis as one application for perfect-

information games. If we model the game representing a synthesis problem according to

the definitions in this section, the roles of the players are as follows. The universal player

is the synthesis players. Her goal is to ensure that all executions that are terminating or

non-terminating – depending on which type of program we consider – are valid with respect

to the specification. An execution being valid with respect to the specification means that the

corresponding play generates a word that is in the target language. The existential player rep-

resents the environment. She wins plays that generate words that are of the required shape

(i.e. finite or infinite) but not in the target language. On the level of executions, this means that

an illegal execution exists. In general, which player represents the controllable, angelic nonde-

terminism, i.e. the type of nondeterminism that helps us meet the objective¹, and which player

represents uncontrollable, demonic nondeterminism will depend on the application.

Succinctness

Solving an inclusion game generalizes the problem of deciding inclusions among languages

in the same way that solving reachability games generalized the reachability problem for

nondeterministic systems. This in particular means that whenever we allow non-regular tar-

get languages, solving inclusion games typically becomes undecidable: Inclusion games with

a context-free target language are undecidable because already the problem of checking

whether a regular language is contained in a context-free one is undecidable (see e.g. [HU79]

¹ In this thesis, we assume that angelic means good – this is not a cruel angel’s thesis.
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15 Games with perfect information

for a proof). In Section 19.2, we will show a result that implies that games with a Petri net cov-

erability target language are undecidable, although the corresponding verification problem is

decidable (as we have mentioned in Section 10.1). For these reasons, we will limit ourselves to

regular inclusion games, where the target language is regular or ω-regular. In this case, inclu-

sion games can be reduced to reachability games that are simultaneously played on the game

arena and the automaton. However, we argue in the following that inclusion games provides a

more succinct representation. We demonstrate this for a target language of finite words.

Consider an inclusion game played on the game arena induced by some automaton A that is

not necessarily finite state andwith regular target languageL(B), where B is an NFA. Onemight

think that equivalently, one can consider the reachability game on the game arena induced by

A × B, the product of the automata A and B. The goal in this new game is to reach a position

in which the A-component is a deadlock and the B-component is a non-accepting. This reason-

ing is valid if B is deterministic: If we reach such a position, we have produced a maximal finite

play of A defining a word that is not in the language of L(B). However, it does not work if B is

nondeterministic. In this case, we need to prevent the selection of a non-accepting run of the

automaton B on a word for which an accepting run exists. There are three types of nondeter-

minism at play here: The two types of nondeterminism in the automaton A represented by the

players of the game, and the nondeterminism of the automaton B that generates the target lan-

guage. Unfortunately, it is impossible tomerge the nondeterminism in the automatonwith the

nondeterminism in the game by letting one of the players control the automaton. Obviously,

we cannot let the existential player control the automaton. The goal of the existential player is

to enforce a play generating an illegal word, but for a word to be illegal, all its runs in the au-

tomaton need to be non-accepting. If we give the existential player control of the automaton,

we modify the semantics of the game in her favor, making it too easy for her to win.

Seeing that letting the universal player control the automaton also does not yield the desired

result is more involved. To demonstrate this, we give a brief example without giving the formal

definitions. Consider the finite automata depicted in Figure 15.0.a. They are well-known exam-

ples that are commonly used to show that language equality does not imply bisimilarity in the

case of nondeterministic automata. (This is in contrast to the case of deterministic automata,

where bisimilarity and language equality are equivalent, which can be used e.g. for the mini-

mization of automata [HK71].) Consider A as a game arena in which all positions are owned by

the existential player on which we play an inclusion game with target language L(B). Both au-

tomata have the same language,L(A) = L(B) = {ab, ac}. Hence, the existential player is unable

to win the inclusion game starting from position q0: Both maximal plays that she can choose

from yield words in the language of B.

Let us consider the product A × B in which we give the universal player the control over the

automaton B. A play from (q0 , p0) starts with the existential player picking a move in the game,

but her only choice is to use the transition q0
a
−→ q1 of A. Now, the universal player has to pick

among the two a-labeled transitions of B. The result is either the position (q1 , p1b) or (q1 , p1c).
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q0A q1

q2b

q2c

a

b

c

i) Automaton Awith a unique transition relation.

p0B

p1b

p1c

p2b

p2c

a

a

b

c

ii) Automaton B with a nondeterministic transition
relation.

Figure 15.0.a: Two automata with language {ab, ac}.
In both positions, the existential player can win by picking a transition in A which cannot be

simulated in the state of B that the universal player has selected. We see that the existential

player wins the reachability game on the product although she did not win the inclusion game.

The reason for the invalidity of the construction is twofold: The universal player has to resolve

the nondeterminism of the automaton during the run without knowing the full word that will

be generated. When she picks the first transition in B, she does not know whether c or b will

follow. Additionally, shemakes her choices visible to the existential player, e.g. if she has picked

the transition to p1b , the existential player can react by using the c-labeled transition.

To avoid the problem, there are several possibilities. We could construct a game arena in which

each play consists of two parts: The first is a play of A that derives some finite word w; the

second part is a run of automaton B on w. Here, we can let the universal player control the au-

tomaton because she knows the full word that has been generated in the first part. The draw-

back of this concept is that it introduces an infinite number of positions required for storing

the word of unbounded length that is produced in the first part of the game. A more reason-

able choice is to determinize automaton B. When we consider a determinized version of B, the

product construction becomes valid. However, applying the construction may introduce an

exponential blowup. Actually, it would be sufficient to compute a so-called good-for-games

automaton [HP06] that may be nondeterministic, but in which the nondeterminism can always

be resolved based on prefixes of the word. Unfortunately, such automata may be just as large

as deterministic ones [KS15].

In any case, the pair (A, B) consisting of the game automaton A and the NFA B is a representa-

tion of the inclusion game on the arena induced by A with target language L(B) that is more

succinct than any of the other choices. Wewillmake this formal in the case of context-free inclu-

sion games by showing that solving such games is exponentially harder if the target language

is given by a nondeterministic instead of a deterministic automaton. Our procedure to solve

such games will mitigate this problem by using an on-the-fly determinization that, instead of

computing a determinization of B upfront, determinizes B along the words that actually occur

as labels of plays.
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15 Games with perfect information

It might seem that the fact that the nondeterminism in B cannot be resolved by one of the play-

ers contradicts our earlier statement that a k-player perfect information game can always be

transformed into a two player game by merging players. However, if we want the nondeter-

minism in the automaton to be resolved during the play (instead of resolving it after the play is

complete as proposed above), this has to be done in a way that is not visible to the existential

player. Hence, we are not dealing with a perfect-information game anymore.

Strategy automata

To conclude this chapter, we come back to the notion of a simple strategy that we mentioned

earlier. In the case of games on finite graphs, positional strategies are sufficiently simple. Such

a strategy can be stored using space linear in the size of the game arena by storing for each

position of a player its designated successor.

The case of games on infinite graphs is more complicated. The results on the positional deter-

minacy of reachability and parity games still hold, but a positional strategy for such a game

cannot be represented using finite space. To overcome this problem, we consider strategies

that can be finitely represented by automata. Tomake this concept formal, we assume that the

game arena is induced by some automaton whose finite set of transition rules is δ, meaning

that each of the (potentially infinitely many) transitions in the game arena is induced by one of

the finitely many transition rules t ∈ δ. We assume that for each position c of the game and

each transition rule t ∈ δ, there is at most one successor that can be reached from c using a

transition induced by rule t. A strategy automaton is a deterministic automaton with δ as the

input alphabet together with an output function out∶Q → δ that assigns to each control state

a designated move. It induces a strategy s as follows. Given a play p, we consider the unique

control state q in which the automaton is after reading the sequence of transition rules that in-

duce the sequence of moves that has been used in p. If play p ends with a position of player ,

the strategy selects the successor that is reached by the move induced by the transition rule

out(q) that is the output of the automaton for the current control state.

Different types of automata induce different types of strategies, e.g. deterministic pushdown

automata induce pushdown strategies, DFAs induce finite-memory strategies. The latter type of

strategies can be classified further by considering the number of states of the automaton. For

games on infinite game arenas, these types of strategies are incomparable to positional strate-

gies. Without imposing further restrictions, the strategies induced by strategy automata de-

pend on the history of the play and are not positional. However, unlike positional strategies,

they can be represented in a finite way using the syntax of the defining automaton. In the case

of games on finite arenas, strategies defined by automata are strictly weaker (and thus more

general) than positional ones. They can be used for some types of games where positional de-

terminacy does not hold. For example, it has been shown thatMuller games are not positionally

determined, but each player can win on her winning region by using a finite-memory strategy

defined by a DFA with at most n! states, where n is the size of the game arena [DJW97]. We will

come back to the concept of strategies induced by various types of automata when we study

winning strategies for context-free games in Section 17.4.
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Our goal in this part of the thesis is solving various types of games on the configurations graphs

of automata. We aim for amethod that also computes certificates in the formof representations

of winning strategies for each player. Wewill achieve this by using effective denotational seman-

tics [Aeh07; Sum77; SW15b]. This means that we will translate the problem of solving a game

into the problemof finding the least solution to a systemof equations over a domain that repre-

sents the behavior of the game. Before we employ this method to solve context-free games in

Chapter 17 and higher-order games in Chapter 18, we give the basic definitions in this chapter.

Furthermore, we demonstrate the technique by applying it to the verification problems of de-

ciding regular inclusion for context-free and ω-regular inclusion for ω-context-free languages.

The name effective denotational semantics was introduced by Salvati and Walukiewicz

in [SW15b]. They define it as follows: “By effective denotational semantics we mean semantic

spaces in which the denotation of a term can be computed” [SW15b], where “term” is refer-

ring to a term in the simply typed λY-calculus. This model is similar to higher-order recursion

schemes which we will consider in Chapter 18, but, among other differences, includes a collec-

tion of Y-operators, one for each type. In order to evaluate such a term, one needs a model

that defines the interpretation of the syntactical elements of the term. In particular, one needs

an interpretation of the Y-operators, which are typically interpreted as fixed point operators

that take a function and compute a fixed point.² We will come back to the work by Salvati and

Walukiewicz at the end of Section 17.9.

When we speak of effective denotational semantics, we mean an approach to solving verifica-

tion problems that is not restricted to problems phrased using the λY-calculus, which can be

rather technical. However, we restrict ourselves in the sense that we only consider least-fixed-

point semantics throughout this thesis. We briefly illustrate how our flavor of effective denota-

tional semantics is supposed to work. Assume we are given a system P and a property ϕ. The

task is to check whether all possible executions of P satisfy ϕ.

² Depending on the type of model, the operator may compute the least, greatest, or a non-extremal fixed point.
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16 Effective denotational semantics

To solve the problem using effective denotational semantics, we proceed as follows:

(1) We construct a system of equations (or inequalities) reflecting the runtime behavior of P.

(2) We find a domain D that captures the behavior of executions that is relevant for deciding

whether ϕ holds. We find an interpretation of the syntax used in the system of equations

on the domainD.

(3) We solve the interpreted system of equations overD.

(4) We can now read off the answer to the verification problem from the solution.

Like in denotational semantics [SS71], the solution to the system of equations is usually defined

as a fixed point. However, the domain D does not represent the whole program behavior. It

only captures the part that is relevant for determining whether of property ϕ is satisfied. Our

aim is to chooseD such thatD can be handled algorithmically (e.g. choosingD as a finite set),

hence the name effective denotational semantics.

This approachhas a keyadvantageoverdesigninganalgorithmthat solves theverificationprob-

lemof interest directly. By translating theproblem into the task of solving a systemof equations,

we reduce it to a well-known master problem. As we will discuss in the next section, this makes

available to us both an extensive theory on solving systems of equations and a collection of

optimizations that enable us to solve this master problem efficiently.

Sources

The first section presents material that is standard in the literature. We will give references later.

The content of the second section is taken from the publication [HM15] byHolík andMeyer. The

final section presents material from the paper [MMN17] to which the author has contributed.
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16.1 Systems of equations and domains

16.1 Systems of equations and domains

We start by formally introducing systems of equations, their interpretations and solutions. We

then consider ordered domains, which results in the notion of the least solution to a system of

equations. The material presented in this section is standard and can be found e.g. in [NNH99].

Systems of equations

Let V = {X1 , . . . , Xn} be a finite set of variables. Let Fun = {f1/a1 , . . . , fk/am} be a set of function

symbols, each symbol fi annotated with its arity ai ∈ N. The set of terms over V and Fun is

defined by the following BNF,

t ∶∶= X ∣ f (t, . . . , t) ,
where X ∈ V , f ∈ Fun, and the number of parameter terms matches the arity of f . For a term t,

we call the variables that were used to build t the free variables of t.

A system of equations provides for each variable one defining term.

16.1.1 Definition
A system of equations for the set of variables V and the set of function symbols Fun is an assign-

ment of one term ti for each variable Xi ∈ V . We commonly write it as

X1 = t1 ,
...

Xn = tn ,

or simply as X⃗ = t⃗. We call the term ti the right-hand side for variable Xi .

Beforewe can solve a systemof equations, we first need to associate ameaning to its syntax. Let

D be a domain, which at this point should just mean that it is a set of values. An interpretation I
of the function symbols over D is a function that assigns to each function symbol f , say with

arity k, a function

fI ∶Dk
→ D .

A model is a tupleM = (D, I) consisting of a domain and an interpretation over that domain.

A (variable) assignment is a function σ∶D → V . We often see such an assignment as a ∣V∣-
dimensional vector overD and write σ ∈ DV .

287



16 Effective denotational semantics

Given amodel, we can lift the interpretation from function symbols to arbitrary terms. For each

term t, we obtain a function

MJtK∶DV
→ D ,

called the semantics of term t. It takes a variable assignment σ ∈ DV and returns the value

MJtKσ obtainedbyevaluating t after all variables X havebeen replacedby σ(X) andall function

symbols f have been replaced by fI . Note that it is customary to omit the parentheses around

the argument σ . Formally, the function is defined by induction over the structure of the term,

MJXKσ = σ(X) ,
MJf (t1 , . . . , tk)Kσ = fI (MJt1Kσ , . . . ,MJt1Kσ) .

Wemay seeMJ−K∶ Terms×DV
→ D as a function that takes both a term t and an assignment σ

and returnsMJtKσ .
Let X⃗ = t⃗ be a systemof equations and letMbe amodel for the set of terms used in that system.

Applying the lifted interpretation to the defining terms ti yields for each variable Xi a function

MJtiK∶DV
→ D. We can combine these into a single function

rhs∶DV
→ DV

such that rhs(σ)(Xi) = MJtiKσ ∈ D. The function rhs takes an assignment of the variables and

produces a new assignment by evaluating the defining term for each variable using the given

values. We call this function the interpreted system of equations defined by X⃗ = t⃗ andM.

In the rest of this thesis, we will often drop the distinction between an uninterpreted system of

equations and its interpreted version when the interpretation is clear from the context. Never-

theless, we sometimes make use of the fact that we can interpret a system of equations over

various domains: We start by interpreting it over a domain where the soundness of the verifica-

tion approach outlined at the start of this chapter is obvious. Later, we then move to a domain

where the soundness is less obvious, but that is optimized e.g. in the sense that it is smaller.

For an interpreted systemof equations, we can nowdefinewhat it means to solve the systemof

equations. A solution for an interpreted system of equations rhs is an assignment σ ∈ DV such

that σ = rhs(σ). In other words, σ actually satisfies the equations given by the system.

The definitionmakes clear the correspondence between solutions of systems of equations and

fixedpoints: A solution to a systemof equations is defined to be a fixedpoint of the function rhs.

Hence, the task of computing a solution to a system of equations is equivalent to the task of

computing a fixed point of a certain function.
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Context-free grammars as systems of equations

We give an example for the basic definitions. Let G = (N, P, S) be a context-free grammar over

the terminal alphabet Σ. There is a natural way to see G as a system of equations. We see N as

the set of variables. The function symbols consist of one constant a for each a ∈ Σ ∪ {ε} and

of the binary symbols ∣ for choice and . for concatenation. The term tX for each nonterminal X

is obtained by collecting all rules X → ηX ,i for X , seeing each ηX ,i as a term involving constants

(terminals), variables (nonterminals), and concatenation. Then, we conjoin these using choice.

We obtain for each nonterminal X the equation

X = ηX ,1 ∣ . . . ∣ ηX ,lX .
One possible interpretation of this system of equations is over the so-called language semiring.

The language semiring is a model with domain P(Σ∗), i.e. its elements are languages over Σ,

and the function symbols are interpreted in the expectedway: Constants are interpreted as sin-

gleton languages containing the corresponding one-letter words resp. the empty word, con-

catenation is the concatenation of languages, and choice is the union of languages.

A solution σ for a context-free grammar, seen as a system of equations interpreted over the

language semiring, assigns to each nonterminal a language. In particular, it assigns a language

to the initial symbol S, so we might expect σ(S) to be the language of the grammar. We will

see in the following example that while the language of the grammar is a solution, it is not

necessarily unique.

16.1.2 Example
Consider the grammar G with terminals Σ = {a, b, c}, the single nonterminal X and the rules

S → aX ∣ bX ∣ X , X → S .

We have L(G) = ∅, as there is no terminating derivation process. It is easy to verify that the

assignment σ1 with σ1(X) = σ1(S) = ∅ satisfies the associated interpreted system of equations.

The assignment σ2 with σ2(S) = aΣ∗ ∪ bΣ∗ ∪ Σ∗ = Σ∗ and σ2(X) = Σ∗ is also a solution to the

interpreted system of equations. We see that a solution to the system of equations does not

necessarily correspond to the language of the CFG.

The example shows that there can be many solutions to an interpreted system of equations.

As also indicated in the example, we are usually interested in a solution that is precise in a cer-

tain sense. To make the notion of being precise formal, we need to introduce ordered domains.

Formally, we equip the set of value with a partial order that satisfies certain properties.
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Complete Partial Orders.

Let (D, ⩽) be a partial order, i.e. a setD of data elements and a partial ordering ⩽ ⊆ D ×D onD.

We call (D, ⩽) pointed if there is a least element ⊥ ∈ D, called the bottom element, satisfying

⊥ ⩽ x for all x ∈ D. Recall that an ascending chain in D is a sequence (di)i∈N of elements in D
such that di ⩽ di+1 for all i ∈ N. We call (D, ⩽) ω-complete if every ascending chain in D has

a least upper bound, called the join or the supremum, and denoted by ⨆i∈N di . Formally, we

require that ⨆i∈N di ⩾ d j for all j ∈ N, and that for any element d ∈ D that also satisfies this

property,⨆i∈N di ⩽ d holds.

If (D, ⩽) is pointed and ω-complete, we call it an ω-complete pointed partial order (CPPO).¹ In

the context of solving system of equations, we will only consider partial orders that are CPPOs.

When the order on the setD that makes it a CPPO is clear, we simply say thatD is a CPPO.

In the following, wewant to solve systems of equations overmodels whose domains are CPPOs.

However, requiring the domain to be a CPPO is insufficient to ensure the existence of a unique

least solution. We also need to require the function to satisfy special properties.

Let D be a CPPO. A function f ∶D → D on D is monotonic if for all d , d ′ ∈ D, d ⩽ d ′ implies

f (d) ⩽ f (d ′). A function f ∶D → D is join-continuous if for all ascending chains (di)i∈N we have

f (⨆i∈N di) = ⨆i∈N f (di), i.e. the function value of the join is equal to the join of the function

values. Note that join-continuity implies monotonicity: If d ⩽ d ′ and f is join-continuous, then

f (d ′) = f (d ⊔ d ′) = f (d) ⊔ f (d ′) ⩾ f (d) ,
where the first equality holds since d ⩽ d ′, the second is join-continuity, and the last inequality

is the fact that the join is an upper bound. Formally, we have only defined joins for infinite

ascending chains, but the definition can be extended to finite chains easily, e.g. d ⊔ d ′ can be

defined as⨆i∈N di with d0 = d and di = d
′ for i > 0.

Note that if f is a monotonic function, then the chain

(f i(⊥))i∈N ,
i.e. the chain ⊥ ⩽ f (⊥) ⩽ f 2(⊥) ⩽ f 3(⊥) ⩽ . . . is an ascending chain, where f 0 is defined to

be the identity and f i+1(d) = f (f i(d)) is the (i + 1)-fold application of f . The following theorem

shows that the join of this chain is the least fixed point of f . The theorem is often attributed to

Kleene [Kle52], but its actual origin seems to be unknown, see [LNS82] for a discussion.

¹ In the literature, the notion of CPPO is often used to denote the dual concept, i.e. partial orders that have a greatest
element and in which infima of descending chains exist.
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16.1.3 Theorem: Kleene’s theorem
Let f ∶ D → D be a join-continuous function over a CPPO (D, ⩽). Then the join

⨆
i∈N

f i(⊥)
is the least fixed point of f .

Formally, this means that it is a fixed point, i.e.

f(⨆
i∈N

f i(⊥)) = ⨆
i∈N

f i(⊥)
holds, and for any other element d ∈ D with f (d) = d, we have

⨆
i∈N

f i(⊥) ⩽ d .

Weargue that Kleene’s theoremcanbeused to compute the fixedpoint ofmonotonic functions

if the underlying CPPO satisfies an additional condition. A CPPO (D, ⩽) satisfies the ascending

chain condition (ACC) if every ascending chain in D is stationary, i.e. for every (di)i∈N, there is

some i0 ∈ N with di = di+k for all k ∈ N and i ⩾ i0. If this is the case, any monotonic func-

tion overD is already join-continuous (see below), and the least fixed point⨆i∈N f
i(⊥) is equal

to f i0 (⊥) for some i0 ∈ N. Indeed, this chain is guaranteed to be stationary by the ACC. In

fact, we obtain that the first index i0 that satisfies f i0 (⊥) = f i0+1(⊥) is the desired index and

f i0 (⊥) = f i0+k(⊥) holds for all k. Hence, we can obtain the least fixed point of any computable

monotonic function over a domain that satisfies the ACC: Starting with the least element ⊥,

iteratively apply f until the result does not change anymore.

In this thesis, we will usually consider domains that satisfy an even stronger property. We say

that (D, ⩽) has bounded height if there is some j ∈ N such that any strictly ascending chain (an

ascending chain (di)0⩽i⩽b with di < di+1 for all i < b) has length at most j. Here, the length is

defined to be the number of entries minus one. In this case, (D, ⩽) satisfies the ACC and the

bound i0 from the definition of ACC is at most j. Consequently, f j(⊥) is the least fixed point of

any monotonic function overD.

Note that (D, ⩽) having bounded height is a property strictly stronger than it satisfying the ACC.

In theory, there are domains that satisfy theACCbut donot have boundedheight, e.g. a domain

that consists of an infinite collectionof arbitrarily long (but finite) strictly ascendingchains. How-

ever, we will only need to consider domains that are of bounded height throughout this thesis.

In most cases, we will even consider domains (D, ⩽) such thatD is finite. Such domains are triv-

ially of bounded height, as ∣D∣ is an upper bound for the length of any strictly ascending chain.
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16 Effective denotational semantics

Proving an upper bound tighter than ∣D∣ will be crucial for some of the complexity-theoretic

considerations in this part of the thesis.

16.1.4 Remark
We have argued before that join-continuity implies monotonicity. If a domain D satisfies the

ACC, the other direction is also true and the two notions are equivalent. Assume that f ∶D → D
is a monotonic function. Consider an ascending chain (di)i∈N and note that this chain has to

be stationary. Hence, its join ⨆i∈N di is equal to di0 for some i0, and the function value of the

join is simply f (di0 ). We claim that f (di0 ) is also the join of the chain of function values (f (di))i∈N.
Firstly, observe that di ⩽ di0 holds so themonotonicity of f yields f (di) ⩽ f (di0 ) for all i. Secondly,
the value f (di0 ) is an element of the chain of function values. Thus, it is indeed the join, which

proves that f is join-continuous.

Applying the theory

Wediscuss how to apply the theory of CPPOs and join-continuous functions to find the least so-

lution to a system of equations. Assume thatM = (D, I) is a model whereD is a CPPO and for

each function symbol, fI is a join-continuous function. For functions with multiple arguments,

we lift the definition of monotonicity and join-continuity by requiring it to hold for every argu-

ment. The key fact is that both monotonicity and join-continuity are preserved under compo-

sitions: If f , g are monotonic resp. join-continuous, then so is f ◦ g. Hence, the interpretation of

any term in this setting is a join-continuous function.

We need to argue that also the function rhs∶DV
→ DV associated to a system of equations in-

terpreted overM is join-continuous. We first observe that the setDV is a CPPO. To this end, we

may seeDV as a product of ∣V∣ copies ofD. We have argued in Section 3.1 that the product of

partial orders is again a partial order. We extend this result and show that the product of CPPOs

equipped with the product order is again a CPPO: The least element in the product is the tuple

consisting of the least elements, i.e. it is the assignment ⊥ ∈ DV with ⊥X = ⊥ ∈ D for all X ,

where we intentionally use the same symbol⊥ in both cases. Joins in the product order can be

obtained component-wise: If (σi)i∈N is an ascending chain in DV , then the sequence of values(σi ,X )i∈N occurring in component X is an ascending chain inD. The join⨆i∈N σi inDV is the vec-

tor whose X-component is ⨆i∈N σi ,X . Correspondingly, a function over DV is join-continuous

if it is join-continuous in every component. We have argued before that if we assume that the

interpretation of all function symbols is join-continuous, then so are the functionsMJtK. With

the above observation, we obtain that also the function rhs∶DV
→ DV is join-continuous. This

enables us to apply Kleene’s theorem to it.

We define the i th approximant soli to be

soli = rhsi(⊥),
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the variable assignment obtained by an i-fold application of rhs to ⊥ ∈ DV , the least element

of the product domain. Using Kleene’s theorem, the value

sol = ⨆
i∈N

soli = ⨆
i∈N

rhsi(⊥)
is the least fixedpoint of the function rhs, and hence the least solution to the interpreted system

of equations. For convenience, we lift the function sol∶V → D from variables to arbitrary terms

by defining sol(t) = MJtKsol, similar for each soli .

If the domainD satisfies the ACC or is of bounded height, then the same holds true forDV . To

this end, observe that if D has height j, then DV has height ∣V∣ ⋅ j. In this case, there is some

index i0 so that sol = soli0 . Hence, Kleene’s theorem allows us to compute the least solution to a

system of equations assuming that it is interpreted over a CPPO satisfying the ACC and that the

interpretations of the functions are monotonic. Starting with the least element, we iteratively

apply the function rhs until the value remains unchanged. This process is called Kleene iteration.

Systems of inequalities and lattices

Often, our goal is not to solve a system of equations. Instead, we are given a system of inequal-

ities where each variable has one or more defining constraints. It turns out that this setting,

while arguably sounding more complicated, can in fact be solved more efficiently as long as

the underlying domain satisfies additional properties.

Formally, a system of inequalities for a set of variables V and a set of function symbols Fun is

defined as a finite set of inequalities of the shape

X ⩾ t ,

where X ∈ V and t ∈ Terms. The key difference to systemsof equations is thatwe allowmultiple

inequalities for the same variable. We interpret systems of inequalities over a CPPOD and using

join-continuous functions in the expected way. A solution sol ∈ DV to such a system has to

satisfy sol(X) ⩾ sol(t) for all inequalities X ⩾ t in the system.

Toenforce theexistenceof aunique least solution to a systemof inequalities, weneed to impose

additional restrictions on the domain. A join-semilattice is a partial order D so that any subset

X ⊆ D has a least upper bound, the join or supremum ⨆ X of X . The formal definition is a

straightforward extensionof the definition in the case of chains. We require that⨆ X is an upper

bound, i.e. ⨆ X ⩾ x for all x ∈ X , and that is smaller than any other upper bound: If y satisfies

y ⩾ x for all x , then⨆ X ⩽ y.

For the dual concept of ameet-semilattice, we require the existence of themeet or infimum
d
X ,

the greatest lower bound, for any subset X .
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A partial order that is a join- or a meet-semilattice always has a least element ⊥ and a greatest

element⊤. These elements can be obtained as both the join and the meet of a suitable subset

each,

⊥ = ⨆∅ =
l

D , ⊤ = ⨆D =
l

∅ .

A partial order that is both a join-semilattice and meet-semilattice is called complete lattice. Ev-

ery join-semilattice is a CPPO, so Kleene’s theoremguarantees the existence of least fixed points

for join-continuous functions. We can dualize this result to obtain that meet-continuous func-

tions over meet-semilattices have greatest fixed points.

To solve a system of inequalities that is interpreted over a complete lattice using monotonic

functions, we convert it into a system of equations. We add a new binary function symbol ⊔

that is interpreted as the join. Then, we obtain the defining equation for each variable X as

X = tX ,1 ⊔ . . . ⊔ tX ,lX ,

where X ⩾ tX ,1 , . . . , X ⩾ tX ,lX are all inequalities with X as their left-hand side. One can show

that the least solution to the resulting system of equations is exactly the least solution to the

original system of inequalities. In particular, Kleene’s theorem guarantees its existence if the

interpretations of the functions are join-continuous (or the domain satisfies ACC, in which case

monotonicity implies join-continuity).

To formally show this, one uses a famous theorem by Knaster and Tarski [Kna28; Tar49; Tar55].

16.1.5 Theorem (Knaster & Tarski)
Let f ∶D → D be a monotonic function over a complete lattice (D, ⩽). Then f has a least fixed

point, namelyl {d ∈ D ∣ d ⩾ f (d)} .
Consider the least solution sol = ⨆i∈N rhsi(⊥) to the systemof equations as specifiedbyKleene’s

theorem. First note that sol(X) = MJtX ,1⊔ . . .⊔ tX ,lX Ksol = MJtX ,1Ksol⊔ . . .⊔MJtX ,lX Ksol implies

sol(X) ⩾ MJtX ,iK for all X and i. All inequalities are satisfied by sol.

It remains to show that sol is the least solution to the system of inequalities. Assume that some

assignment σ satisfies all inequalities. Hence, σ(X) ⩾ MJtX ,iKσ for all i. Since the symbol ⊔ is

interpreted as the join, we have σ(X) ⩾ MJtX ,1 ⊔ . . .⊔ tX ,lX Kσ and thus σ ⩾ rhs(σ). We conclude

that σ satisfies the defining property of the set {d ∈ D ∣ d ⩾ rhs(d)}. The meet of this set is

the least fixed point of rhs using Knaster’s and Tarski’s theorem. By Kleene’s theorem, this least

fixed point is sol. Since themeet of a set is a lower bound for the elements of the set, we obtain

sol ⩽ σ . As proclaimed, sol is indeed the least solution to the system of inequalities.
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Chaotic iteration

We introduce chaotic iteration as described e.g. in [SWH12], an algorithm that solves systems of

inequalities directly, i.e. without taking the detour via converting it into a system of equations

described above. Consider a system of inequalities X⃗ ⩾ t⃗ interpreted over a complete lattice

using monotonic functions. If the lattice satisfies ACC, the least solution to the system can be

found as follows. First initialize the candidate solution sol = ⊥ ∈ DV as the least element of

the product domain. While there is an inequality that is not satisfied by the current value of sol

(i.e. sol(X) /⩾ MJtXKsol), pick one such inequality X ⩾ tX and redefine the X-component of sol,

sol(X) ← sol(X) ⊔MJtXKsol .
After performing this update, the inequality is satisfied. Once we have obtained a value for

sol that satisfies all inequalities, we have arrived at the least solution. Under the assumptions

outlined above, this is guaranteed to happen after finitely many steps.

Because the algorithm allows the inequalities to be evaluated in an arbitrary order, it is called

chaotic iteration. For termination, we only need to guarantee that if an unsatisfied inequality

exists, we consider it after finite time.

The key advantage of chaotic over Kleene iteration is the fact that it can be implemented using

a worklist, reducing unnecessary computations. Before solving the system, we analyze its de-

pendencies: We store for each variable X the set of inequalities Y ⩾ tY such that an occurrence

of X is contained in tY . We then initialize the worklist, a queue, by adding all inequalities to it in

arbitrary order. In each step, we remove the first inequality from the queue and evaluate it. If it

does not hold, we update the corresponding variable X as described above. Then, we enqueue

all inequalities Y ⩾ tY that depend on X .

The result is an algorithm that re-evaluates inequalities only when there is a chance that they

have become invalid by an update of the candidate solution. In contrast to this, Kleene iteration

works over the product domain and evaluates all inequalities in each step.

We finish this chapter by coming back to our earlier example of context-free grammars, see

e.g. Example 16.1.2. The language semiring P(Σ∗) can be turned into a complete lattice by

equipping it with inclusion as the order. The join in this lattice is the union, the meet is the

intersection of languages. The least and greatest elements are ∅ and Σ∗, respectively. All func-

tions that we have considered earlier are join-continuous.

Note that the interpretation of the symbol ∣ is the union of languages and hence the join in

the lattice. Our earlier construction that gathered all rules for each nonterminal and combined

them into a single equation is an instantiation of the approach to solving systemsof inequalities

by transforming them into a system of equations.
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The language semiring is a special case of a powerset lattice (P(M), ⊆) for some set M. If M is

finite, then the height of P(M) is bounded by ∣M∣: An ascending chain

M0 ⊆ M1 ⊆ M2 ⊆ . . .

of subsets ofM can only be strictly ascending if eachMi contains at least one element that was

not contained inMi−1. This is only possible ∣M∣ times until all elements fromM has been added.

Note that ∣M∣ is a much better bound than the trivial bound ∣P(M)∣ = 2∣M∣.
If M is infinite, P(M) does neither have bounded height, nor does it satisfy the ACC. This

in particular applies to the language semiring. While our theory works and we know that

⨆i∈N soli = ⨆i∈N rhsi(⊥) is the least fixed point, it is not guaranteed that we can reach this

fixed point within finitely many iterations.

In our example of a system of equations obtained from a context-free grammar, interpreted

over the language semiring, we obtain the following correspondence. The least solution asso-

ciates to each nonterminal the set of finite terminal words derivable from that nonterminal. In

particular, it assigns the language of the grammar to the initial symbol. Considering the least

solution instead of an arbitrary one allows us to recover the language of the grammar.

16.1.6 Example
Consider again the grammar G from Example 16.1.2 with the production rules

S → aX ∣ bX ∣ X , X → S .

We interpret it over (P(Σ∗), ⊆) as described above. We have that sol0 = rhs0(⊥) = ⊥ is the tuple

that assigns each nonterminal the empty language. It is not hard to see that sol1 = sol0, so

sol0 = sol is the least solution. Indeed, sol(S) = ∅ is the language of the grammar.

Assume we add the production rule S → ε, and note that this changes the language of the

grammar to be Σ∗. If we start to solve the associated system of equations via Kleene iteration,

we obtain the following values.

soli(−) S X

i = 0 ∅ ∅

i = 1 {ε} ∅

i = 2 {ε} {ε}
i = 3 {a, b, ε} {ε}
i = 4 {a, b, ε} {a, b, ε}
i = 5 {aa, ab, ba, bb, a, b, ε} {a, b, ε}
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One can observe that for each n, we have that sol2n+1(S) = Σ⩽n is the set of all words of length

at most n. In particular, the chain of the soli does not get stationary and the least fixed point

sol with sol(S) = Σ∗ is not reached within finitely many steps.

This example may give the false impression that the ith approximant soli corresponds to words

that can be derived within i steps. We will see in the next section that instead, soli corresponds

to words that can obtained from derivation trees of height at most i.

While the least solution to the system of equations associated to a context-free grammar is in-

deed the language of the grammar, it cannot be computed within finite time using Kleene it-

eration or chaotic iteration. In the next section, we will see how to overcome this problem by

using a finite domain. The corresponding least solution will not correspond to the language

of the CFG, but it will characterize it precisely enough to be able to solve a specific verification

problem.
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16.2 Effective denotational semantics for regular inclusion

In this section, wewant to demonstrate effective denotational semantics by giving an in-depth

example. We consider the regular inclusion problem for context-free languages. The idea of

applying effective denotational semantics to this problem is not a contribution by the author

of this thesis. The content of this section is taken from a paper by Holík and Meyer [HM15], and

our presentation mostly follows that publication.

Formally, the problem we consider is the following.

Regular inclusion for context-free languages (CFL-REGINCLUSION)

Given: Context-free grammar G, NFA A.

Question: Does L(G) ⊆ L(A) hold?
The importance of this problem stems from the fact that context-free grammars can be used to

represent recursive programs, as we have explained in Section 5.1, assuming that each level of

the recursion only stores a bounded amount of data. This means that the problem of checking

whether all possible executions of such a program satisfy a given property corresponds to an in-

stanceofCFL-REGINCLUSION. Even in the caseofprograms that useunbounded storageat each

level of the recursion, one may use techniques like a language-theoretic version of counterex-

ample guided abstraction refinement that repeatedly solves instances of CFL-REGINCLUSION.

The problem CFL-REGINCLUSION is well-known to be PSPACE-hard¹ and in EXP. To obtain an

exponential-time algorithm, one can use that the inclusion L(G) ⊆ L(A) holds if and only if

the intersection L(G) ∩ L(A) is empty. To check the latter, we first compute an NFA A for the

complement language. Secondly, we use the well known triple-construction [BPS61] to obtain

a new grammar G × A. Finally, we apply an emptiness check to this grammar to determine

whetherL(G × A) = L(G)∩L(A) is empty. The runtime of this algorithm is in poly(∣G∣) ⋅ 2poly(∣A∣).
The exponential part corresponds to the determinization of the automaton A that is needed to

compute A.

The drawback of this algorithm is that it requires an upfront determinization of automaton A.

The grammar G might not explore the full behavior of A, e.g. if there are states of the deter-

minization of A that are not visited in any run on any word in the language of G. Nevertheless,

the algorithmneeds to compute a full representation of the determinizationbefore the product

with the grammar can be computed.

In the following, we present an algorithm by Holík and Meyer [HM15] that avoids this upfront

determinization. Instead, it only determinizes A along the words that occur inL(G). To this end,

¹ CFL-REGINCLUSION is a generalization of the problem of decidingwhether an inclusion among regular languages,
represented by finite automata, holds. This problem in turn is a generalization of the universality problem for finite
automata, i.e. decidingwhetherL(A) = Σ∗ holds for an NFA A. This problem can be proven to be PSPACE-complete
using the techniques introduced in [SM73].
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it uses effective denotational semantics with a domain that is based on the transition monoid,

which we have introduced in Section 4.5.

Assume thatwearegivena context-freegrammarG = (N, P, S)over the terminal alphabet Σ and

anNFA Aover the same alphabet. We first set up a systemof inequalities representingG. Similar

to what we did in the last section, we see the nonterminals as variables. Each terminal a as well

as ε constitute constant function symbols. Additionally, we have concatenation as an operation.

We obtain a system of inequalities in which each rule X → η of the grammar translates into an

inequality X ⩾ η by seeing the right-hand side as a term that is a composition of the constants

(terminals) and the variables (nonterminals).

LetMA be the transition monoid of A. We interpret the above system over the powerset lattice(P(MA), ⊆) over the transition monoid. Each of the constants a ∈ Σ ∪ {ε} is interpreted as the

singleton set {ρa}. Concatenation is interpreted as element-wise relational composition: For

sets R1 , R2 ⊆ MA, we have

R1 . R2 = {ρ ⋅ τ ∣ ρ ∈ R1 , τ ∈ R2} .
The powerset lattice (P(MA), ⊆) has height ∣MA∣ ⩽ 2∣Q∣2 , where Q is the set of states of A. This

in particular means that it satisfies ACC. Additionally, the interpretation of each of the function

symbols is monotonic, which is clear by definition. Hence, we can apply the techniques in the

previous section toobtain the least solution sol to the systemof inequalitieswithin finitelymany

steps. This solution assigns to each nonterminal X a set of boxes sol(X) ⊆ MA. Recall that a

rejecting box is an element of MA that does not contain a transition from an initial to a final

state. This means that the words represented by it are not in the language of A. We claim that

L(G) ⊆ L(A) holds if and only if the least solution sol(S) associated to the initial symbol does

not contain a rejecting box.

Once this claim is proven, we obtain an algorithm for CFL-REGINCLUSION that sets up the

above system of inequalities, determines its least solution, and reads off the answer to the

verification problem. This algorithm is amenable to algorithmic improvements, including the

worklist procedure that we discussed in the last section and further optimizations that we will

mention below.

In the following, we will prove the soundness of the algorithm. The proofs are adapted

from [HM15]. We choose to explicitly present these proofs, even though they are not original

work by the author of this thesis. They serve as an example of how to show the soundness of

an approach to a verification problem based on effective denotational semantics.

The crucial step in proving the soundness of the algorithm is establishing the following lemma.

16.2.1 Lemma
We have sol(S) = {ρw ∣w ∈ L(G)}.
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The easiest way to prove this lemma is to assume that we solve the system of inequalities not

using chaotic iteration, but by transforming it into a system of equations and applying Kleene

iteration. Both procedures arrive at the same result. Kleene iteration has the advantage of pro-

viding us with soli , the ith approximant.

We show that soli(X) is the set of boxes associated towords that canbe obtainedby a derivation

of height at most i from nonterminal X . Here, the height of a derivation is the height of the

corresponding derivation tree, i.e. the number of edges from the root note to the most distant

child. Recall that a derivation tree (from X ) is an ordered treewhose root node, inner nodes, and

leaves are labeled by X , nonterminals, and terminals, respectively. A replacement X → η1 . . . ηn
with ηi ∈ N ∪ Σ in the derivation process corresponds to the associated node X of the tree

having η1 , . . . , ηn as children in that order. We only consider complete derivation trees inwhich

all leaves are terminals. The word produced by the derivation process is then exactly the yield

of the associated derivation tree, i.e. its leaves read from left to right.

The following lemma makes this correspondence formal.

16.2.2 Lemma
For each nonterminal X and each i ∈ N, we have

soli(X) = {ρw ∣ X ⇒
∗ w with a derivation of height ⩽ i} .

Proof:
We prove the statement simultaneously for all nonterminals, proceeding by induction on i.

In the base case i = 0, we have soli = ⊥ and hence soli(X) = ∅. Indeed, no terminal word can

be derived from X with a derivation of height 0.

Assume that the statement holds for i and consider i + 1. Recall that in order to apply Kleene

iteration, we have to transform the systemof inequalities into a systemof equations. We collect

all rules X → η(1) , . . . , X → η(lX ) with X and obtain that

soli+1(X) = soli(η(1)) ⊔ . . . ⊔ soli(η(lX )) .
Since the symbol ⊔ is the join, which is interpreted as the union in a powerset lattice, we can

rewrite the right-hand side and get

soli+1(X) = soli(η(1)) ∪ . . . ∪ soli(η(lX )) .
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Using this equality, we prove soli+1(X) ⊆ {ρw ∣ X ⇒
∗ w with a derivation of height ⩽ i + 1}. If

ρ ∈ soli+1(X), then there is a rule X → η (where η is one of the η(k) in the above union) so that

ρ ∈ soli(η). Let η = η1 . . . ηm ∈ (N ∪ Σ)∗ be the decomposition of η into its letters. We have that

soli(η) = soli(η1) . . . soli(ηm) ,
where we use that the interpretation of concatenation is element-wise relational composition.

Since ρ ∈ soli(η), each soli(η j) contains some ρ j so that ρ = ρ1⋯ρm . Using induction, we can

associate to each ρ j a word w j such that η j ⇒
∗ w j with a derivation of height at most i and

ρ j is the box associated to word w j, ρ j = ρw j . If some letter ηk of η is a terminal symbol, the

statement trivially holds.

Finally, we construct a derivation X ⇒
∗ w1 . . .wm by first applying the rule X → η and then

using η j ⇒
∗ w j for each j. Since each derivation process η j ⇒

∗ w j has height at most i,

X ⇒
∗ w1 . . .wm has height at most i + 1 as desired. Its yield is the word w1 . . .wm with

ρw1 ...wm = ρw1⋯ρwm = ρ1⋯ρm = ρ.

For the other inclusion, one proceeds similarly. For derivations of size strictly less than i + 1,

we use induction and the fact that soli(X) ⊆ soli+1(X). For a derivation of a word w of height

exactly i + 1, we consider the associated derivation tree. It can be decomposed into the ap-

plication of a production rule X → η to the root node and derivation trees for each of the

letters of η. For each η j, we extract a derivation η j ⇒
∗ w j of height at most i for each

of the letters of β so that w = w1 . . .wm . By induction, we have that ρw j ∈ soli(η j), so

ρw = ρw1⋯ρwm ∈ soli(η) ⊆ soli+1(X) . ⬛

With this lemma at hand, it is easy to show Lemma 16.2.1.

Proof of Lemma 16.2.1:
Consider w ∈ L(G), i.e. S ⇒

∗ w. We need to show ρw ∈ sol(S). There is some height i of the

associated derivation tree, so by Lemma 16.2.2, we have ρw ∈ soli(S). Nowwe observe that the

approximants form an ascending chain sol0(S) ⊆ sol1(S) ⊆ . . ., and the fixed point solution is an

upper bound of that chain. Hence, ρ ∈ sol(S).
For theother direction, consider ρ ∈ sol(S). Since thepowerset lattice under consideration satis-

fies theACC, there is some i0 ∈ N such that sol = soli0 . Hence, ρ ∈ soli0 (S), and by Lemma16.2.2,

there is a derivation process S ⇒
∗ w with ρ = ρw . Thus, ρ = ρw withw ∈ L(G) as required. ⬛

With both lemmas proven, the soundness of the algorithm follows directly.

16.2.3 Proposition
The inclusion L(G) ⊆ L(A) holds if and only if sol(S) contains no rejecting box.
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Proof:
Assume that sol(S) contains the rejecting box ρ. With Lemma 16.2.1, we have ρ = ρw for some

word w ∈ L(G). Since ρw is rejecting, we have w /∈ L(A) and the inclusion does not hold. The

other direction is similar. ⬛

With the soundness of the algorithm proven, we consider some tricks that can speed it up.

Firstly, the system of inequalities can be solved using a worklist procedure as explained in the

previous section. Secondly, the implementation can be lazy in that it stops the algorithm as

soon as sol(S) in the current candidate solution contains a rejecting box. Both chaotic iteration

and Kleene iteration guarantee that the candidates for sol(S) that occur throughout the run of

the algorithm form an ascending chain. If some candidate contains a rejecting box, then the

final solution will contain it, too. Finally, the paper by Holík and Meyer [HM15] considers an

antichain optimization. Here, the key observation is that the elements of the transition monoid

itself can be seen as boxes, which are subsets of Q × Q. Boxes can be ordered by inclusion, and

theoperations thatweapply aswell as theproperty of beingnon-rejecting iswell-behavedwith

respect to inclusion. Hence, we can consider instead of the powerset lattice, whose elements

are arbitrary sets of boxes, the antichain lattice whose elements are sets of boxes that are in-

comparable. This domain is smaller, so there is a chance that the algorithm will terminate after

fewer steps. The antichain optimization has been shown to be highly efficient e.g. for checking

the universality of finite automata [CJKLS17]. However, the difference in size is not substantial

enough to improve the asymptotic worst-case complexity, which remains exponential.
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16.3 ω-regular inclusion

In this section, our goal is to extend the results in the previous section from finite to infinite

words. This means we apply effective denotational semantics to the problem of deciding ω-

regular inclusion for ω-context-free languages, demonstrating the versatility of the approach.

In contrast to the previous section, this section contains contributions by the author of this

thesis. The content is taken from the publication [MMN17].

ω-regular inclusion

Formally, the problem that we aim to solve is the following.

ω-regular inclusion for ω-context-free languages (ωCFL-ωREGINCLUSION)

Given: Context-free grammar G, NBA A.

Question: Does Lω(G) ⊆ Lω(A) hold?
In the previous section, we have argued that the problem CFL-REGINCLUSION corre-

sponds to the verification of the terminating executions of a recursive program. Similarly,

ωCFL-ωREGINCLUSION corresponds to verifying the non-terminating executions.

Let us recall the definition of the ω-context-free language Lω(G). We base our explanation on

the techniques that we have developed in the context of the proof of the characterization of

ω-context-free languages, Theorem 5.2.2. A word w ∈ Σω in Lω(G) is obtained from a left-

derivation process that can be split into twoparts: The first is an infinite chain of left-derivations

of the form Xi ⇒l η
(i)Xi+1 for all i ∈ N, where X0 = S is the initial symbol. The second part is a

collection of finite left-derivation processes η(i) ⇒∗
l w

(i) for all i ∈ N so thatw = w(0)w(1) . . . To
make this formal, we have introduced the spinal graph SG of a grammar in Section 5.2, a finite

graph whose nodes correspond to nonterminals and whose set of labels is a finite collection of

sentential forms. In SG, we have X
η
−→ Y iff X → η.Y is a rule of the grammar. Additionally, we

have definedLG(X) to be the language of finite words of the grammarG with the initial symbol

replaced by X . We have extended the definition to finite and infinite sentential forms by setting

LG(a) = {a} for a ∈ Σ ∪ {ε} and LG(β0 .β1 . . .) = LG(β1).LG(β2) . . . In Lemma 5.2.6, we have

argued that Lω(G) is exactly the set of infinite words in some LG(β), where β ∈ (N ∪ Σ)ω is the

concatenation of the labels along an infinite path in the spinal graph that starts in S.

Our goal is to construct a system of inequalities whose least solutions provides information

about both parts of the derivation process as described above. To handle the finite derivation

processesof the shape η(i) ⇒∗
l w

(i), weproceedas in theprevious section. For eachnonterminal

X of the grammar, we introduce a variable of the same name, and each production rule X → η

induces an inequality X ⩾ η. The only difference to the previous section is that wewill solve this

system using the powerset lattice over the transition monoid of A seen as Büchi automaton (as

introduced in Section 4.5).
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Capturing the infinite executions directly is difficult. We circumvent this problem by using the

fact that the behavior of derivation processes for Lω(G) is periodic in a sense that we will make

precise later. For each pair of nonterminals X , Y , we add a fresh variable ΛX ,Y . Intuitively, the

least solution for ΛX ,Y should represent all finite sentential forms β so that X ⇒
∗
l β.Y . To get

a finite representation, we do not store β, but the set of all boxes ρw where w is a finite word

that can be obtained from β. Note that X ⇒
∗
l β.Y means that β is the concatenation of the

labels along a finite path from X to Y in the spinal graph. Hence, we may use the spinal graph

to define the second part of inequalities as follows.

For each edge X
η
−→ Z in the spinal graph associated to the given grammar and each nontermi-

nal Y , we have an inequality

ΛX ,Y ⩾ η.ΛZ ,Y .

Additionally, for each nonterminal X , there is the inequality

ΛX ,X ⩾ ε .

Intuitively, the first inequality states that if we want to get from nonterminal X to the nonter-

minal Y in the spinal graph and there is a transition X
η
−→ Z , we can take this transition. The

remaining task is to reach Y from Z . The second inequality states that if we want to reach X

from X , we can simply stay where we are.

We interpret the whole system of inequalities over (P(MNBA
A ), ⊆), the powerset lattice over the

transition monoid of A, seen as Büchi automaton. Terminals a ∈ Σ, are interpreted as the sin-

gleton set {ρa}, the symbol ε is interpreted as {ρε} = {id}. Concatenation is interpreted as the

element-wise composition of such sets, R1 . R2 = {ρ1 ⋅ ρ2 ∣ ρ1 ∈ R1 , ρ2 ∈ R2}.
The powerset lattice over a finite set like M

NBA
A satisfies the ACC and the interpretation of all

functions is monotonic. Therefore, we can solve the system of inequalities by applying chaotic

iteration. The following lemma states that the least solution sol∶V → P(MNBA
A ) indeed has the

aforementioned properties.

16.3.1 Lemma
We have sol(X) = {ρw ∣w ∈ LG(X)} and sol(ΛX ,Y ) = {ρw ∣ X ⇒

∗
l β.Y , β ⇒

∗ w} .
The first part of the lemma can be shown exactly as in the proof of Lemma 16.2.1. We conclude

that for every finite sentential form β, sol(β) = {ρw ∣w ∈ LG(β)}. The second part of the lemma

follows using the definition of the spinal graph. We forgo giving a formal proof.
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Representing infinite words

It remains touse the solution to this system todecidewhether the inclusionLω(G) ⊆ Lω(A)holds.
Beforewe can explain how to extract this information from the solution, weneed todiscuss how

the behavior of infinite words in a Büchi automaton can be represented by boxes. In the follow-

ing, we consider pairs of boxes (τ, ρ), where τ describes a finite prefix and ρ describes a behavior

that is repeated infinitely. We write such a pair as τρω, and we define L(τρω) = L(τ).L(ρ)ω. The
following lemma states that the languages of the shapeL(τ.ρω) cover Σω, and that eachL(τ.ρω)
is either completely contained in L(A) or disjoint from it.

16.3.2 Lemma (Sistla, Vardi, andWolper [SVW87])

a) For everyw ∈ Σω, there is a pair of boxes τρω withw ∈ L(τρω).
b) For every pair of boxes τρω, we have L(τρω) ⊆ Lω(A) or L(τρω) ⊆ Lω(A).
To show the first part, one can apply Ramsey’s theorem thatwewill use later to prove the sound-

ness of our algorithm. The second part follows from the fact that boxes present the behavior of

a word in a Büchi automaton. In particular, they do so in a way that is precise enough to check

acceptance.

For us to be able to use this characterization, we need a way to check for a given pair of boxes

τρω whether L(τρω) ⊆ Lω(A). To this end, we need the notion of a lasso, which is modified

version of the notion of a proper language introduced by Sistla, Vardi, and Wolper [SVW87]. A

lasso in a Büchi automaton is the concatenation of a finite path from the initial state to some

state, and a cycle containing that state which is repeated ad infinitum. To enforce that theword

that is read along this infinite path is accepted, the cycle should also contain a final state. We

call a pair of boxes a lasso if each word in its language has a run in the Büchi automaton that is

a lasso. The following definition makes precise how this property can be checked.

16.3.3 Definition
A pair of boxes τρω is a lasso if either ρ = id or if there are sequences of states q0 , q1 , . . . , qp
and q′0 , . . . , q

′
c so that (1) q0 = qinit, (2) τ(q0 , q1) > 0, (3) for all i ∈ [1, p − 1], ρ(qi , qi+1) > 0,

(4) qp = q′0 = q′c , (5) for all j ∈ [0, c − 1], ρ(q j , q j+1) > 0, and (6) there is j ∈ [0, c − 1] with

ρ(q j , q j+1) = 2. If τ = id, we replace the Condition (2) by requiring q0 = q1.

The definition is visualized in the form of Figure 16.3.a. To better understand the definition, it

is helpful to see a box ρ as a directed graph with set of nodes Q. It contains the edge q → q′ iff

ρ(q, q′) > 0. The first three conditions state that there should be a path leading from the initial

state to some state qp such that the first transition is contained in τ and all other transitions

are contained in ρ. The other conditions require a cycle containing qp whose transitions are
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•

τ ρ∗ ρ∗

Figure 16.3.a: A schematic depiction of a lasso τρω, where neither τ nor ρ is id. The lasso is a
transition in τ, followed by a sequence of transitions in ρ, followed by a cycle of
transitions in ρ. One of the transitions along the cycle visits a final state.

contained in ρ. At least one transition along the cycle is labeled by 2, meaning that it visits a

final state.

This characterization also explains how to check efficiently whether a pair of boxes is a lasso.

It amounts to a polynomial number of reachability checks in directed graphs with ∣Q∣ nodes,
which is a problem that can be solved in polynomial time.

Let us explain why we consider a pair of boxes τρω with ρ = id a lasso. In this case, we have

L(τρω) = L(τ).L(ρ)ω = L(τ).{ε}ω = L(τ).∅ = ∅. Hence, the inclusion L(τρω) ⊆ Lω(A) holds.
For a pair of boxes that are not equal to id, we also have that the inclusion holds if and only if

the language of the pair is included in the language of the NBA. This is because the definition

of a lasso mimics the acceptance condition for Büchi automata: Being a lasso means that every

word in the associated language has a run that visits a final state infinitely often. For the formal

proof, we would need to invoke Lemma 16.3.2.

Note that here, it is important that we only consider boxes (functions with signatureQ×Q → 3)

that actually correspond to elements of the transition monoid, meaning their language is non-

empty. If ρ or τ has an empty language, then L(τρω) is empty and inclusion in Lω(A) trivially
holds, no matter whether τρω is a lasso.

16.3.4 Lemma (Sistla, Vardi, andWolper [SVW87])
For boxes ρ, τ with non-empty language, L(ρ) ≠ ∅ ≠ L(τ), the pair τρω is a lasso if and only if

L(τρω) ⊆ Lω(A).
Lassos characterizingwhether a pair of boxes represents a language that is either included in or

disjoint from the language of an NBA is the final piece we need to solve ωCFL-ωREGINCLUSION

using effective denotational semantics. Checking whether the inclusionLω(G) ⊆ Lω(A) of inter-
est holds amounts to checking whether certain pairs of boxes that are obtained from the least

solution to our system of inequalities are lassos.

16.3.5 Theorem
The inclusion Lω(G) ⊆ Lω(A) holds if and only if for each nonterminal X and each τ ∈ sol(ΛS ,X ),
ρ ∈ sol(ΛX ,X ,), the pair of boxes τρω is a lasso.
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From the theorem, the solution to ωCFL-ωREGINCLUSION follows immediately. We can com-

pute the least solution to the system of inequalities defined before and obtain the sets of boxes

ΛS ,X and ΛX ,X for all possible X . It then just remains to check whether all possible pairs of boxes

from these sets are lassos.

Before we prove the result, we consider an example.

16.3.6 Example
Consider the alphabet {a, r, s, t} whose letters should represent the actions of a server. Letter

r represents that the server has received a request, a represents that it has acknowledged a

request, s and t are internal actions. A typical liveness property that one would like to verify is

that every request gets acknowledged after finite time. Unfortunately, this is not an ω-regular

property. Instead, we consider the simpler property that if the server receives infinitely many

requests, it also acknowledges infinitely often.

The latter property is ω-regular since it is the language of the Büchi automaton A depicted in

Figure 16.3.b.i). Its set of boxes with non-empty language is depicted in Figure 16.3.b.ii).

We consider a server whose behavior is described by the ω-context-free language of the gram-

mar with the production rules

X → rYa ∣ XX , Y → sYt ∣ ε ,
where X is the initial symbol. The language is Lω(G) = {(r(sn i tn i )a)ω ∣ ni ∈ N for all i}.
To set up the system of inequalities associated to that grammar, we first observe that its spinal

graph consists of the nodes X and Y and the single edge X
X
−→ X . All transitions but X → XX

are not of the required shape and do not lead to edges in the spinal graph.

The first part of the system of inequalities for the variables X and Y is the following.

X ⩾ r.Y .a Y ⩾ s.Y .t

X ⩾ X .X Y ⩾ ε .

It can be solved independently of the rest, resulting in the least solution sol(X) = {ρa},
sol(Y) = {id, ρs}. The rest of the system of inequalities describes the variables of the shape Λ−,−:

ΛX ,X ⩾ X .ΛX ,X ΛX ,Y ⩾ X .ΛY ,X
ΛX ,X ⩾ ε ΛY ,Y ⩾ ε .

The variable ΛY ,X has no associated inequality because Y has no outgoing edges in the spinal

graph. The least solution is sol(ΛX ,X ) = {id, ρa}, sol(ΛY ,Y ) = {id} and sol(ΛX ,Y ) = sol(ΛY ,X ) = ∅.
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q0 q1

r

a

a, s, t r, s, t

i) Büchi automaton A.

id
id = ρε ρr ρa ρa.r ρs = ρt

ii) The boxes of Awith non-empty language.

Figure 16.3.b: AnNBA that checks that infinitelymany rs implies infinitelymany as, and its boxes
on the right-hand side. The upper dash on each side of each box ρ represents q0,
the lower one represents q1. An undotted edge from q to p stands for ρ(q, p) = 1,
a dotted edge stands for ρ(q, p) = 2, i.e. the final state has been visited.

We claim that this solution satisfies the condition in Theorem 16.3.5. There are only two non-

trivial cases that we have to check, id ρωa ∈ sol(ΛX ,X )×sol(ΛX ,X ) and ρaρωa ∈ sol(ΛX ,X )×sol(ΛX ,X ).
We observe that ρa contains the accepting loop ρa(q0 , q0) = 2 and that q0 is the initial state,

which means that both pairs of boxes form lassos. This matches the fact that every word in

Lω(G) = {(r(sn i tn i )a)ω ∣ ni ∈ N for all i} contains both infinitely many requests and infinitely

many acknowledgments.

The rest of this section is dedicated to the proof of Theorem 16.3.5. One part is straightforward.

16.3.7 Lemma
If there is a nonterminal X and boxes τ ∈ sol(ΛS ,X ), ρ ∈ sol(ΛX ,X ,) such that the pair of boxes τρω

is a not a lasso, the inclusion Lω(G) ⊆ Lω(A) does not hold.
Proof:
Assume that τρω is not a lassowith τ ∈ sol(ΛS ,X ), ρ ∈ sol(ΛX ,X ,). By Lemma16.3.1, there are finite

words v ,w with ρv = τ, ρw = ρ so that S ⇒
∗
l βX , X ⇒

∗
l β

′X and β ⇒
∗ v, β′ ⇒∗ w. Consider

the infinite word v .wω, which is contained in L(τρω). Since τρω is not a lasso, L(τρω) is not

contained in Lω(A) by Lemma 16.3.4. By Part b) of Lemma 16.3.2, we have L(τρω) ⊆ Lω(A). This
in particularmeans that v .wω /∈ Lω(A). The definitions of v andw yield an infinite left-derivation

process, proving that v .wω ∈ Lω(G). We have obtained v .wω ∈ Lω(G)\Lω(A), a counterexample

to the inclusion. ⬛

The remaining direction requires more work. In particular, we have to recall Ramsey’s theorem

which we will need for the proof.

Ramsey’s theorem, a generalization of a result by Ramsey [Ram30], is an important result from

infinitary combinatorics. It considers undirected complete graphs that are finitely colored,

i.e. equipped with a function λ∶ E → C that assign to each pair of distinct nodes v , v ′ ∈ V , v ≠ v ′

one of finitely many colors λ({v , v ′}) ∈ C to the corresponding edge {v , v ′} ∈ E . The coloring is

monochromatic if all edges are colored by the same color.
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16.3.8 Theorem: Ramsey’s theorem
An infinite finitely colored undirected complete graph always has an infinite monochromatic

complete subgraph.

Ramsey’s theorem is standard in the literature, but it seems hard to find a reference that states

it in the above formwithout generalizing it in a way that makes it harder to digest. To solve this

issue, we present a proof.

Proof:
Let (V , E) be an infinite undirected complete graph and let λ∶ E → C be a finite coloring of its

edges. Using the well-ordering theorem, we may equip the set of nodes V with some well-

order ⩽. We define an infinite sequence of triples (Vi , vi , ci)i∈N so that

• (Vi)i∈N is a descending chain of infinite subsets of V , i.e. V0 ⊇ V1 ⊇ V2 ⊇ . . . ,

• each vi is a node so that vi+1 ∈ Vi , and

• ci ∈ C is the color of all edges {vi , v ′} for v ′ ∈ Vi .
We proceed by induction. In the base case, we pick v0 as the least element of V (with respect to

the well-order ⩽) and choose the color c0 and the set V0 so that V0 = {v ′ ∈ V ∣ λ({v0 , v ′}) = c0}
is infinite. Note that such a color has to exist, because the graph contains infinitely many edges

of the shape {v0 , v ′} but λ assigns only finitely many distinct colors. Also, this choice of V0 and

c0 means they indeed have the desired properties.

Assumewehave defined (V0 , v0 , c0), . . . , (Vn , vn , cn). We define (Vn+1 , vn+1 , cn+1) in the following.

We pick vn+1 as the least element of Vn , thus satisfying vn+1 ∈ Vn . We choose cn+1 and Vn+1 so

that Vn+1 = {v ′ ∈ Vn ∣ λ({vn+1 , v ′}) = cn+1} is infinite. If such a Vn+1 exists, it obviously is an infinite

subset of Vn , and it has to exist using the same line of argumentation as before: Vn is infinite by

induction, so the set of edges {vn+1 , v ′} with v ′ ∈ Vn is infinite. There must be a color that is

assigned to infinitely many of these edges by λ.

The infinite sequence (ci)i∈N over the finite set C of colors must contain infinitely many occur-

rences of some color. Pick one such color c and consider the set of the associated nodes vi so

that the color in the triple (Vi , vi , ci) equals c, V ′ = {vi ∣ ci = c}. Since c occurs infinitely often in

the sequence of the ci , the set V ′ is infinite. We argue that the complete subgraph on the set of

nodes V ′ is monochromatic – all edges between nodes from V ′ are colored by c.

Consider two distinct nodes from V ′ and consider the color of the edge between these two

nodes. By the definition of V ′, we may write these nodes as vn , vm for some n,m ∈ N, say with

n < m. This in particular implies m > 0, so we have vm ∈ Vm−1. The sets Vi form a descending

chain, so n < mmeans that vm ∈ Vn holds. Now we can use the property of Vn and cn to obtain

that the color of the edge {vn , vm} is λ({vn , vm}) = cn . The latter equals c since vn ∈ V
′, which is

what we wanted to show. ⬛
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Ramsey’s theorem is needed to prove Part a) of Lemma 16.3.2, showing that every word in Σω

is in the language of some pair of boxes τρω. The following proof for the remaining part of

Theorem 16.3.5 can be seen as an extension of that property.

16.3.9 Lemma
If the inclusion Lω(G) ⊆ Lω(A) does not hold, there is a nonterminal X and boxes τ ∈ sol(ΛS ,X ),
ρ ∈ sol(ΛX ,X ,) so that the pair of boxes τρω is not a lasso.

Proof:
Assume that w ∈ Lω(G) \ Lω(A). We use the nature of right-infinite left-derivation processes:

There is an infinite sequence Xi → β(i)Xi+1 of production rules so that X0 = S is the initial sym-

bol. Furthermore, there is a decomposition of w = w(0)w(1)w(2) . . . into finite infixes so that

β(i) ⇒∗ w(i) for all i.
Since there are only finitelymany nonterminals, there is at least one nonterminal X that appears

infinitely often in the sequence of the Xi . We consider the derivation process for w and merge

finite infixes of the above sequence of production rules. The result should be a sequence of

sentential forms so that

S ⇒
∗ v(0)X ⇒

∗ v(0)v(1)X ⇒
∗ v(0)v(1)v(2)X ⇒

∗ . . . ,

i.e. w = v(0)v(1)v(2) . . . and each v(i) takes us from one occurrence of X as the rightmost symbol

of the sentential form to the next one.

We need to find a pair of boxes τρω that is not a lasso and whose language containsw. To this

end, we use Ramsey’s theorem. We construct an undirected complete graph with N as its set

of nodes. The graph is finitely colored by assigning a box to each edge. For i < j, we assign

λ({i , j}) = ρv(i) .v(i+1) ...v( j−1) , the box associated to the infix v(i) .v(i+1) . . . v( j−1) of w. By Ramsey’s

theorem, Theorem 16.3.8, this graph has a monochromatic infinite complete subgraph, i.e. an

infinite subset M ⊆ N so that there is some box ρ with λ({i , j}) = ρ for allm,m′ ∈ M,m ≠ m′.

We consider a new decomposition of w that is obtained by merging the v(i) according to the

subset M. Formally, let m0 < m1 < m2 < . . . be a strictly ascending sequence that contains

exactly the elements of M. We define

u(0) = v(0)v(1) . . . v(m0−1) , and
u(i) = v(m i )v(m i+1) . . . v(m i+1−1)

for i > 0. Obviously, w = u(0)u(1)u(2) . . .The first infix u(0) is chosen so that it takes us from the

initial symbol to anoccurrenceof X that corresponds to the least elementofM. Theother infixes

are chosen so that they take us from one occurrence of X to a later one. In particular, we have a

sequence of left-derivations S ⇒
∗
l β

(0) .X , X ⇒
∗
l β

(1) .X , . . . so that β(i) ⇒∗ u(i) for all i.
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Consider the pair of boxes τρω, where τ = ρu(0) is the box associated to u(0) and ρ = ρu(1) is
the box associated to u(1). Since the subgraph on M is monochromatic, ρ is the box associated

to u(i) for all i > 0. The decomposition w = u(0)u(1)u(2) . . . is a witness for w ∈ Lω(τρω). Since

w /∈ Lω(A), τρω cannot be a lasso by Lemma 16.3.4.

To complete the proof, we need to argue that τ ∈ sol(ΛS ,X ,), ρ ∈ sol(ΛX ,X ). With Lemma 16.3.1,

we have sol(ΛX ,X ) = {ρu ∣ X ⇒
∗
l β.X , β ⇒

∗ u}. We have argued above that X ⇒
∗
l β(i) and

β(i) ⇒
∗ u(i), so ρ = ρu(i) is indeed contained in sol(ΛX ,X ). The reasoning for τ ∈ sol(ΛX ,S ,) is

similar. ⬛

With both lemmas proven, the proof of Theorem 16.3.5 is complete: Each of the lemmas shows

one of the required implications by contraposition.
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This chapter is dedicated to solving context-free inclusion games. Our goal is to use effective

denotational semantics and extend the techniques introduced in theprevious chapter. In Chap-

ter 16, we have solved regular inclusion problems (which correspond to verification problems).

Here, we want to set up an interpreted system of equations so that its least solution describes

the behavior of a game (which corresponds to a synthesis problem, see Section 1.3 of the in-

troduction). The domain that we use for the fixed-point iteration will be so that the certificates,

the winning strategies for the game, can be read off from the least solution.

The structure of the chapter is as follows: After providing the formal definitions, we explain

how context-free games can be solved using effective denotational semantics by providing the

required system of equations and the model. We discuss the properties of algorithm in detail:

its soundness, the fact that it has the optimal time complexity, how it can be used to compute

winning strategies, and tricks that could be used to speed up an implementation in practice.

We also provide an in-depth comparison of our approach to other algorithms that solve similar

types of games. Finally, we show that the approach can be extended to the case of ω-context-

free games.

Publications

The chaptermostly presentsmaterial that has beenpublished in the formof thepaper [HMM16]

(resp. its full version [HMM16a]). Compared to the paper, the presentation in this thesis has

been improved and extended. The last two sections of this chapter present material from the

paper [MMN17]. The author’s contributions to these publications are discussed in more detail

in Chapter 20.
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17 Context-free games

17.1 Context-free regular inclusion games

We define a context-free inclusion game as a gamewhose plays represent derivation processes

of a context-free grammar. The winning condition is membership of the derived word in a reg-

ular or ω-regular language. For now, we limit ourselves to the case of a regular target language

of finite words.

For the formal development, we use the definition of inclusion games that we have given in

Chapter 15. We apply it to the automata-theoretic view on context-free grammars that was

based on prefix-growth, see Section 5.1. Formally, this means that we associate to a context-

free grammar G = (N, P, S) an LTS whose configurations are either terminal words or sentential

forms of the shapew .X .β, wherew ∈ Σ∗ is a terminal prefix, X ∈ N is the leftmost nonterminal

and β ∈ (N ∪ Σ)∗ is the rest of the sentential form. There is a transition w .X .β → w .v .η.β in

that LTS if X → v .η is a production rule of the grammar, with v being the terminal prefix of

the right-hand side, the largest prefix that exclusively consists of symbols from Σ. The label

λ(w .X .γ → w .v .η.γ) = v of this transition is v, the growth of the terminal prefix. Recall that

L(G) is the set of labels that occur along paths from S, the configuration associated to the initial

symbol, to terminal words, configurations of the shapew ∈ Σ∗. The labels along a path from S

tow form exactly the wordw.

To turn this LTS in a game arena, we assume that we start with a game grammar, a context-free

grammarwhere thenonterminalsN = N ∪⋅ N are partitioned into thenonterminalsN owned

by the universal player and the nonterminals N owned by the existential player. We usually

write such a game grammar as G = (N ∪⋅ N , P, S).
This partition of the nonterminals induces a partition of the sentential forms – the configura-

tions of the LTS – based on the leftmost nonterminal. The terminal words have no outgoing

transitions in the LTS; we may arbitrarily assign them to one of players, say the existential one.

Formally, we have Γ = Σ∗ .N .(N ∪ Σ)∗ ∪ Σ∗, Γ = Σ∗ .N .(N ∪ Σ)∗. The sentential forms being

owned by the owner of the leftmost nonterminal corresponds to the fact that the transitions of

the LTS are based on left-derivations. This means that we can think of a play in the game as a

left-derivation process in which each player selects the production rules for the nonterminals

that she owns.

To equip the game arena with a winning condition, we assume that we are also given a regular

target languageL(A) ⊆ Σ∗ over the same alphabet, where A is a finite automaton. A play is won

by the existential player if and only if it produces a finite word that is not contained in L(A). All

other plays are won by the universal player, including all infinite plays.
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17.1 Context-free regular inclusion games

17.1.1 Definition
A context-free (regular) inclusion game is of the shape (G , A), whereG = (N ∪⋅ N , P, S) is a game

grammar and A is an NFA over the same alphabet Σ. The plays are left-derivation processes in

which each player picks the replacement rules for her nonterminals. A maximal play is won by

the existential player if and only if it is a finite play of the shape S →
∗ w withw /∈ L(A).

Most of this chapter is concerned with developing an algorithm that computes the winner of

context-free (regular) inclusion games. This is a non-trivial task: While the game can be con-

verted into a reachability game as described in Chapter 15, it is played on an infinite arena that

we cannot explicitly store in memory and compute on. Hence, we face the challenge of having

to design an algorithm that works with the finite syntax (the game grammarG and the automa-

ton A) describing the infinite game arena in order to solve the game.

Otherworks in the literature have solved similar types of games, e.g. games playedon the transi-

tion systemsofpushdownautomata. We summarize all games inwhich thegamearena is based

on a type of system that corresponds to the class of context-free languages, e.g. context-free

grammar andpushdown automata, under the term context-freegames. We defer the discussion

of the related work to Section 17.6 in this chapter, after we have presented our algorithm. This

will allow us to conduct an in-depth comparison of our solution to other approaches.
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17 Context-free games

17.2 Solving context-free games

To solve context-free games, we want to apply effective denotational semantics. We under-

stand the grammar describing the game arena as a system of equations. We then solve it over

a domain that represents the winning condition (the regular target language) of the game. The

(least) solution will allow us to read off the winner of the game and the winning strategies.

We start by designing the system of equations.

The system of equations

Let G = (N ∪⋅ N , P, S) be the game grammar over Σ that we consider. The construction is simi-

lar to the one from Section 16.2. The difference is that we use a system of equations instead of a

systemof inequalities. In the previous chapter, wewere able to create independent inequalities

for each of the productions. Conceptually, the iteration solving the system collects them using

the join operator of the lattice. In this chapter, the rules for each nonterminal have to be col-

lected and connected using different operators, depending on the owner of the nonterminal.

To this end, we use two distinct operators, conjunction ∧ and disjunction ∨.

Throughout the rest of this chapter, we take the perspective of the existential player and as-

sociate disjunction ∨ to her and conjunction ∧ to the universal player. The motivation for

this choice is that in order to win, the existential player has the harder task of enforcing a

finite derivation.

Formally, the system of equations associated to grammar G is as follows. It uses Σ, the set of

terminal symbols and ε as constants, and the binary operators concatenation . , disjunction ∨,

and conjunction ∧. The system has one variable X for each nonterminal. Its unique defining

equation is of the shape

X = η(1) ∧∨ . . . ∧∨ η
(k) ,

where X → η(1) , . . . , X → η(k) are all production rules with X as their left-hand side. Here, we

see each η(i) as a term by using the appropriate constants and concatenation. The operator ∧∨ is

∨ if X ∈ N is owned by the existential player and ∧ otherwise.

If one tried to solve the system of equations with uninterpreted symbols, one would obtain for

each nonterminal X a description of the tree of plays from the sentential form X . For example,

consider the grammar with the rules X → a.Y ∣ b.Y and Y → c ∣ d, where X is owned by the

existential and Y by the universal player. The least solution to the resulting system of equations

with uninterpreted symbols is sol(Y) = c ∧ d, sol(X) = a.(c ∧ d) ∨ b.(c ∧ d). By being audacious

and applying distributivity, even though it does not hold for uninterpreted symbols, the latter

can be transformed to (ac∧ ad)∨ (bc∧bd). This formula represents exactly the behavior of the

game: First, the existential player can decide whether the first letter should be a or b, then the

universal player can pick the second letter. If we are given a target languageL(A), we could find
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17.2 Solving context-free games

out thewinner of the game from X by checkingwhich of thewords ac, ad , bc, bd are contained

in that language.

Note that in this toy example, it is possible to explicitly construct this finite representation be-

cause the grammar is non-recursive, meaning that it has only finite many derivation processes.

In general, the tree of all playswill be infinite andwewill not be able to solve the systemof equa-

tions using uninterpreted symbols. Formally, the domain associated to uninterpreted symbols

is a generalization of the language semiring, see Section 16.1. Just as the language semiring,

this domain does not satisfy the ascending chain condition and we are unable to obtain the

least solution in finite time.

17.2.1 Example
Consider the game grammar G with the production rules X → aY ∣ ε and Y → bX , where X is

owned by the universal player and Y is owned by the universal player. Consider the automaton

Awith language (ab)∗ from Example 4.2.1 resp. Figure 4.2.a. Throughout this chapter, we will

consider the context-free inclusion game (G , A) as our running example.

The system of equations associated to (G , A) is
X = a.Y ∨ ε ,

Y = b.X .

By substitution, we obtain X = a.b.X ∨ ε. This means our system of equations is recursive and

we cannot simply explicitly compute its solution with uninterpreted symbols.

It remains to find amodel, i.e. a domain and an interpretation of the symbols used in the system

of equations. On the one hand, it should be so that sol(X), the least solution associated to the

nonterminal X , still represents the effect of all plays from X . On the other hand, the model

should allow us to compute the least solution within finite time. Hence, it should satisfy the

ascending chain condition so that we can apply Kleene iteration.

The need for composable information

The key aspect here is thatwe design the domain so that the information its elements represent

is compositional. This is because of the following crucial observation. Assume that X → Y .Z is

the unique production rule for nonterminal X . A play from X that reaches a terminal word will

necessarily be of the shape

X ⇒l Y .Z ⇒l β1 .Z ⇒l . . . ⇒l βk−1 .Z ⇒l w .Z ⇒l w .β′1 ⇒l . . . ⇒l w .β′m−1 ⇒l w .v ,

where Y ⇒l β1 ⇒l . . . ⇒l w is a play from Y to a terminal word and similarly,

Z ⇒l β
′
1 ⇒l . . . ⇒l v is a play from Z to a terminal word. For the other direction, any two
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17 Context-free games

plays from Y resp. Z to terminal words can be combined into a play from X to the concatena-

tion of the terminal words. The reason for this behavior is that we have limited ourselves to

left-derivations.

For the system of equations, this means that the solution for the term Y .Z (which will be the

same as the solution for X ) should be computable using the solutions for Y and Z . Our domain

has to be devised so that this compositionality is supported. Suppose for example that we

would simply assign {0, 1} to each nonterminal, depending on whether the existential player

has a winning strategy from the position of the game consisting just of that nonterminal. While

this is exactly the information that we want to obtain, there is no hope that we can compute it

by a fixed-point iteration over that domain: Consider again X → Y .Z , and assume that we have

computed that the existential player wins from Y and Z , which means that she can enforce the

derivation of terminal words not contained inL(A). We get no information on Y .Z (and thus no

information on X ), however. The fact that we can derive words from Y and Z that are not in the

target language does not mean that their concatenation is not in the target language.

The domain

Let A be an NFA representing the regular target language. We interpret a terminal symbol a by

the element of the transition monoid ρa . Similarly, we interpret ε as ρε = id. As we have dis-

cussed in Section 4.5, the transitionmonoid element represents the effect that a word has with

respect to an NFA, and it does so in a way that can be composed: ρa is sufficient to understand

whetherw .a.w ′ is contained in the language L(A) for arbitrary wordsw ,w ′.

To be able to interpret the choice operators ∨ and ∧, we use positive Boolean formulas as

defined in Section 3.4, Boolean formulas without negation. This means that our domain is

pBF(MA), the positive Boolean formulas over the transitionmonoid of A. The transitionmonoid

elements ρa are embedded into this domain as atomic formulas in the expected way. Further-

more, this domain allows us to interpret conjunction and disjunction as the respective opera-

tions on Boolean formulas.

Recall that pBF(MA) contains the unsatisfiable formula false which we eliminate using the fol-

lowing syntactic rules:

F ∨ false = false ∨ F = F F ∧ false = false ∧ F = false .

Consequently, the disjunction or conjunction of two formulas that are not false is never false.

(Similar rules would apply for the formula true, but it turns out that true will never occur as a

formula when we conduct fixed-point iteration.)

The hard part is interpreting concatenation. Recall fromabove that a play from Y .Z is essentially

a play from Y (with suffix Z) followed by a play from Z (with the outcome of the play from Y as

prefix). This in particular means that when the play from Z occurs, the choices that were made

when deriving Y are visible to both of the players. Our goal is to interpret concatenation as
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17.2 Solving context-free games

formula composition, an operator that mimics this behavior: When composing two formulas, as

long as there are choices in the left operand, it resolves these choices while propagating the

right operand downwards. As soon as all choices in the left operand are resolved (i.e. the left

operand is an atom, an element of the transition monoid), the choices in the right operand

are resolved. The atom that is the left operand is propagated downwards. Finally, we obtain a

composition of two atoms that we will resolve by composing them using the composition of

transition monoid elements.

The formal definition is as follows.

17.2.2 Definition
The composition F . H of two formulas is inductively defined as follows:

(F ∧
∨ F

′) . H = F . H ∧
∨ F

′ . H

ρ . (H ∧
∨ H

′) = ρ . H ∧
∨ ρ . H′

ρ . ρ′ = ρ ⋅ ρ′ ,

where F , F ′ , H, H′ ∈ pBF(MA) are not equal to false, ρ, ρ′ ∈ MA, and ∧
∨ ∈ {∧,∨}. For any

F ∈ pBF(MA), we define F . false = false . F = false.

The order

To be able to conduct fixed-point iteration to solve the system of equations, we need to equip

the set of positive Boolean formulas over the transition monoid with a partial order. The order

should be appropriate in that the operations (conjunction, disjunction, and composition) are

monotonic with respect to that order. Furthermore, the least fixed-point solution with respect

to this order should indeed capture the effect of the possible plays of the game.

Our idea is that F ⩽ H holds for two formulas if it is easier for the existential player towin the tree

of plays described by H than the tree of plays represented by F . More formally, the fixed-point

iteration with respect to that order will be set up so that it iteratively explores the outcomes of

plays that the existential player can enforce. Thismeanswe start with the formula false that rep-

resents that the existential player cannot even enforce termination of the play. Later iterations

will yield formulas F such that the existential player can enforce visiting an element from any

set M ⊆ MA if F(M) evaluates to true. Here, we see M as the variable assignment that assign

true to ρ if and only if ρ ∈ M. The least fixed point solution associated to a nonterminal will be a

formula that characterizes the set of words whose derivation the existential player can enforce

from that nonterminal.

However, since the system of equations is set up so that it composes old information to obtain

new information, it is not sufficient to define F ⩽ H to hold if the tree of plays represented by H

is easier to win than the tree of plays represented by F . We have to require that this holds not
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17 Context-free games

only for F and H in isolation, but for F and H in any possible context. More formally, assume that

F represents the plays from X and H represents the plays from Y . Intuitively, we should require

that F ⩽ H implies that for any sentential forms β, γ, we have that it is easier for the existential

player to win from β.Y .γ than from β.X .γ. Expressed on the level of formulas, this in particular

means that F ⩽ H implies G′ . F . G′′ ⩽ G′ . H . G′′ for any two formulas G′ ,G′′, which is simply

the requirement for composition to be monotonic with respect to our order.

While it would be possible to use the observation in the above paragraph for the formal defini-

tion, wewill avoid going down this path. An advantage of said definition would be that it is the

coarsest order that would be suitable for conducting fixed-point iteration. However, the major

drawback is that computing for two formulas whether one is smaller with respect to the order

than the other would be very intricate.

We choose to circumvent these issues by considering a more fine-grained order whose defini-

tion is not dependent on the notion of context. Then, we will prove that composition is mono-

tonic with respect to that order. As mentioned above, this implies that it has the required prop-

erties, i.e. it behaves correctly with respect to all possible contexts. The order that we choose

is logical implication. Recall that F ⟹ H iff for any valuation of the atoms (the transition

monoid elements in our case) M, we have F(M) ⩽ H(M), i.e. if F(M) is true, then so is H(M).
Let us argue that implication is a sane choice that matches the intuition provided above. As-

sume that F ⟹ H holds. We argue that than indeed H describes a tree of plays in which it is

easier for the existential player to win than in the one described by F . LetM be a set of monoid

elements so that the existential player can enforce deriving somewordw with ρw ∈ M. We will

later prove that this is equivalent to F(M) = true. Since F ⟹ H, we have H(M) = true as well,

so the existential player can also enforce deriving words whose associated box is in M in the

tree of plays described by H.

There is one minor challenge that we need to overcome: Logical implication is not a partial

order. In fact, each formula is logically equivalent to infinitely many other formulas. We solve

both problems at once, the problem of implication not being a partial order and the problem

of our domain being infinite. We simply factorize along logical equivalence ⟺ . Two formulas

F , H are logically equivalent, F ⟺ H, if F ⟹ H and H ⟹ F . If we express the orders as

subsets of pBF(MA)2, we may write ⟺ = ⟹ ∩ ⟸ , where ⟸ is the opposite of ⟹ .

The result of factorizing pBF(MA) with respect to logical implication is pBF(MA)/⟺ . The el-

ements of this set are equivalence classes of positive Boolean formulas over MA with respect

to ⟺ . On the one hand, this set is finite since the set of atomsMA is finite. Each equivalence

class of formulas is uniquely determined by the set of subsets ofMA that satisfy the formulas in

the class, and there are only finitely many such sets of subsets. On the other hand, implication

is a partial order on these equivalence classes.

We show that the operations of conjunction, disjunction, and composition of formulas are

monotonic with respect to logical implication. As a consequence, we obtain that these op-

320



17.2 Solving context-free games

erations are well-defined on the equivalence classes. In particular, to obtain the conjunction,

disjunction, or composition of two equivalence classes, we can apply the operation to arbitrary

representatives and obtain a representative for the equivalence class of the result. Altogether,

we will not need to distinguish between equivalence classes and formulas that represent them

in the following. This allows us to work with formulas in both the implementation of the result-

ing algorithm and in the proof of its soundness. However, one has to take into account that

in order to check whether the least fixed-point has been reached, one has to check for logical

equivalence instead of checking (syntactic) equality.

We summarize the above discussion by providing the formal definition.

17.2.3 Definition
We consider the modelM = (D, I).
The domain is D = (pBF(MA)/⟺ , ⟹ ), equivalence classes of positive Boolean formulas

over the transition monoid ordered by implication. It is both a lattice and a monoid. The least

element is false, the join operation is disjunction and the meet is conjunction. The monoid

operation is formula composition . , and the atom ρε = id is the neutral element.

The interpretationI interprets constants a ∈ Σ∪{ε} as the associated atom ρa , conjunction and

disjunction as the respective operation, and concatenation as formula composition. All these

operations are monotonic with respect to implication.

We have to prove several claims made in this definition. Let us first show that the Boolean for-

mulas equipped with formula composition are a monoid. It is easy to see that the formula ρε is

the neutral element. The composition F . ρε is a formula with the structure of F in which each

atom ρ of F is replaced by itself, since ρ . ρε = ρ ⋅ ρε = ρ; similar for ρε . F . Associativity is

stated as the following lemma. Its proof is an uninspired and tedious nested induction on the

structure of the operands. It is noteworthy that we get associativity as a syntactic equality and

not just modulo logical equivalence. Also note that we use G to refer to a formula here. This

should not be confused with the game grammar, which we also denote by G.

17.2.4 Lemma
Formula composition is associative: For any formulas F ,G , H we have F . (G . H) = (F . G) . H.
Proof:
First note that if any of the three formulas is false, then the result of the composition will be

false in both cases. Hence, we will focus on the case that none of the formulas is false in the

following. We proceed by a threefold nested induction on the structure of the formulas.
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In the base case of the innermost induction, all three formulas are an atom, so

F = ρ,G = ρ′ , H = ρ′′. We have F . (G . H) = ρ ⋅ (ρ′ ⋅ ρ′′) and (F . G) . H = (ρ ⋅ ρ′) ⋅ ρ′′.
These are equal using the associativity of the composition inMA.

In the inductive step, we assume that F = ρ and G = ρ′ are atomic, while H = H′ ∧
∨ H′′ is

composite (for some operator ∧∨ ∈ {∧,∨}). We have

F . (G . H) = ρ . (ρ′ . H) = ρ . (ρ′ . (H′ ∧∨ H′′))
= ρ . (ρ′ . H′ ∧∨ ρ′ . H′′) = ρ . (ρ′ . H′) ∧∨ ρ . (ρ′ . H′′)
= ((ρ . ρ′) . H′) ∧∨ ((ρ . ρ′) . H′′) = ((ρ ⋅ ρ′) . H′) ∧∨ ((ρ ⋅ ρ′) . H′′) ,

where the penultimate equality uses the induction hypothesis. We also have

(F ′ . G) . H = (ρ . ρ′) . (H′ ∧∨ H′′) = (ρ ⋅ ρ′) . (H′ ∧∨ H′′) = ((ρ ⋅ ρ′) . H′) ∧∨ ((ρ ⋅ ρ′) . H′) ,
so the desired equality holds.

The second induction is on the structure of G. We still assume that F = ρ is atomic, while H is

arbitrary. In the base case, G is atomic, so it is already proven by the innermost induction. For

the inductive step, consider G = G′ ∧∨ G
′′. We have

F . (G . H) = ρ . ((G′ ∧∨ G′′) . H) = ρ . ((G′ . H) ∧∨ (G′′ . H))
= ρ . (G′ . H) ∧∨ ρ . (G′′ . H) = ((ρ . G′) . H) ∧∨ ((ρ . G′′) . H) ,

where the last equality uses the induction hypothesis. Similarly, we get

(F . G) . H = (ρ . (G′ ∧∨ G′′)) . H = ((ρ . G′) ∧∨ (ρ . G′′)) . H = ((ρ . G′)H) ∧∨ ((ρ . G′′) . H) ,
which completes this part of the proof.

In the outermost induction, we induct on the structure of F . The formulas G , H are arbitrary.

In the base case, F is atomic, so the second induction proves it. For the inductive step, let

F = F ′ ∧∨ F
′′. We have

F . (G . H) = (F ′ ∧∨ F ′′) . (G . H) = F ′ . (G . H) ∧∨ F ′′ . (G . H)
and

(F . G) . H = (F ′ . G ∧
∨ F

′′ . G) . H = ((F ′ . G) . H) ∧∨ ((F ′′ . G) . H) .
Using the induction hypothesis, we obtain the two equalities F ′ . (G . H) = (F ′ . G) . H and

F ′′ . (G . H) = (F ′′ . G) . H, which concludes the proof. ⬛
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Wenowproceed toprove that conjunction, disjunction and compositionon formulas aremono-

tonic with respect to logical implication. The fact that these operations are well-defined and

monotonic on equivalence classes will be a direct consequence of this result.

17.2.5 Proposition
Conjunction, disjunction, and composition of positive Boolean formulas are monotonic with

respect to implication.

The proof for conjunction and disjunction is absolutely straightforward. Assume that F ⟹ F ′

and H ⟹ H′. To show that F ∧ H ⟹ F ′ ∧ H′, consider a variable assignment, i.e. a subset

M ⊆ MAwith (F∧H)(M) = true. Thismeans F(M) = H(M) = true, and yields F ′(M) = H′(M) = true

by assumption. We conclude (F ′ ∧ H′)(M) = true as desired.

The proof for disjunction is similar. For composition, it is more involved. We state and prove

monotonicity in the form of the following lemma.

17.2.6 Lemma
Composition is monotonic with respect to implication: If F ⟹ F ′ and H ⟹ H′, then

F . H ⟹ F ′ . H′.

Proof:
The structure of the proof is similar to the proof of Lemma 17.2.4. It is a four-fold nested induc-

tion on the structure of the formulas. In the outer three inductions, the base case is proven by

the previous induction.

In the proof, we let {∧∨, ∨∧} = {∧,∨}, i.e. ∧∨ is one of the operators and ∨
∧ is the other. We will use

∧
∨,

∨
∧, and ⟹ as syntactic parts of the formula as well as to connect statements in the proof.

For example, we may write (H1 ⟹ H′) ∨
∧ (H2 ⟹ H′) to express that H1 ⟹ H′ and/or

H2 ⟹ H′ hold. This unusual choice prevents the proof from becoming too technical.

Before proceeding with the proof, we make three preliminary observations.

1st Observation: For boxes, ρ ⟹ ρ′ is equivalent to ρ = ρ′. Indeed, if ρ ≠ ρ′, then any

assignment that sets ρ to true but ρ′ to false is a witness for the implication not holding.

2nd Observation: The formulas A ⟹ (B ∧
∨ C) and (A ⟹ B) ∧

∨ (A ⟹ C) are logically

equivalent for any three formulas A, B, C . This is simply a consequenceof the distributivity

of conjunction and disjunction, and can be proven easily by rewriting implications as a

disjunctions and vice versa.

3rd Observation: Similarly, the formulas (A ∧
∨ B) ⟹ C and (A ⟹ C) ∨

∧ (B ⟹ C) are
logically equivalent for any three formulas A, B, C . The proof is similar to the one of the

2nd Observation, but additionally uses De Morgan’s laws.
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With these preliminaries at hand, we can show the desired statements. Let F , F ′ , H, H′ be formu-

las with F ⟹ F ′ and H ⟹ H′. We show F . H ⟹ F ′ . H′.

It is easy to see that if F or H is false, then F . Hwill be false and the implication trivially holds. If

F ′ is false, then F has to be false as well since F ⟹ F ′, and we are in the previous case, similar

for H′. In the rest of the proof, we can assume that none of the formulas is false.

We proceed with the four-fold nested induction.

(1) We induct on the structure of H. In the base case of the innermost induction, all four formu-

las F , F ′ , H, H′ are elements of the transition monoid. Using the 1st Observation, we obtain

F = F ′ and H = H′, and we conclude F . H = F ′ . H′, which implies the desired implication.

For the step, assume that H = H1
∧
∨ H2 is composite. Using the 3rd Observation, we obtain(H1 ⟹ H′) ∨∧ (H2 ⟹ H′) from H ⟹ H′. We may use the monotonicity of ∨∧ together

with the induction hypothesis to conclude

(F . H1 ⟹ F . H′) ∨∧ (F . H2 ⟹ F . H′) .
Applying the 3rd Observation in reverse, we obtain (F . H1

∧
∨ F . H2) ⟹ F . H′ . The

premise of that implication is F . H by the definition of composition, and the conclusion is

F ′ . H′ since F = F ′ by the 1st Observation.

(2) We induct on the structure of F . In the base case, all formulas but H are atomic, and Part (1)

provides the proof. For the step, consider F = F1 ∧
∨ F2. Using the 3rd Observation, we get(F1 ⟹ F ′) ∨∧ (F2 ⟹ F ′) . Therefore, the induction hypothesis and the monotonicity of ∨∧

yield

(F1 . H ⟹ F ′ . H′) ∨∧ (F2 . H ⟹ F ′ . H′) .
Applying the 3rd Observation (in reverse), we get (F1 . H) ∧∨ (F2 . H) ⟹ F ′ . H′ . By the

definition of formula composition, this is the desired statement.

(3) We proceed by induction on H′ while still assuming that F ′ is atomic. The base case

is proven by Part (2). Let H′ = H′1
∧
∨ H′2. We apply the 2nd Observation to get(H ⟹ H′1) ∧

∨ (H ⟹ H′2). We use the induction hypothesis and the monotonicity

of ∧∨ to obtain

(F . H ⟹ F ′ . H′1) ∧∨ (F . H ⟹ F ′ . H′2) .
The 2nd Observation in reverse yields F . H ⟹ (F ′ . H1

∧
∨ F

′ . H2) , where the conclusion

is the same as F ′ . H′. Here, it is crucial that we assume F ′ to be atomic.
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(4) It remains to prove the general case by induction on F ′. In the base case, F ′ is atomic and

Part (3) gives us the proof. Now assume F ′ = F ′1
∧
∨ F

′
2. Using the 2nd Observation, we get(F ⟹ F ′1) ∧∨ (F ⟹ F ′2), use the induction hypothesis and monotonicity to get

(F . H ⟹ F ′1 . H′) ∧∨ (F . H ⟹ F ′2 . H′) .
We use the 2nd Observation in reverse to get F . H ⟹ (F ′1 . H′ ∧∨ F

′
2 . H′), and finally use

the definition of composition to see that we have indeed shown F . H ⟹ F ′ . H′.
⬛

Note that the transitivity of implication would allow us to prove the statement by separately

showing F . H ⟹ F ′ . H and F . H ⟹ F . H′. We also see this in Step 2 of the proof, since

we do not need the assumption that H is atomic.

We conclude that the operations are not only monotonic on formulas, but also monotonic and

well-defined on equivalence classes.

17.2.7 Lemma
Disjunction, conjunction and composition are well-defined and monotonic operations on

pBF(MA)/⟺ .

Proof:
We formally prove the statement for formula composition. The other two cases are similar.

Let F , F ′ ∈ [F] and H, H′ ∈ [H] by two representatives each for two equivalence classes[F], [H] ∈ pBF(MA)/⟺ . Recall that the composition of equivalence classes is defined by

composing arbitrary representatives, [F] . [H] = [F . H]. This is well-defined: We have

that F ′ . H′ ⟺ F . H by the monotonicity of the composition of formulas, and hence[F . H] = [F ′ . H′].
Let [F], [F ′], [H], [H′] be equivalence classes with [F] ⟹ [F ′] and [H] ⟹ [H′]. Recall that
the implication of equivalence classes means that implication holds between arbitrary repre-

sentatives of these classes. We have that [F] . [H] is an equivalence class represented by F . H,

similar for [F ′] . [H′] and F ′ . H′. The implication F . H ⟹ F ′ . H′ holds by the monotonicity

of the composition on formulas. Hence, [F] . [H] ⟹ [F ′] . [H′] as desired. ⬛

We have shown that our model satisfies all necessary conditions to solve the interpreted sys-

tem of equations. To be precise, we have only argued that the interpretation of each function

symbols are monotonic. To be able to apply Kleene’s theorem, Theorem 16.1.3, we would need

that they are join-continuous, which is a stronger requirement. However, we have already ob-

served that our domain is finite, which in particular means that it satisfies the ascending chain

condition. As explained in Remark 16.1.4 this means that join-continuity and monotonicity are

equivalent. We indeed get that all requirements for applying Kleene iteration are satisfied.
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We will discuss in the next section how the solution to the game can be read off from the solu-

tion to the system of equations. To complete this section, we continue our example.

17.2.8 Example
Consider (G , A) from Example 17.2.1. Note that we have depicted all boxes with non-empty

equivalence class for automaton A in Figure 4.5.a.

Interpreting the system of equations associated to (G , A) yields
X = ρa . Y ∨ ρε ,

Y = ρb . X .

We use Kleene iteration to compute the first few approximants, obtaining the following values.

soli(−) X Y

i = 0 false false

i = 1 ρε false

i = 2 ρε ρb
i = 3 ρab ∨ ρε ρb
i = 4 ρab ∨ ρε ρb . (ρab ∨ ρε)

We resolve the composition to obtain

sol4(Y) = ρb . (ρab ∨ ρε) = (ρb ⋅ ρab) ∨ (ρb ⋅ ρε) = ρbab ∨ ρb .
We observe that ρbab = ρb for automaton A; hence, sol4(Y) = ρb ∨ ρb . This formula is syn-

tactically different from ρb , but logically equivalent to it. Since we work over the domain of

equivalence classes, we obtain sol3(Y) = sol4(Y). The third iteration corresponds to the least

fixed point and sol = sol3 = sol4 is the least solution to the system of equations.
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17.3 Computing the winner

Wediscusshow tocompute thewinnerof a context-free inclusiongame. In theprevious section,

we have set up a system of equations that represents a game grammar. We then have provided

amodel, consisting of the domain of equivalence classes of positive Boolean formulas over the

transition monoid. We have argued that this model satisfies all requirements that are needed

to be able to apply Kleene’s theorem and the theory from Section 16.1.

Kleene’s theorem proves that the least solution to the system of equations exists, and the fact

that our domain is finite means that we can explicitly compute it. The solution is the least fixed

point of the function rhs obtained by interpreting the right-hand sides of the system of equa-

tions. Recall that we have defined soli = rhsi(⊥) to be the i-fold application of this function

to the least element. In our case, the least element is the vector that assigns to each variable

the equivalence class of unsatisfiable formulas, i.e. the equivalence class of false. Because the

domain satisfies the ACC, the least fixed point sol occurs as soli0 = sol for some i0 ∈ N so that

soli0 = soli0+1. The goal of this chapter is proving that the winner of a context-free inclusion

game can be read off from sol.

We consider Mrej ⊆ MA, the set of rejecting boxes

Mrej = {ρw ∣w /∈ L(A)} .
Recall that if one word in the languageL(ρ) of some box is not contained inL(A), then no such

word is. Furthermore, whether a box is rejecting or not can be determined by checking for the

existence of a transition from the initial to a final state.

We call a formula F ∈ pBF(MA) rejecting if it evaluates to true underMrej seen as variable assign-

ment, i.e. the assignment that sets exactly the atoms to true that are contained in Mrej. Since

being satisfied under a certain assignment is preserved by logical equivalence, this notion can

be extended to equivalence classes of formulas by picking an arbitrary representative.

We claim that for each sentential form β, the existential player has a winning strategy for the

context-free inclusion game from β if and only sol(β) is rejecting. (Recall that we have extended

the definition of sol from variables to arbitrary terms.) In particular, the winner of the context-

free game when starting from S can be read off from sol(S).
More formally, we define a partition of the set of sentential forms, the positions of the game,

W = {β ∈ ϑ ∣ sol(β) is rejecting }
and

W = ϑ \W = {β ∈ ϑ ∣ sol(β) is not rejecting } .
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17 Context-free games

We prove that for each player ∈ { , },W is indeed her winning region.

17.3.1 Theorem
The setW is the winning region of the existential,W is the winning region of the existential

player.

17.3.2 Example
We continue Example 17.2.8. The box ρb is rejecting while ρab and ρε are not. Hence, the for-

mula sol(X) = ρab ∨ ρε is not rejecting and the universal player wins the game (G , A) starting
from X . The formula sol(Y) = ρb is rejecting and the existential player wins from Y .

To prove the theorem, we prove a more general statement: For each sentential form β, the

behavior of sol(β) under evaluation describes exactly the behavior of the context-free game

from β. If M ⊆ MA is a set of boxes such that sol(β)(M) = false, then the universal player can

prevent the derivation of any word w with ρw ∈ M. If sol(β)(M) = true, then the existential

player can enforce the derivation of a word w with ρw ∈ M. Instantiating these results for the

set of rejecting boxes Mrej then yields the desired result.

We start by considering the case of the universal player.

17.3.3 Proposition
Let M ⊆ MA be a set of boxes and let β ∈ ϑ be a sentential form. If sol(β)(M) = false, then the

universal player has a strategy such that every maximal play conforming to it is either infinite

or it ends in a terminal wordw with ρw /∈ M.

Proof:
We show that the universal player has a strategy that maintains sol(α)(M) = false as an in-

variant for all positions α ∈ ϑ that occur in the play. This invariant guarantees that if a

play conforming to it ends after finitely many steps in a terminal word w, we must have

sol(w)(M) = ρw(M) = false. This means ρw /∈ M as desired.

Let us construct a strategy that maintains the invariant. For the initial position, the invariant

holds by the assumption. If a sentential form does not contain a nonterminal, it is a deadlock in

the game. Hence, we consider α = w .X .γ, where X is the leftmost nonterminal.

Firstly, we look at the case that the owner of X (and hence the owner of α) is the universal

player. We have sol(α) = sol(w .X .γ) = ρw . sol(X) . sol(γ) using the associativity of formula

composition. Let η(1) , . . . , η(k) be the right-hand sides for nonterminal X , i.e. X → η(1) ∣ . . . ∣ η(k)
are all productions for X . Then we have sol(X) = sol(η(1))∧ . . .∧ sol(η(k)) by the definition of the
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system of equations and the fact that the least solution sol satisfies all equations. Substituting

sol(X) and applying the definition of formula composition yields

sol(α) = ρw . sol(η(1)) . sol(γ) ∧ . . . ∧ ρw . sol(η(k)) . sol(γ) .
Since we had sol(α)(M) = false and sol(α) can be written as the above conjunction, there is at

least one j such that (ρw . sol(η( j)) . sol(γ))(M) = false .Wedefine the strategy so that it picks the

move w .X .γ → w .η( j) .γ induced by the production X → η( j). The formula for the new position

is sol(w) . sol(η( j)) . sol(γ), and the construction guarantees that the invariant is maintained.

If the leftmost nonterminal is owned by the existential player, we argue similarly. We have

sol(α) = ρw . sol(η(1)) . sol(γ) ∨ . . . ∨ ρw . sol(η(k)) . sol(γ) .
This disjunction only evaluates to false if ρw . sol(η( j)) . sol(γ) evaluates to false for all j. Hence,

the invariant is maintained, no matter which move is picked by the existential player. ⬛

Theproof in the case of the existential player ismore involved. This is because shehas to enforce

reaching a word that violates inclusion within finite time.

17.3.4 Proposition
Let M ⊆ MA be a set of boxes and let β ∈ ϑ be a sentential form. If sol(β)(M) = true, then the

existential player has a strategy such that everymaximal play conforming to it is finite and ends

in a terminal wordw with ρw ∈ M.

Proof:
We prove that the desired property already holds if soli(β)(M) = true for some i ∈ N. Since we

have sol = soli0 for some i0 ∈ N and that soli(β) ⟹ sol(β) for all i ∈ N, this is a stronger

statement. Its advantage is that we can now proceed by induction on i.

In the base case, we consider i = 0. Since false is the least element in pBF(MA) with respect to

implication, we have sol0(X) = false for all nonterminals. Hence, sol0(β)(M) = true is only possi-

ble if β does not contain any nonterminal. Thismeans β = w is a terminalword and sol0(β) = ρw .
Thus, positionw is a deadlock and sol0(β)(M) = true implies ρw ∈ M.

For the inductive step, assume that the statement holds for i and consider i + 1. Let β be some

sentential form. The proof uses an inner induction on the number of nonterminals in β. In the

base case, this number is 0 and β is a terminal word. We have already considered this case in

the base case of the outer induction.

In the inductive step of the inner induction, we consider soli+1(β) for some sen-

tential form β = w .X .γ, where X is the leftmost nonterminal in β. We have
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soli+1(β) = soli+1(w .X .γ) = soli+1(w) . soli+1(X) . soli+1(γ) = ρw . soli+1(X) . soli+1(γ)
using the associativity of formula composition.

Let us assume that X is owned by the existential player. We may write

soli+1(X) = soli(η(1)) ∨ . . . ∨ soli(η(k)) where X → η(1) ∣ . . . ∣ η(k) are all the rules for

nonterminal X . Using the definition of formula composition, we obtain

soli+1(β) = ρw . soli(η(1)) . soli+1(γ) ∨ . . . ∨ ρw . soli(η(k)) . soli+1(γ) .
Using soli+1(β)(M) = true, we conclude that there is at least one j ∈ [1, k] such that(ρw . soli(η( j)) . soli+1(γ))(M) = true.

We would like to apply the induction hypothesis at this point. However, the formula

ρw . soli(η( j)) . soli+1(γ) is not of the required shape as we use different approximants for differ-

ent parts of the formula. To solve this problem, we apply induction only to soli(η( j)). To take the

rest of the sentential formw .η( j) .γ into account, we consider a different variable assignment.

We define the assignment M′ by ρ(M′) = (ρw . ρ . soli+1(γ))(M). Intuitively, it evaluates the

given box under M in the context of w on the left-hand side and γ on the right-hand side. By

the definition of formula composition, we have that F(M′) = (ρw . F . soli+1(γ))(M) for any

formula F . Indeed, formula F is the leftmost operand of ρw . F . soli+1(γ) that may contain

conjunctions or disjunctions, which will be resolved first when evaluating the composition. In

particular, we have soli(η( j))(M′) = (ρw . soli(η) . soli+1(γ))(M) = true. Wemay use the induction

hypothesis of the outer induction to obtain that the existential player has a strategy s′ from η( j)
to enforce the derivation of a terminal word v with ρv(M′) = true.

We define the strategy s from β to first pick the move β → w .η( j) .γ that is induced by

the production X → η( j). Then, it imitates s′ (by ignoring the prefix w and the suf-

fix γ) until η( j) has been derived to a terminal word. After this process has been com-

pleted, we end up with w .v .γ such that ρv(M′) = true. By the definition of M′, we have

ρv(M′) = (ρw . ρv . sol
i+1(γ))(M) = (soli+1(w .v .γ))(M) = true.

The sentential form w .v .γ contains strictly fewer terminals than β, since we have replaced X

by a terminal word. We may now use the induction hypothesis of the inner induction to ob-

tain that there is a strategy s′′ from w .v .γ that is guaranteed to derive a terminal word w ′ with

ρw ′(M) = true, i.e. ρw ′ ∈ M, within finitely many steps.

We complete the definition of s by letting s behave as s′′ does fromw .v .γ on.

The case that X is owned by the universal player is similar. The formula soli+1(X) is a con-

junction with one conjunct ρw . soli(η( j)) . soli+1(γ) for each rule X → η( j). We have that

soli+1(X)(M) = true implies that each conjunct evaluates to true under M. For any conjunct j,

we proceed as above: After defining a new assignment M′
j with ρ(M′

j) = (ρw . ρ . soli+1(γ)), we

can apply the induction hypothesis of the outer induction. We get a strategy s′j that enforces
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the derivation of a terminal word v j with (sol(i+1)(w .v j .γ))(M) = true. Applying the inner induc-

tion tow .v j .γ gives us a strategy s′′j that derives a wordw ′ with ρw ′ ∈ M. We define the strategy

s for the existential player as follows: In position w .X .γ, the strategy reads the production rule

X → η( j) that is picked by the universal player. Afterwards, it imitates s′j until the sentential form

w .v j .γ has been derived. Finally, it behaves as s′′j until the end of the play. The result is again that

we guarantee the derivation of a terminal wordw ′ with ρw ′ ∈ M within finitely many steps. ⬛

17.3.5 Example
We continue Example 17.3.2 to complete our running example. The formula associated to

sol(Y) = ρb is rejecting, so the existential player should win the game starting from Y .

In the first move, the universal player has no choice but to derive b.X , and indeed

sol(b.X) = sol(Y) = ρb is still rejecting. It is now the existential players choice to replace X either

using the production X → ε or X → a.Y . The productions lead to the formulas sol(b) = ρb and

sol(b.a.Y) = ρba . sol(Y) = ρbab = ρb , respectively. Eithermovemaintains the invariant of being

rejecting. However, this is insufficient to ensure that the existential player wins. If she picks the

production X → a.Y whenever she has to replace X , the resulting play is infinite. Even though it

consists entirely of positions whose associated formula is rejecting, the existential player loses.

To ensure that she wins, she has to pick the production X → ε after finitely many steps, e.g. the

first time she replaces X .

We show that we read off this property using the approximants. Recall that the least solution

corresponds to the 3rd approximant. The game starts from Y and sol3(Y) = ρb is rejecting. After

onemove, the game is in bX and sol2(bX) = ρb . sol2(X) = ρb ⋅ρε = ρb is still rejecting. Applying

X → ε yields the position b with sol1(b) = ρb being rejecting. Using X → aY however yields

baY with sol1(b.a.Y) = ρba . sol1(Y) = ρba . false = false. The formula false is unsatisfiable and

evaluates to false under any assignment. In particular, it is not rejecting. Hence, the production

X → ε should be used to ensure that the play terminates and that the existential player wins.

With both propositions at hand, it is not difficult to obtain the proof of the theorem.

Proof of Theorem 17.3.1:
We first show thatW = {β ∈ ϑ ∣ sol(β) is not rejecting } is a subset of the winning region of the

universal player. This means that the universal player wins from all positions whose associated

formula is not rejecting.

Let β ∈ ϑ be so that sol(β)(Mrej) = false. By Proposition 17.3.3 the universal player has a strategy

from β that enforces plays that are either infinite or derive a word w with ρw /∈ Mrej. By the

definition of Mrej, the latter means w ∈ L(A). Hence, such a strategy is a winning strategy for

the universal player in the context-free regular inclusion game.
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It remains to show that the existential player wins from all positions in

W = {β ∈ θ ∣ sol(β) is rejecting}. Because W and W form a partition of the set of

positions ϑ, this completes the proof. If sol(β) is rejecting, i.e. sol(β)(Mrej) = true, then Proposi-

tion 17.3.4 guarantees the existence of a strategy from β that derives a word w with ρw ∈ Mrej

within finitely many steps. By the definition of Mrej, ρw ∈ Mrej implies w /∈ L(A). Hence, such a

strategy is a winning strategy for the existential player. ⬛

17.3.6 Remark
There is a different approach to proving the soundness of our procedure. For some fixed initial

position, one can see the tree of all plays from that position as an infinite formula over MA.

To this end, we see inner nodes of the tree as disjunctions or conjunctions, depending on the

owner of the corresponding position. We see a leaf as the atom ρw , wherew is the uniqueword

that has been derived by the play reaching that leaf. The result is a formula that potentially has

infinite depth.

We equip it with an evaluation semantics that gets rid of this problem: We evaluate boxes de-

pending on a variable assignment, i.e. a subset M ⊆ MA. We then propagate the values for the

boxes upwards using the usual rules for conjunction and disjunction. This evaluation semantics

essentially ignores all infinite paths, i.e. it evaluates them to false.

The result is that to each infinite formula F , we associate a function from P(MA) → {true, false}
that evaluates the formula under the given variable assignment. However, it is well known that

all functions of this type can be represented by finite formulas. Hence, there is a finite formula

that is logically equivalent to the infinite one.

To prove the soundness of our algorithm, one first shows that the evaluation of the infinite

formula under the variable assignment Mrej, the rejecting boxes, indeed yields the winner of

the game. Secondly, one shows that the formula associated to the initial position by the least

solution to the system of equations is equivalent to the infinite formula. We have made this

approach formal in Section 4 of the full version of our paper [HMM16a].

The approach that we have presented above is not only easier. It also allows us to extract the

winning strategies for each of the players, as we will see in the next section.
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17.4 Computing the strategies

We show that the information provided by the least solution to the system of equations can

also be used to designwinning strategies for each of the players. In this section, wewill assume

that the size of the game grammar G and the size of the automaton A are constants. (We will

analyze the computational complexity of solving context-free games, measured in the size of

the given grammar and the given automaton in the next section.) This assumption allows us to

assume that we can precompute sol(a) for all a ∈ N ∪ Σ ∪ {ε} in constant time. Since G and A

are of constant size, so is sol(X) for each X ∈ N. Furthermore, this assumptions means that we

can compute the composition of two formulas in constant time.

Representing the winning region

We start by considering a representation of the two winning regionsW andW . Serre [Ser03]

has shown that a context-free game with an (ω-)regular winning condition always has an

(ω-)regular winning region. Correspondingly, we are able to design for each player ∈ { , }
a finite automaton over N ∪ Σ that accepts exactly the sentential forms β fromW .

Formally, wedefine theDFA B as follows. Its set of states is pBF(MA)/⟺ , the sets of equivalence

classes of positive Boolean formulas over MA. The initial state is the equivalence class of ρε,

which is the neutral element of pBF(MA)/⟺ seen as monoid. If the automaton is in state F ,

where F is the representative of some equivalence class, and reads the letter a ∈ (N∪ Σ), it goes
to state F . sol(a). Note that sol(a) is simply ρa for a ∈ Σ; otherwise, we take sol(a) for a ∈ N

from the precomputed solution to the system of equations.

To obtain the automaton B representing the winning region of the existential player, we

make all states F final where F is rejecting, which means that F(Mrej) = true. (Recall that

Mrej = {ρw ∣ w /∈ L(A)} is the set of rejecting boxes.) The automaton B representing the win-

ning region of the universal player is the complement of B , i.e. B with all states representing

non-rejecting formulas being final.

Automaton B ensures that after reading sentential form β ∈ ϑ, it is in state sol(β). Hence, Theo-

rem 17.3.1 proves thatL(B ) = W for ∈ { , } as desired. Also note that given a sentential

form β, automaton B allows us to decide the winner of the game from β in time linear in ∣β∣
(under the assumption that the size of the grammar and the automaton are constants).

Winning strategies for the universal player

We continue by discussing how winning strategies for both of the players can be obtained. As-

sume that the play starts from a position whose associated formula is not rejecting. By Proposi-

tion 17.3.3, thismeans that this position is in thewinning regionof the universal player. Actually,

the proof of the proposition also provides a winning strategy: It is a safety strategy that simply

maintains the invariant of the formula associated to the current position not being rejecting.
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One can implement this strategy in the followingway. Assume that the current position isw .X .β

and the universal player should select a production rule to replace X . For each production rule

X → η, we compute the formula sol(w .η.β) that results from applying the rule. We select the

first rule so that sol(w .η.β) is not rejecting. The proof of the aforementioned proposition shows

that if the formula forw .X .β is not rejecting, then one can find such a rule. It also shows that the

existential player has no choice but to preserve the invariant of the formula not being rejecting.

Hence, this strategy is indeed a winning strategy.

However, this strategyneeds linear time for eachmove: Assume thatweconsider aplay inwhich

already nmoves have been made. This means that the length of the sentential form that is the

current position is inO(n). Indeed, in each step, the sentential formgrows by atmost the length

of the longest right-hand side of any production rule, which is less than the size of G which we

assume is a constant. Our strategy requires computing and evaluating a constant number of

formulas (at most one for each rule of the grammar), each formula associated to a sentential

form of size O(n). The strategy does not reuse the information that has been computed in

step n − 1 to make a decision in step n. It cannot be implemented by a strategy automaton as

defined in Chapter 15, because such a strategy is only allowed to use constant time – one step

of the strategy automaton – to update its state after each move.

In the following, we design a strategy that is more efficient. It is a pushdown strategy, a strategy

that is defined by a deterministic pushdown automaton. The input and output alphabet of

this pushdown automaton is the set P of production rules of the grammar. Assume that the

current sentential form is w .X .β, where w is the terminal prefix, X is the leftmost terminal, and

β = β1 . . . βm is the rest of the sentential form. To simplify the notation, we define β0 = X . The

state of the automatonwill be the box ρw ∈ MA associated to the terminal prefixw. On its stack,

it stores for each symbol βi with i ∈ [0,m] that is a nonterminal a tuple (βi , sol(βi+1 . . . βm))
consisting of the symbol βi ∈ Σ ∪ N and the formula sol(βi . . . βm) associated to the rest of

the sentential form (without that symbol). The stack is organized so that the information for

symbols that are further to the left of the sentential form occur on the top of the stack, with

the tuple for X being the top-of-stack. Assume that the automaton reads a move of the game,

i.e. the application of a production rule X → η to the leftmost nonterminal by any of the players.

Let η = v .η′, where v is the terminal prefix and η′ = η′1 . . . η
′
l is the rest of the sentential form.

The automaton pops the top-of-stack symbol, say (X , F), and replaces it by

(η′1 , sol(η′2 . . . η′l) . F), (η′2 , sol(η′3 . . . η′l) . F), . . . , (η′l−1 , sol(η′l) . F), (η′l, F) .
If some of the η′i are terminals, we omit the corresponding stack symbols (but we still include

η′i in the compositions that form the second component of the other stack symbols). Note that

because we assume the size of the grammar to be constant, this is a constant number of stack

symbols. The automaton also updates its internal state to ρw ⋅ ρv , i.e. the box associated to the

new terminal prefix. This transition maintains the shape of the stack as described above.
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To output a move for the universal player, the automaton peeks at the top-of-stack (X , F), the
information for the symbol X that should be replaced. It then computes the formula sol(w .η.β)
for all possible successors, the number of which is constant. Each such formula is of the shape

ρw . sol(η) . F , where ρw and F can be read off from the internal state and stack, respectively.

It then prints out any move X → η so that the resulting formula is not rejecting. Note that one

couldmodify the automaton so that all information that is needed to determine the next move

can be read off from the internal state without peeking at the top-of-stack.

Assuming that the play starts from S, the initial symbol of the grammar, we initialize the push-

down automaton with state ρε, the box associated to the empty terminal prefix, and stack con-

tent (S , ρε). Throughout the play, we update the automaton with the moves in the game as

detailed above, and whenever the universal player has to make a move, we query the automa-

ton. For each move in the game, the automaton only needs a single transition to update its

internal state. Even after the game has already been played for n steps, the automaton can give

us the next move in constant time. In principle, the automaton implements the same safety

strategy as before, but it stores the computed information in a clever way that allows it to use

only constant time instead of linear time.

One can look at the structure of the automaton in more detail and note that it is a synchronized

pushdown automaton. This concept has been introduced by Walukiewicz [Wal01] in his study

of context-free games. Assume that we convert the context-free grammar that describes the

game arena into a pushdown automaton Parena. For each finite play of a context-free game,

the configurations reached in the strategy automata and in the automaton Parena for the arena

have the same height. Namely, the stack of both automata will contain one stack symbol for

each nonterminal in the current sentential form. This property allows us to take a product of

the strategy automaton Ps and the automaton for the arena, resulting in a single pushdown

automaton that on its stack stores tuples of stack symbols. (Note that in general, the product of

two pushdown automata results in a multi-pushdown automaton with two stacks that cannot

be merged, since the heights of the stacks may not coincide.)

We then use the output function of the strategy automaton to resolve all choices of the

universal player in the game. The result is a nondeterministic pushdown automaton, say

PDA P = Parena × Ps , the nondeterminism of which represents the choices of the existential

player. One can verify that the strategy for the universal player thatwas definedby Ps is indeed

a winning strategy by checking that L(P ) ⊆ L(A): No finite play of the game that conforms to

the strategy defined by Ps produces a counterexample to inclusion.

Winning strategies for the existential player

Let us now consider the case of a sentential form in the winning region of the existential player,

i.e. the associated formula is rejecting. The winning strategy for the existential player is nec-

essarily more involved than the one for the universal player. Instead of simply maintaining an

invariant, it has to enforce reaching a counterexample to inclusion after finitely many steps.
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There is a brute-force approach to computing such a strategy. Consider the infinite tree of plays

from thegiven initial position, and consider the subtree that only contains theplays conforming

to a winning strategy for the existential player. The strategy has to enforce that all its plays

are finite, and the out-degree of the tree is limited by the number of production rules of the

grammar. Kőnig’s lemma [Kőn27] proves that a tree with finite height and finite out-degree is

necessarily finite. Hence, the subtree of plays associated to a winning strategy is finite.

This result allows us to simply explore the tree of all plays in a breadth-first manner and search

for a winning strategy of the existential player. Such a strategy corresponds to a finite subtree

that satisfies the following conditions: (1) All the leaves are rejecting in that they are labeled by

rejecting boxes. (2) Each inner node owned by the existential player is rejecting in that it has

a successor in the subtree that is rejecting as well. (3) Each inner node owned by the universal

player is rejecting in that all its successors are present in the subtree and are rejecting. If we

start from an initial position whose formula is rejecting, we know that such a finite subtree has

to exist, and it can be found by enumeration.

The size of this subtree is immense but constant. We can use i0, the number of steps after which

the fixed-point iteration terminates with the least solution, to estimate its height. One has to

take into account that the fixed-point iteration evaluates the equation for every nonterminal in

every step. Hence, a bound i0 on the steps of the iteration leads to a bound ∣G∣i0 on the height

of the tree, where ∣G∣ is a coarse estimation for the size of any right-hand side in the system of

equations. Assuming that ∣G∣ and ∣A∣ are constant, this number is constant, which allows us to

explicitly compute and store a positional winning strategy for the existential player. However,

this approach is purely theoretical: Wewill later discuss that i0 maybe up to doubly exponential

in ∣A∣, which means that the height of the tree is up to triply exponential in the input size. The

strategy is finite, but even assuming that ∣A∣ is small (and hence so is i0), its representationmay

be too large to store.

To obtain a strategy that ismore practical, we use a different approach that is similar to the push-

down safety strategy for the case of the universal player. To understand the construction of the

strategy, it is helpful to consider an alternative proof of Proposition 17.3.4 that uses a single in-

duction instead of a nested one. We have provided this proof in [HMM16a], the full version of

our paper. Here, we briefly recall the important parts and refer to the publication for the techni-

cal details. The proof of Proposition 17.3.4 that we have given in this thesis uses the same line

of argumentation, but due to the nested induction, the technical details are somewhat hidden.

The alternative proof uses a single induction over the set N∗ of sequences of natural numbers.

The order is defined so that a sequence becomes smaller by replacing a positive number i in

it by a sequence of numbers i1 . . . im , all of them strictly smaller than i. One can show that

this order is well-founded, meaning that all its strictly descending chains are finite, which is

needed for a valid proof. Intuitively, we consider sequences of numbers that associate to each

symbol β j in a sentential form β a number i j. When computing the formula associated to β,

we should not use sol(β j), the least fixed point solution associated to β j, but rather soli j (β j),
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the i j
th approximant. When we replace a nonterminal X by the right-hand side of a production

rule X → η, this corresponds to one evaluation of the equation for X . Accordingly, we replace

the number i associated to X by the sequence (i − 1) . . . (i − 1) of length ∣η∣.
We use this proof concept to define a pushdown strategy. As in the case of the strategy for

the universal player, the automaton stores the box associated to its terminal prefix in its control

state and information on the rest of the sentential form on its stack. For each nonterminal in

the current sentential form, we store a triple (X , i , F) consisting of the symbol itself, a number

i ∈ N that tells us which fixed-point approximant to consider, and a formula that describes the

rest of the sentential form in a manner that we will detail below.

Assuming that the play starts from S, the initial control state is ρε and the initial stack content

is (S , i0 , ρε). Here, i0 is the number of steps after which the fixed-point iteration terminates,

i.e. the i0
th approximant equals the least solution. Assume that the procedure has arrived in a

sentential formw .X .β. This in particular means that the current control state is ρw and that the

stack contains for eachnonterminal β j in X .β a symbol (β j , i j , F j). When the rule X → η is applied,

the stack is updatedas follows. Wefirst remove the top-of-stack (X , iX , FX )and remember iX ∈ N

and the formula FX . Assume that the rightmost symbol ηl of η is a nonterminal. We then push(ηl, iX −1, FX ) onto the stack. If the penultimate symbol ηl−1 is a nonterminal too, we then push(ηl−1 , iX − 1, soliX−1(ηl) . F). Assume that ηl−2 is a terminal while ηl−3 is a nonterminal again.

We skip the stack symbol for ηl−2 and store (ηl−3 , iX − 1, ρηl−2 . soliX−1(ηl−1) . soliX−1(ηl) . F).
Weproceeduntil all of η but its terminal prefix v has beenprocessed. We then store the terminal

prefix by updating the control state to ρw ⋅ ρv .

The stack of the automaton stores for each symbol which fixed-point approximant to consider,

and the formula that one gets for the rest of the sentential form by using the stored fixed-point

approximants for eachof the symbols. Replacing a symbol X by a right-hand side η corresponds

to evaluating the equation for X once, whichmeans thatwe go from the iX
th fixed point approx-

imant for X to the (iX − 1)th fixed point approximant for the symbols in η.

To output a move, the automaton proceeds as follows. It peeks at (X , iX , FX ), the top-of-stack

that provides information for the symbol X that should be replaced. It then finds a rule X → η

so that ρw . soliX−1(η) . FX is rejecting. To do so, it simply iterates over all production rules and

prints the first one that has the desired property. One can prove that such a rule has to exist as

in the proof of Proposition 17.3.4.

The automaton maintains the invariant that if the control state is ρw and the top-of-stack is(X , iX , FX ), then ρw . soliX (X) . FX is rejecting. Note that this invariant is preserved not only by

themoves selected by the automaton, but also by anymove picked by the universal player. The

index iY associated to any nonterminal Y in the sentential form is always a positive number. As

soon as the index associated to the top-of-stack X is 1, the next replacement step necessarily

replaces X by a terminal word. The fact that the aforementioned order on N
∗ is well-founded

means that after finitelymany steps, all nonterminals havebeen replacedand theplayendswith
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a terminal word. The invariant guarantees that this terminal word has a rejecting box, meaning

that it is not contained in L(A).
If the initial position S satisfies the invariant, i.e. sol(S) = soli0 (S) is rejecting, then the automaton

indeed implements a winning strategy for the existential player. It has the same properties

as the one for the universal player: Each update of the configuration of the automaton is a

single move. By querying the automaton, the strategy can output the next move in constant

time. Furthermore, the automaton is a synchronizedpushdownautomaton, havingone symbol

on its stack for each nonterminal of the sentential form. To verify that it represents a winning

strategy, one can compute P = Ps × Parena, the product of the strategy automaton Ps and

the automaton Parena representing the context-free game grammar. The result is a pushdown

automaton the nondeterminism of which represents the choices of the universal player. If Ps

represents a winning strategy, we have that all runs of P are finite and that L(P ) ⊆ L(A).
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17.5 Complexity

We discuss the computational complexity of solving context-free regular inclusion games. For-

mally, the associated decision problem is defined as follows.

Solving context-free regular inclusion games

Given: Game grammar G = (N ∪⋅ N , P, S), NFA A = A = (Q , δ, qinit , Qfinal).
Question: Does the existential player have a winning strategy for (G , A)

from the position S?

Our main result is that this problem is complete for 2EXP, the class of problems solvable within

doubly exponential time, with respect to polynomial-time reductions.

17.5.1 Theorem
Solving context-free regular inclusion games is 2EXP-complete.

As usual, the proof of a result of this type decomposes into showingmembership and hardness

separately. To prove the upper bound, we will show that our algorithm based on effective de-

notational semantics solves context-free games in 2EXP. Together with the lower bound, we

obtain that our algorithm has the optimal time complexity.

Membership / Upper bound

We prove that context-free regular inclusion games can be solved in doubly exponential time.

To this end, we analyze the running time of our algorithm. We start by recapping the algorithm.

Given an instance (G , A), it works as follows.

1. Construct the system of equations representing G as described in Section 17.2.

2. Solve the system of equations interpreted over pBF(MA).
• Initialize sol0(X) = false for all nonterminals X .

• Starting with i = 0, compute soli+1 by evaluating the interpreted right-hand sides

of the equations at soli :

soli+1 = rhs(soli) .
While soli+1 ≠ soli , i.e. soli+1(X) /⟹ soli(X) for at least one nonterminal X , incre-

ment i and repeat this step.

• Let i0 be the first index so that soli0 = soli0+1, i.e. soli0 (X) ⟺ soli0+1(X) for all

nonterminals.
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3. The existential player has a winning strategy from S if and only if soli0 (S) is rejecting, i.e. if(soli0 (S))(Mrej) = true.

Firstly, note that we use Kleene iteration here instead of the more efficient chaotic iteration

using a worklist as described in Section 16.1. This will simplify the analysis of the algorithm.

Secondly, our domain technically is the set of equivalence classes of formulas. However, we

will assume that we represent each equivalence class by some formula in that class. This

means that checking equality of equivalence classes amounts to checking logical equivalence

of representatives. More precisely, the approximants necessarily form an ascending chain, so

soli(X) ⟹ soli+1(X) always holds. The iteration has arrived at the fixed point corresponding

to the least solution as soon as soli+1(X) ⟹ soli(X) holds for all nonterminals.

Finally, we have to deal with the problem that the formulas that occur in the approximants

may grow in each step. To solve this problem, we assume that formulas are given in conjunc-

tive normal form (CNF) without redundant clauses. This means that each formula is of shape

F = ⋀K ⋁ρ∈K ρ so that no two clauses K , K ′ are equal. Wemay also see F as a set of clauses, each

of which is a set of boxes.

In order to be able to execute the algorithm on formulas in CNF, we need to discuss how the

operations can be implemented. In addition to the three operations conjunction, disjunction,

and formula composition, we will also need a criterion for checking implication.

17.5.2 Lemma
Let F = ⋀K ⋁ρ∈K ρ and H = ⋀K ′ ⋁ρ′∈K ′ ρ

′ be positive Boolean formulas overMA in CNF.

a) F ∧ H = F ∪ H, i.e. F ∧ H = (⋀K ⋁ρ∈K ρ) ∧ (⋀K ′ ⋁ρ′∈K ′ ρ
′).

b) F ∨ H = {K ∪ K ′ ∣ K ∈ F , K ′ ∈ H}, i.e. F ∨ H = ⋀K ,K ′((⋁ρ∈K ρ) ∨ (⋁ρ′∈K ′ ρ
′)).

c) F . H = ⋃K∈F ⋃ζ∶K→H {⋃ρ∈K ρ . ζ(ρ)}, i.e. F . H = ⋀K∈F ⋀ζ∶K→H⋁ρ∈K ρ . ζ(ρ).
d) F ⟹ H holds iff every clause of H contains a clause of F , i.e. iff there is a function ι∶H → F

so that ι(K ′) ⊆ K ′ for all K ′ ∈ H.
Proof:
Part a) is obvious. Part b) is obtained by applying distributivity to bring the disjunction of two

CNFs back into CNF.

For Part c), observe that the composition of F and H is

⋀
K

⋁
ρ∈K

⋀
K ′

⋁
ρ′∈K ′

ρ ⋅ ρ′ .

To obtain a CNF, we need to swap the order of the disjunction ⋁ρ∈K and the conjunction ⋀K ′

using distributivity. The resulting formula will have one conjunct for each combination of a box
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ρ ∈ K and a clause K ′ of H. The conjunction ⋀ζ∶K→G over all functions that assign a clause ζ(ρ)
of H to every box ρ in K produces exactly these conjuncts. Additionally, the composition ρ . K ′

of a box ρ and a clause K ′ is the disjunction⋀ρ′∈K ′ ρ ⋅ ρ
′.

For Part d), assume a function ι∶H → F as specified exists and assume that F(M) = true for

some variable assignment M. We need to argue that every clause K ′ of H is satisfied under M.

Each K ′ contains a clause ι(K ′) of F . Since F is satisfied under M, so are all its clauses. A clause is

a disjunction, so if ι(K ′) is satisfied, then so is K ′.

For theother direction, assume that there is a clause K ′ ofH that does not contain any clause of F .

Consider the variable assignment that sets to true all atoms not contained in K ′. This variable

assignment does not satisfy H since it does not satisfy K ′. Since K ′ does not contain any clause

of F , every clause of F contains at least one atom that is set to true. Hence, F is satisfied under

this assignment and we obtain F /⟹ H. ⬛

With these preliminaries at hand, we can now analyze the running time of the algorithm. We

obtain that the time is polynomial in the size of the grammar, but doubly exponential in the size

of the automaton.

17.5.3 Proposition
The algorithm solves a given context-free regular inclusion game in time

O(∣G∣c1 ) ⋅ 22O(∣Q∣c2 )

for suitable constants c1 , c2 ∈ N.

Proof:
The two crucial factors for the running time of the algorithm are the size of the formu-

las that need to be manipulated, and the number of steps after which the fixed point

iteration terminates. We first observe that constructing the system of equations is polynomial

in the size of the grammar.

To analyze the complexity of the fixed-point iteration, we start by analyzing the height of the

domain. We argue that its height is at most the height of (P(P(MA)), ⊆), a two-fold powerset

over MA. To see this, we identify an equivalence class of formulas [F] with the set of variable

assignments {M ⊆ MA ∣ F(M) = true} ∈ P(P(MA)) under which F evaluates to true. We observe

that if F ⟹ H, then any variable assignments satisfying F will also satisfy H and we get that{M ⊆ MA ∣ F(M) = true} is a subset of {M ⊆ MA ∣ H(M) = true}. If the implication is strict, mean-

ing that the two formulas arenot equivalent, thenalso the subset relation among the associated

sets of variable assignments will be strict. Altogether, we obtain that a strict ascending chain

of equivalence classes of formulas with respect to implication induces a strict ascending chain

in (P(P(MA)), ⊆). Hence, the height of the latter partial order bounds the height of our domain.
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For any set D, the height ofP(D) is ∣D∣, as we have discussed in Section 16.1. Hence, the height

of pBF(MA) is bounded by ∣P(MA)∣ = 22
∣Q∣2

. The fixed-point iteration is actually conducted over

the product domain N → pBF(MA) that associates one formula to each nonterminal. It is not

difficult to check that the height of that domain is

∣N∣ ⋅ 22∣Q∣2 ∈ O(∣G∣) ⋅ 22∣Q∣2 ,
sinceany strictly ascendingchain in theproductdomain canbedecomposed into ∣N∣ascending
chains, one for each of the nonterminals. In each of these chains, there are at most 22

∣Q∣2
steps

in which the elements can strictly increase.

The height of the domain gives us the required bound on the steps of the fixed-point iteration.

We analyze the cost of one step of the iteration. If we assume that a formula in CNF contains no

repeated clauses, we obtain that the size of a single formula is at most doubly exponential. To

be precise, it contains at most each of the 22
∣Q∣2

different clauses of size at most 2∣Q∣2 .
It remains to discuss the cost of the operations that we perform on these formulas. Using

Lemma 17.5.2, the conjunction and the disjunction of two formulas can be computed in time

polynomial in the size of the formulas.

The size of the composition F . H = ⋀K∈F ⋀ζ∶K→H⋁ρ∈K ρ . ζ(ρ) of two formulas is mainly deter-

mined by the number of functions ζ∶ K → H. This number is at most

∣H∣∣K∣ ⩽ (22∣Q∣2 )(2∣Q∣2 ) = 2
(2∣Q∣2 )2

= 22
2⋅∣Q∣2

,

which is doubly exponential in Q. Altogether, the cost of computing the composition is atmost

doubly exponential.

After each operation, we get rid of redundant clauses, which takes quadratic time (in the size

of the formulas). The total number of operations that we need to apply in one step of the fixed-

point operation is bounded by the size of the system of equations, which is polynomial in ∣G∣.
After each step of the iteration, we need to check whether we have reached the fixed point. To

this end, we use Part d) of Lemma 17.5.2. This check can be conducted in quadratic time (in the

size of the formulas).

Finally, weobserve that readingoff thewinner of the game requires evaluating a formula, which

is polynomial in the size of the formula. Altogether, we obtain the desired result. ⬛

As a consequence of this result, solving context-free games is easy as long as the automaton

representing the target language is small. This is in particular the case when the condition for

membership in the target language is a simple one like the absence of a certain symbol in the

342



17.5 Complexity

producedword. In this case, the size of the automaton is a constant, and the resulting algorithm

runs in polynomial time.

Hardness

To complete the proof of Theorem 17.5.1, we show that solving context-free inclusion game is

2EXP-hard.

17.5.4 Theorem
Deciding context-free inclusion games is 2EXP-hard.

The proof uses a well-known technique that was introduced to the best of the author’s knowl-

edge in Stockmeyer’s andMeyer’s proof that deciding language equivalence for regular expres-

sions is PSPACE-hard [SM73]. The proof uses that is sufficient to show that the universality prob-

lem, i.e. the task of deciding whether a regular language is equal to Σ∗, is PSPACE-hard. The

original paper uses regular expressions to represent regular languages, but we will work with

NFAs in the following.

The idea behind that proof is as follows: Given a Turing machine M with polynomial space con-

sumption and an input x for that machine, we construct an NFA that accepts all invalid or non-

accepting computations of M on x . To this end, it expects a string of configurations of the

machine, and it accepts if one of the encodings of the configurations is invalid or the transition

relation of the Turing machine has not been respected. If M does not accept x , M has no valid

accepting computation for that input and the language of the automaton is universal. Thewell-

knownproof for theuniversality problem for Turingmachines beingneither semi-decidable nor

co-semi-decidable uses a similar construction.

Walukiewicz [Wal01] has extended this idea to show that a special type of context-free games,

namely parity games on the configuration graphs of pushdown automata are EXP-hard. He

makes use of the game-aspect in the pushdown to simulate an alternating Turingmachinewith

polynomial space consumption, relying on EXP = APSPACE. Later, Muscholl, Schwentick, and

Segoufin [MSS06] have in turn extended Walukiewicz’sproof to show that a type of context-

free games that is similar to the one that we consider is 2EXP-hard. We will explain this type

of game in detail in Section 17.6. The additional layer provided by having a winning condition

that works on the level of languages rather than on the internal state of the system can be used

to simulate an alternating Turing machine that has an exponential space bound instead of a

polynomial one.

The full proof that we provide in the rest of this section is strongly inspired by the proof of The-

orem 4.3 in [MSS06]. It uses the same idea: Given an ATM with exponential space construction

and an input for thatmachine, we construct a game that proceeds in twophases. The first phase
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produces a computation of the machine for the given input, represented as a sequence of con-

figurations. We use the players to mimic the alternation between universal and existential con-

trol states of the ATM. In the second phase, the players place markers in this computation that

help the automaton to detect whether the computation is valid. The automaton is designed so

that it accepts all computations that are invalid or non-accepting. If the existential player man-

ages to enforce the derivation of a valid accepting computation, winning the game, the given

input is in the language of the machine and vice versa.

Into the proof

The rest of the section is dedicated to making this proof approach formal, including all gory

technical details. We provide a polynomial-time reduction from the AEXPSPACE acceptance

problem. Recall that this problem is, given an alternating Turing machine M and an input x for

that machine, to decide whether M accepts x with a computation tree in which each configu-

ration has space consumption at most 2∣x∣. We have argued in Lemma 3.3.2 that this problem

is AEXPSPACE-complete. Furthermore, it is well known that AEXPSPACE = 2EXP [CKS81].

We also assume that the input alphabet of the Turing machine is {a, b}, meaning that the tape

alphabet is {a, b, }. It is well-known that an arbitrary input alphabet can be encoded into a

binary one by only polynomially increasing the space consumption.

Let (M, x) be the input for the AEXPSPACE acceptance problem. We define n = ∣x∣, and

we see the transition relation δ of the Turing machine as a set of transitions of the shape

t = (q, y) ↦ (q′ , y′ , d)with q, q′ control states, y, y′ ∈ Γ tape symbols and d ∈ {L, R} a direction

for the head movement.

Our reduction constructs a context-free inclusion game such that its tree of plays from a fixed

initial position corresponds to the computation tree ofM on input x . The gamewill be designed

so that the existential player has a winning strategy if and only if x is accepted byM with space

consumption at most 2n . More precisely, a play of the game will derive a terminal word that is

a branch of the computation tree, i.e. a sequence of successive configurations ofM. To this end,

the players will write down configurations of the Turing machines, starting with the initial one.

The ownership assignment is chosen such that the universal player chooses the transitions that

originate in configurations with a universal control state, similar for the existential player.

We combine this approachwith two tricks. The first trick is to use the automaton that represents

the winning condition of the game to detect invalid computations. For example, it will detect if

the head of the ATM is moved in an invalid way or the tape content is not copied properly from

one transition to next.

It remains to deal with the problem that the configurations of exponential length are too long

for a polynomially sized automaton to properly keep track of the tape content and headmove-

ment. The second trick solves this problem by designing the grammar so that the game pro-

ceeds in two phases. The first phase is a right-to-left pass in which the computation of the
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Turing machine is constructed as discussed above. The second phase is a left-to-right pass in

which the players can place markers within the computation. With the help of these markers,

the automaton can check whether the computation is valid or not.

The first phase

We start by discussing the technical details of the first phase. The goal of the first phase is to

obtain a sentential form of the shape

c(k) tk c(k−1) tk−1 . . . t1 c
(1) t0 c(0)

so that c(0) t0
−−→ c(1) t1

−−→ . . .
tk−1
−−−→ c(k−1) tk

−−→ c(k) is a candidate for an accepting computation of

the ATM. By c(i) t i
−→ c(i+1), we mean that transition ti ∈ δ of the ATM was used to get from c(i) to

c(i+1). Each configuration c(i) is encoded as its tape content

c(i) = c(i)1 . . . c(i)m
of length exactly m = 2n . (If a configuration uses less than m space, we fill up the remaining

space with blank symbols). Each c(i)j is either just a tape symbol, or a tape symbol together with

a control state. The latter case occurs exactly once per configuration.

For the verification of the validity of the computation, it will be important that each tape cell

is preceded by an index, i.e. its number on the tape. Formally, we assume that {0, 1} are two

terminal symbols used for the indexing (while {a, b, } is the tape alphabet of the ATM). Fur-

thermore, each index is preceded by two marker symbols M M that will be needed during

the second phase.

Hence, each c(i)j is either of the shape M M {0, 1}n{a, b}, or M M {0, 1}nQ{a, b}. Note that

since each configuration has length m = 2n , a binary number of length n is necessary and

sufficient to properly number the cells on the tape. As we can see, the control states are used

as terminal symbols as well.

The initial configuration. Thederivation startswith rules that implement aprocess thatwrites

down the initial configuration. The result of this process is the sentential form

Eq0 ,x1M 0 . . . 0ÍÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÏ
encoding of 0

q0x1 . . . M 0 . . .ÍÒÒÒÒÒÒÑÒÒÒÒÒÒÏ
encoding of n−1

xn M 0 . . .ÍÒÒÒÒÒÒÑÒÒÒÒÒÒÏ
encoding of n

. . . M 1 . . . 1ÍÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÏ
encoding of 2n−1

.

Here, we use that x = x1 . . . xn has length n, meaning we can explicitly encode it via grammar

rules. Furthermore, we use the well-known result that a context-free grammar can produce an

exponential number of symbols with a polynomial number of rules to derive the 2n − n blank

symbols at the end of the tape content. (See the end of Section 9.2 for a similar construction.)

For the indexing of each symbol (including the preceding markers), we essentially let the exis-

tential player guess the correct indexing. We discuss this mechanism in detail later.
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Picking a transition. The symbol Eq0 ,x1 is a nonterminal whose subscripts indicate that we

have seen control state q0 and tape symbol x1 at the head position in the last configuration.

After every configuration, we will have some nonterminal Eq,y as the leftmost symbol of the

sentential form where q is the control state and y ∈ {a, b, } is the head symbol. This nonter-

minal is owned by the player that owns state q. Her task is now to pick a transition of the Turing

machine that is valid with respect to state q and symbol q. Formally, she has a rule

Eq,y → Aq′ t

for any transition t ∈ δ with t = (q, y) ↦ (q′ , y′ , d). The transition that was used is written down

as a terminal symbol.

A special case is that the control state q = qfinal is the unique accepting control state of the ATM.

In this case, we have the rule

Eqfinal ,y → ε

that enforce the termination of the first phase.

Writing the tape content. Whenever Aq occurs (for some state q), the existential player that

owns the symbol can iteratively write cells of the tape of the next configuration. For each cell,

she can first decide whether this should be the new position of the head by choosing between

the rules

Aq → Anohead
q ∣ Ahead

q .

If she picks Anohead
q , the next cell is not the position of the head, and she can first pick a tape

content in {a, b, } and then an index, a string over {0, 1} of arbitrary length. Formally, we

have the rules

Anohead
q → Aindex

q a ∣ Aindex
q b ∣ Aindex

q

and

Aindex
q → AqM M ∣ Aindex

q 0 ∣ Aindex
q 1 .

The nonterminals Anohead
q and Aindex

q are owned by the existential player. The markers M and

M that are inserted in front of the index are used for the second phase; we will describe their

function later in detail.
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Writing the head position. If she picks Ahead
q , the next tape cell should be the position of the

head. This means she is forced to write down control state q (that should be the control state

in the current position), but she may select an arbitrary tape content. The control state and the

tape content at the head position are tracked as a subscript. The rules are

Ahead
q → Bindex

q,a qa ∣ Bindex
q,b qb ∣ Bindex

q, q .

Writing the rest of the tape content. The rest of the tape content is written while Bq,y is the

leftmost nonterminal, indicating that the head position has already occurred in the current con-

figuration. In Bq,y , the existential player can either continue to write cells (namely, the cells that

are to the left of the head position). Or, she can derive Eq,y as the leftmost nonterminals, which

means that the next transition should be picked.

Formally, the rules are

Bq,y → Eq,y ∣ Bindex
q,y a ∣ Bindex

q,y b ∣ Bindex
q,y .

The indexing for the symbols in this part of the tape content works just as before with the rules

Bindex
q,y → Bq,yM M ∣ Bindex

q,y 0 ∣ Bindex
q,y 1 .

This process proceeds either ad infinitum (in this case, the existential player loosesbydefinition),

or until the accepting state is reached. In the latter case, we end up with a sentential form in

which the only occurrences of nonterminals are the markers M and M . Before discussing

their usage, we summarize the constraints enforced by the first phase, and the ones that will be

needed to be enforced by the automaton after the second phase.

Summarizing the first phase. If the first phase terminates, it derives a sequence

c(k) tk . . . t0 c(0), where c(0) is the initial configuration. Each c(i) contains exactly one

control state, and the last configuration c(k) contains the accepting control state. The tran-

sitions of the control states respects the transitions ti that occur between the configuration,

meaning that the new control state indeed results from the old control state and the old

symbol at the head position. Each tape symbol is preceded by an indexing from {0, 1}∗ and

the two markers. Also note that the transitions originating in universal resp. existential control

states have been picked by the universal resp. existential player.
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Two more properties are required to ensure that c(k) tk . . . t0 c
(0) is a valid computation:

1. The indexinghas to be correct: All indices have length n, the first tape symbol of each con-

figuration is indexed by 0 = 0 . . . 0ÍÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÏ
n times

, the last tape symbol is indexed by 2n −1 = 1 . . . 1ÍÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÏ
n times

, and

successive tape symbols are indexed with successive binary numbers (from left to right).

2. The tape content has to respect the transition relation of the Turing machine: From one

configuration to the next, the tape content does not change at any position but at the

former position of the head. Additionally, the head position and the tape content at the

former head position have to be modified according to the transition that was picked.

To check the indexing, the information that is present in the sentential form resulting from the

first phase is sufficient. To enable the automaton that will represent the target language of the

game to check the second property, we need the second phase of the game.

The second phase

The goal of the second phase is to help the automaton checking that the tape content has

beenmanipulated in the correctway. Intuitively, the automaton should compare for each index

j ∈ [0, 2n − 1] and for each two successive configurations c(i+1) , c(i) that the tape content of

c(i+1) in cell j has indeed been obtained from c(i) in cell j in a valid way. To be able to do this, the

automaton would have to store j to match the two cells in the configurations. Since there are

2n possibilities for j, this is not possible using a polynomially sized automaton.

To solve this problem, we use the help of the players. Recall that at the end of the first phase,

each cell is of the shape

M M {0, 1}∗Q⩽1{a, b, } ,
where all symbols but M and M are terminals. (The expression Q⩽1 stands for the optional

occurrence of a state, i.e. it is either some q ∈ Q or ε.)

As wewill explain later, we can detect configurations in which the indexing is incorrect without

the help of the markers. Hence, we will assume that Property 1 is satisfied in the following.

We use the nonterminals M to implement a marking mechanism. After the first phase has

finished, the leftmost pair of markers become the two leftmost nonterminals. After replacing

this occurrence of M M , the second occurrence of M M becomes active and so on. In total,

the M markers implement a left-to-right pass (in contrast to the right-to-left writing process

of the first phase) over the word.

Intuitively, the universal player can use M to mark cell j of configuration c(i+1) for which she

thinks that the existential player has made a mistake when writing down the cell content in

the first phase. This can be seen as a challenge for the existential player. The existential player
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should defend herself by using M at cell j of configuration c(i). Formally, for each occurrence

of M , its owner can select to use the markerm or to omit it. We have rules

M → m ∣ ε and M → m ∣ ε .
After all M symbols have been replaced, we obtain a terminal word.

The automaton

In the following, we will define the automaton A representing the target language. It will ac-

cept a terminal word if and only if it encodes a candidate computation in which one of the two

properties is violated. Because the goal of the existential player is non-inclusion, this will force

her to ensure that the computation is valid.

Checking the indexing. We describe the behavior of the automaton that is related to Prop-

erty 1. Firstly, we construct automata that accept all words that contain

{a, b, }m ⩽1m ⩽1{0, 1}lQ⩽1{a, b, }
as an infix where l ≠ n. Here, the two occurrences of {a, b, } are two successive tape symbols

and {0, 1}l is an indexing of the wrong length. The other symbols are the optional occurrences

of control states andmarkers. We essentially have to encode this expression for l ∈ {[0, n − 1]}
and l ⩾ n + 1. This can be done using (n + 1) automata that are of size polynomial in n.

Secondly, we construct an automaton accepting any word that contains an infix t m ⩽1m ⩽1w

wherew ≠ 0 . . . 0. This enforces that the first cell in each configuration has the binary encoding

of 0 (of length n) as indexing. This can be implemented by an automaton that counts the num-

ber of zeros. A similar construction ensures that all configurations endwith 1 . . . 1Q⩽1{a, b, } t,
where 1 . . . 1 is the binary encoding of 2n − 1 and {a, b, } is the tape symbol.

Finally, we have an automaton accepting words that contain as infix

m ⩽1m ⩽1 w Q⩽1{a, b, } m ⩽1m ⩽1 v Q⩽1{a, b, }
so thatw is an indexing of number land v is not the indexing of number l+ 1. We argue that

this can be implemented by an automaton of polynomial size. The key observation is that the

encoding of l+1 can be obtained from the encoding of las follows: The rightmost 0 is replaced

by a 1, and all ones that are to the right of that 0 are replaced by zeroes. To implement this, we

use nondeterminism. The automaton assumes that v is not the encoding of l+ 1 and guesses

in which bit v differs from the proper encoding, say bit s. It walks through w and stores bit s

of w, and whether there is a later bit in w that is zero. It then goes to bit s of v and checks the

following. If w contains a later zero, then the sth bit of w and the sth bit of v should coincide

(because the increment only affects a suffix of the word that does not contain the sth bit). If w
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contains no later zero, then the sth bit ofw and the sth should be different (eitherw at s was the

last zero which should be flipped to one in v, or w at s was a one which should be flipped to

zero). Whenever this condition is violated, the automaton accepts.

Checking the tape content. It remains to check the tape content. We implicitly assume that

the automata we describe in the following only accept words that contain precisely one occur-

renceofm . If aword contains nooccurrenceofm , thismeans that theuniversal player admits

that it indeed encodes an accepting computation of theATM. For the sake of simplicity, we force

the universal player to mark exactly one mistake, even if the computation contains several mis-

takes. She then should choose the earliest mistake (i.e. the rightmost). Note that the grammar

does not allow this occurrence to be in the initial configuration, since the tape content of the

initial configuration is guaranteed to be valid by the grammar.

Assume that a word contains exactly one occurrence of m , say in configuration c(i+1). If the

word does not contain exactly one occurrence ofm , wemake the automaton accept theword

(which corresponds to the existential player admitting defeat). This unique occurrence of m

should be in configuration c(i), i.e. in the configuration to the right of the one that containsm .

Intuitively, if the universal player has marked cell j in c(i+1), then the existential player should

mark cell j in c(i). This uniquely determines the correct location for her markerm .

Assume that the word has an infix of the shape

m w qyÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
cell j in c(i+1)

. . . t . . . m w ′ q′y′ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
cell j in c(i)?

,

where w ,w ′ ∈ {0, 1}n are indexings, q, q′ ∈ Q ∪ {ε} are optional control states and

y, y′ ∈ {a, b, } are tape symbols.

The automaton caneasily verify that themarkers occur in successive configurationsby requiring

the occurrence of exactly one terminal symbol t ∈ δ corresponding to a transition between the

markers. The automaton then checks thatm is at the correct position, i.e. at cell j. If this is not

the case, w and w ′ differ. To do so, the automaton guesses a position s ∈ [1, n], stores the sth

bit ofw and compares it to the sth bit ofw ′. If the bits differ, it accepts the input (meaning that

the existential player loses).

Assume that the marker m is at the correct position. It remains to verify that the cell content

is valid. We distinguish several cases. If control state q′ is not present, then cell j was not the

head position in configuration c(i). This means y = y′ should hold. The automaton checks this

and accepts if the condition is violated.

In the second case, we assume that q′ is present. This means y should be chosen accord-

ing to the transition that has been applied. The automaton stores y, reads the transition
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t = (q′ , y′) ↦ (q′′ , y′′ , d) and accepts if the symbol y′′ that should be written by the transition is

not equal to y.

Finally, the position of the head in c(i+1) should be valid with respect to the transition. More

formally, the automaton checks that if control state q is present, and the two configurations

are separated by a transition t = (q′′′ , y′) ↦ (q, y′′ , L) that moves the head to the left, then the

control state in configuration c(i) is present in cell j+1. Similarly, if the configurationmoves the

head to the right, then the control state in c(i) should be present in cell j − 1. For each of these

cases, one can create a polynomially sized automaton.

In total, we obtain a collection of NFAs of polynomial size. If theword violates any of the proper-

ties that are required to ensure that it represents an accepting computation of the ATM, at least

one of these automata accepts the word. If the word represents an accepting computation,

none of the automata accept. The final automaton defining our target language is the union of

all aforementioned automata. Since all automata were of polynomial size, so is their union.

The exponential space bound

Recall that an instance (M, x) of theAEXPSPACE acceptance problem is only a yes-instance if the

computation tree of M on input x is accepting and its configurations use less than 2∣x∣ space.
Without loss of generality, we can assume that the tape of the Turing machine is bounded on

the left side, and no computation ever goes to the left of the first cell of the input. It remains to

check that no cell ever exceeds cell 2∣x∣ on the right-hand side. Luckily, this property is already

implicitly verifiedby our construction. Wehave enforced that each configuration is represented

by a tape content of length exactly 2∣x∣. If the computation exceeds space 2∣x∣, there is a step

in which the head position moves from cell 2∣x∣ to cell 2∣x∣ + 1. Since we enforce the encoding

of the configurations to be of size 2∣x∣, this means that the encoding of the latter configuration

is invalid: It either contains an invalid indexing, or the head of the Turing machine has been

moved incorrectly. In both cases, the existential player loses the play, as expected.

Soundness

It remains to argue that the construction is correct: The existential player wins the context-free

inclusion game if and only if input x is accepted by a computation of the ATM that does not use

more than exponential space.

Game to machine. Assume that the existential player has a winning strategy for the game.

We consider the tree of all plays conforming to this strategy. In this tree, we cut off each branch

after the first phase has ended. Each branch contains such a point, since infinite plays cannot

be won by the existential player. Note that the result of the first phase, and hence each branch

of the tree, is essentially a computation of the ATM. To be precise, the fact that we start with the

winning strategy for the existential player ensures that it is a valid accepting computation. We
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obtain a subtree of the computation tree in which in for each configuration owned by the exis-

tential player, only one transition has been considered, namely the one chosen by the strategy.

In configurations owned by the universal player, all transitions have been taken into account.

This subtree is a witness for the full computation tree of the ATM for input x being accepting.

Machine to game. Assume that the configuration tree of M for input x is accepting. In Chap-

ter 15, we have mentioned that alternating Turing machines can be seen as games played on

the configuration graphs of Turing machines. To be precise, the computation tree of M on x

being acceptingmeans that the existential player wins the reachability game on that computa-

tion tree. The ownership is given by the partition of the control states, the winning condition

is reaching an accepting configuration. Let us consider a winning strategy for the existential

player in that reachability game.

We now construct a winning strategy for the existential player in the context-free inclusion

game. Whenever it is the choice of the existential player to write the index of a tape cell, she

should pick the correct indexing, i.e. cell number j from the left should be indexedwith the n-bit

binary encoding of j. Assume that in the game, the encoding of some configuration c has just

been written down. If it is the existential players choice to pick the next transition, she does so

by picking the transition that leads to successor of c in the computation tree ofM as selected by

her winning strategy for the reachability game. Otherwise, the universal player picks the tran-

sition. In any case, the existential player than proceeds to write down the configuration that

results from that transition, with the correct indexing, tape content, and head position. When

the first phase of the game has ended, the existential player defends from a challenge of the

universal player – say she puts hermarkerm in cell j of configuration c(i+1) – by puttingmarker

m in cell j of configuration c(i).
We argue that the resulting play is won by the existential player. Because she picks her transi-

tions conforming to a winning strategy for the reachability game on the computation tree, it is

guaranteed that the first phase ends after finitelymany steps by reaching an accepting configu-

ration. The assumption thatwe startwith a yes-instance of theAEXPSPACE acceptanceproblem

also means that no configuration exceeds 2∣x∣ space. Hence, the existential player can ensure

that the indexing, the tape content, and the headmovements are correct. If the universal player

places a marker, she can successfully defend the challenge. The automaton representing the

target language will not accept the outcome of the play and the existential player wins.

This finishes the proof of Theorem 17.5.4 and establishes 2EXP-completeness.
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17.6 Related work

Wediscuss the relationof our approach to context-free games tootherworks from the literature.

Walukiewicz’s reduction

To the best of the author’s knowledge, the first to not only consider context-free games but also

to solve them was Walukiewicz in [Wal01]. In an earlier work [Wal02], he had discovered the re-

lationship between the model-checking problem for the modal µ-calculus and parity games.

The modal µ-calculus is a logic that features operators for least and greatest fixed points. A

µ-calculus formula can describe the winning region of a parity game and vice versa. With this

motivation in mind, he translated the model checking problem for modal µ-calculus formulas

on the computation tree of a pushdown automaton into solving a parity game on the computa-

tion treeof amodifiedpushdownautomaton. The tree is turned into agamearenabyapartition

of the control states into the ones owned by each of the players. Similarly, the configurations

inherit their priorities from the control states, for which one obtains a priority assignment from

the nesting structure of the µ-calculus formula.

To solve this type of game, Walukiewicz has designed a reduction that outputs an equivalent

parity gameonafinite arena, i.e. a parity gamewith the samewinner. The ideabehind the reduc-

tion is to not store the full stack content of the pushdown, but only the top-of-stack. Whenever

a push operation, say push a should be executed, the finite-state game uses a guess-and-verify

mechanism, aided by the fact that we have two adversarial players. Firstly, one of the players

is allowed to choose a prediction, a set of tuples of control state and priority. Intuitively, an

entry (q, i) in the prediction set represents a play of the game in which a gets pushed, remains

on the stack for some time, and then gets popped again while reaching state q. The priority i is

the largest priority that occurred while symbol a was on the stack. Secondly, the other player

decides whether to trust or to verify the prediction. If she trusts the prediction, she picks one

entry (q, i) from the prediction set, and the play continues with control state q and the current

top-of-stack remains as before – we assume that the infix of the play in which the letter a was

on the stack has been skipped. If she wants to verify the prediction, the push operation is ac-

tually executed and the top-of-stack is replaced by a. When a pop operation, pop a, occurs,

the play ends and the player who picked the prediction wins depending on whether the con-

trol state that has been reached and the maximum priority that has been visited are contained

in the prediction.

Assume that we have a winning strategy for the context-free game. By picking the correct pre-

dictions –namely theones actually describing theplays that canoccur according toourwinning

strategy – we obtain a winning strategy for the game on the finite arena. Similarly, a winning

strategy for the finite game yields a strategy for the context-free one. To be precise, it yields a

strategy that can be implemented by a synchronized pushdown automaton as in Section 17.4.

353



17 Context-free games

Tobe able to apply the strategy for the finite game, the synchronizedpushdowns tracks for each

stack level also the prediction set that has been chosen for the corresponding push operation.

Walukiewicz has considered parity games, but the construction can be easily adapted to trans-

form a context-free game with a reachability winning condition defined on the control states

of the pushdown automaton into a finite reachability game. In both cases, the construction

introduces an exponential blowup, since we need to add the prediction sets to the state space,

which is essentially a powerset construction. To be able to apply Walukiewicz’s construction to

context-free inclusion games, one has to determinize the automaton for the target language

as described in Chapter 15. This introduces another exponential blowup, which is to be ex-

pected: Walukiewicz has shown EXP-completeness for his type of games, while we have shown

2EXP-completeness.

In her Master’s thesis [Neu17], Elisabeth Neumann has conducted an in-depth comparison of

Walukiewicz’s approach and ours. Assume that we do not use the standard powerset construc-

tion to determinize the automaton, but rather we use a construction based on the transition

monoid, as explained in Section 4.5. If one transforms a given game grammar to a game push-

down, takes the product with this determinized automaton, appliesWalukiewicz’s reduction to

obtain afinite-state reachability game, one can then solve this gamewith thewell-knownattrac-

tor construction. From the attractor (resp. its approximants that occur during its computation),

one can read off the formulas that are the least solution to the interpreted system of equations

in our approach (resp. their approximants). Note that, however, the fact that Walukiewicz’s ap-

proach can be conducted using the determinization based on the transition monoid does not

mean that it actually uses the advantages that the transitionmonoid provides, e.g. the fact that

the behavior of a word in arbitrary contexts is represented by its box.

If one comparesWalukiewicz’s approach applied toω-context-free games to our approach that

wewill present in Section 17.9, one sees that both approaches ultimately require solving a finite-

state parity game. The key difference is that in Walukiewicz’s game, the players can pick an

arbitrary prediction set. Finding out which prediction sets are not valid candidates has to be

done when the parity game is solved and the winning strategy is computed. In our approach,

we use the fixed-point iteration to precompute information about finite subplays. This yields

formulas –whichwe can see as a collection of prediction sets – and the players are only allowed

to choose among these. This should be a more efficient implementation.

Walukiewicz’s reduction is inspired by the game semantics for the µ-calculus, see e.g. [BW18]:

Here, instead of computing a least or greatest fixed point, one of the player guesses it. This

guess is enforced to be correct by giving the other player the chance to verify the guess. This

trick has proven to be very versatile. Walukiewicz’s reduction has been extended to higher-

order pushdown automata by Cachat and Walukiewicz [CW07] and to multi-pushdown au-

tomata with certain restrictions by Seth [Set09].
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Cachat’s saturation algorithm

In [Cac02], Cachat has considered a different type of context-free games. Like in

Walukiewicz’s case, the game arena is the computation tree of a pushdown automaton with a

partition of the control states. However, the winning condition is reaching a configuration that

is in a regular target set. To specify such a regular set of configurations of some pushdown P,

one uses so-called P-AFAs. A P-AFA is an alternating automatonwhose input alphabet is the set

of stack symbols and whose set of states contains the set of states of P. A configuration of the

pushdownwith state q and stack contentw is acceptedby a P-AFA if the automaton accepts the

wordw from the control state q. Cachat presents a saturation technique that turns a P-AFA for

the target set into a P-AFA for its attractor, the winning region of the reachability game, by iter-

atively adding transitions. The fact that he is considering alternating automatamakes it easy to

implement the attractor construction for solving reachability games on the level of automata.

Cachat also presents an extension of his construction to Büchi games. The constructions for

both reachability and Büchi games are very much inspired by the seminal paper by Bouajjani,

Esparza, and Maler [BEM97] on the verification of pushdown automata. Cachat’s contribution

is extending these constructions from verification problems to games. The main modification

consists of using P-AFAs instead of P-NFAs, which are defined similarly but do not feature alter-

nation.

Similar to the case ofWalukiewicz’s reduction, Cachat’s algorithm can be applied to use context-

free inclusion games. This also requires determinizing the automaton for the target language.

Elisabeth Neumann has also considered Cachat’s algorithm in her Master’s thesis [Neu17] and

shown that if one uses the determinization based on the transition monoid, one obtains a cor-

respondence between the structure of the P-AFA representing the winning region and the for-

mulas forming the least solution in our approach.

Muscholl, Schwentick, and Segoufin: Active context-free games

Muscholl, Schwentick, and Segoufin [MSS06] have considered so-called active context-free

games. Like in our definition of context-free games, the game arenas for these games are in-

duced by context-free grammars and they have regular target languages. However, these tar-

get languages are languages over the set of both terminals and nonterminals. Compared to

our context-free games, active context-free games proceed differently. In each round of a play,

one of the players selects a nonterminal in the current sentential form, then the other player

picks a production rule to replace that nonterminal. The winning condition is obtaining a sen-

tential form in the target language. In its most general form, this type of game is undecidable.

However, Muscholl et al. show that it is decidable with a left-to-right restriction: In this case,

once the player selecting the nonterminals has picked some nonterminal, she is not allowed to

pick nonterminals to the left of it during the rest of the play. With this restriction in place, the

game becomes very similar to the context-free inclusion games that we consider. In fact, the

paper [MSS06] contains a proof showing that one can incorporate features like symmetric rule
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choice, i.e. letting each of the players pick the production rules for a certain set of nonterminals

like in our type of game. It is not too difficult to transform a context-free regular inclusion game

into an active context-free game with the left-to-right restriction and vice versa.

The key difference between the considerations in the paper [MSS06] and our study is that

Muscholl, Schwentick, and Segoufin were mainly concerned with the decidability and compu-

tational complexity of active context-free games and their various restrictions. To obtain the

upper bounds, they simply reduce their games to the games considered by Cachat. This results

in an algorithm that has the optimal asymptotic time complexity, but likely would be inefficient

in practice. In contrast to this, we are interested in an approach that in addition to achieving

optimal time complexity is also practical.

The proof that we have provide for the 2EXP-hardness of context-free inclusion games in Sec-

tion 17.5 is based on the proof of the 2EXP-hardness of active context-free games in [MSS06],

which in turn is based on Walukiewicz’s proof of EXP-hardness in [Wal01].

Active context-free games have been later extended to the case of a visibly context-free specifi-

cationof thegamearena [SS15], which is a restriction, andavisibly context-free target language,

which is a generalization. More recently, Coester, Schwentick, and Schuster [CSS19] have stud-

ied active context-free games with imperfect information.

Kupferman and Vardi: Two-way tree automata

Kupferman and Vardi [KV00] actually do not consider games on context-free games. Rather,

they consider the µ-calculusmodel checking problem for context-free trees (computation trees

of pushdown automata), which byWalukiewicz’s findings is equivalent to solving a parity game.

Theyprovide a reduction fromthismodel checkingproblem to checking theemptiness of a two-

way alternating parity tree automaton. As in Cachat’s work, alternation provides a way to incor-

porate the game aspect. A two-way automaton is an automaton that can move up and down

in the tree. This is used to handle pops: A pop operation of the pushdown can be simulated by

a two-way automaton by simply walking up the tree to the configuration before the letter has

been pushed. This reduction is then combinedwith an earlier result of Vardi [Var98] that shows

how a two-way alternating parity tree automaton can be transformed into an equivalent regu-

lar (one-way) alternatingparity tree automaton. The emptiness problem for this automaton can

be solved by a variation of the construction that from the proof of Rabin’s tree theorem [Zie98]

(which we have briefly mentioned in Section 1.3).

Serre: Regular winning regions of context-free games

Serre [Ser03] has conducted amore general study of thewinning regions of context-free games.

He has shown that if the winning condition of an (ω-)context-free game is (ω-)regular, then so

is its winning region. Our findings certainly confirm his result: As detailed in Section 17.4, for

eachof theplayers, we can construct a deterministic finite automaton representingherwinning

region, proving that it is regular.
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Wediscuss a prototype implementation of our procedure solving context-free regular inclusion

games. We also list several techniques that can be used to speed it up. Most of these ideas have

already been implemented with various degrees of success.

Evaluation of a prototype implementation

In conjunction with the conference publication of our procedure for solving context-free

games [HMM16], the author of this thesis has developed a prototype implementation of the

algorithm that we have described in the first half of Section 17.5. In the publication, we have

compared this implementation to another approach to solving context-free games that works

by first computing an equivalent instance of Cachat’s context-free games and then applying

Cachat’s algorithm. Here, we discuss the implementations briefly and recapitulate the evalua-

tion that is present in our conference publication.

Our prototype implementation [Mus16] consists of several parts. The first is a random gen-

erator for automata and game grammars. The generator for automata follows the Tabakov-

Vardi model [TV05]. The generator for grammars is an extension of the Tabakov-Vardi model

to context-free grammars. We use the generators to provide us with randomly generated in-

stances of context-free regular inclusion games for certain parameters, like the alphabet size,

the number of states of the automaton and the number of nonterminals of the grammar.

The second and main part of the prototype is an implementation of our procedure for solving

context-free regular inclusion games using effective denotational semantics. The procedure

constructs the system of equations from the given grammar. It then solves it using Kleene iter-

ation: We first assign false to all variables, i.e. the nonterminals, and then update their values

according to the production rules of the grammar until a fixed point has been reached. The

equivalence classes of formulas are stored by storing some arbitrary representation in conjunc-

tive normal form, as explained in Section 17.5. Using conjunctive normal form simplifies vari-

ous parts of the algorithm, e.g. checking whether the fixed point has been reached, but leads

to a potential increase in formula size. The prototype contains both a naive implementation of

Kleene iteration and a worklist-based implementation of chaotic iteration. In the naive imple-

mentation, the value of each variable is updated in every step. Worklist-based chaotic iteration

precomputes the dependencies among the variables to speed up the solving process as de-

scribed in Section 16.1.

As a third part, the prototype contains the reduction to Cachat’s type of context-free games.

Recall from the previous section that these games are played on the configuration graph of a

pushdown automatonwith the goal of reaching a stack content that is in a specified regular lan-

guage. We describe the idea of the reduction in detail. Given a context-free regular inclusion

game (G , A), we first determinize and minimize the automaton A using standard techniques.

This potentially leads to an exponential blowup in the size of the automaton, which is to be
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expected since solving Cachat’s context-free games is only EXP-complete, in contrast to the

2EXP-completeness of context-free regular inclusion games. We then construct a pushdown

automaton that is essentially the product of the grammar and the determinized automaton.

Its control state stores the state of the automaton after reading the terminal prefix of the sen-

tential form. The stack stores the rest of the sentential form. Formally, for each state q of the

determinization of A, the pushdown has two states, q and q owned by the respective player.

If the top-of-stack is a terminal symbol a, the pushdown has transitions q → p and q → p

that pop symbol a, where p is the unique state of the DFA with q
a
−→ p. If the top-of-stack is a

nonterminal X that is owned by , and the current state is q , the automaton has a transition

q → q that hands control to the correct player withoutmodifying the top-of-stack. In case X

is owned by and the state is q , the transition is similar. If the owner ∈ { , } of the top-of-

stack X and the state q match, player may select a production rule X → β. Formally, wehave

a transition that maintains state q , but replaces the stack symbol X by the sequence β, with

the leftmost symbol of β becoming the new top-of-stack. Finally, we also need an automaton

that represents the winning condition in the game. This automaton simply accepts any config-

uration of the pushdown if the control state is not final and the stack is empty. It is not difficult

to check that producing a terminal word that is not in the language of A in the grammar-based

game is equivalent to reaching a non-accepting control state of the DFA with empty stack in

Cachat’s type of game. Hence, the winners of both games coincide.

The fourth and final part of our implementation is a prototype implementation of Cachat’s al-

gorithm for his types of games, since to the best of the author’s knowledge, no such implemen-

tation is publicly available. The implementation follows Cachat’s description of his algorithm in

the paper [Cac02] in a straightforward manner.

It might seemunfair to compare aworklist-based implementation of Kleene iteration to a naive

implementation of Cachat. We have actually also implemented a worklist-based implementa-

tion of Cachat, but it does not speed up the algorithm. The problem is that the reduction from

inclusion games to Cachat’s type of games produces instances that are dense in the sense that

any state of the pushdown has at least one transition for any possible top-of-stack.

One should be aware of the fact that we are not comparing our algorithm to solve context-

free regular inclusion games with Cachat’s algorithm to solve his type of games. Rather, we

are comparing the two algorithms on context-free regular inclusion games, which requires a

reduction to be able to apply Cachat’s algorithm. This reduction may result in instances that

Cachat’s algorithms is not tailored to.

In our conference publication, we have generated random instances of context-free regular

inclusion games consisting of linear grammars. This means that all transitions of the grammar

are of the shape X → a.Y .b with a, b ∈ Σ ∪ {ε} terminals and Y ∈ N ∪ {ε} a single nonterminal.

Both algorithmsbenefit from this restriction, but our approachdoes so in amajorway. Consider

a sentential form a.Y .b where F is the formula that is currently associated to Y . To compute the

formula associated to a.Y .b, it is sufficient to replace every atom ρ that occurs in F by ρa ⋅ ρ ⋅ ρb .
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In other words, the grammar being linear makes computing the composition of formulas that

is needed when evaluating the right-hand sides of the equations simple.

Theexperimental evaluation in the conferencepublication shows that theworklist-based imple-

mentation of Kleene iteration is typically faster than the naive one by one order of magnitude,

i.e. a factor of 10. There are even cases where the naive implementation reaches our 10-second

timeout limit, while theworklist-based one finishes in roughly 100milliseconds. This is partially

because we do not minimize the formulas after every step: Doing unnecessary updates of the

variables does not change the equivalence class of the associated formula, but it may increase

the size of its representation. This increase in size can then propagate in later steps to the val-

ues of other variables, substantially slowing down the algorithm. Minimizing the variables in

every step could avoid this, at the cost of the quadratic running time of theminimization (in the

current size of the formula). Using the worklist procedure is an easy and efficient way to avoid

this problem.

Our procedure solves context-free regular inclusion games with linear grammars substantially

faster than Cachat’s algorithm. Even for very small instances, it is faster by two orders of mag-

nitude, i.e. a factor of about 100. For instances with 10 control states in the NFA, 10 terminal

symbols, and 10 nonterminals (5 owned by each player), Cachat’s algorithm was not able to

solve 46 out of 50 randomly generated instanced within the 10-second time limit. For the 4 in-

stances that it was able to solve, it took about 7.7 seconds on average. Our algorithm (with the

worklist-based iteration scheme) applied to the very same set of instances could solve all the

instances within the time limit and took an average of 0.2 milliseconds. Increasing the number

of terminals to 15 and the number of nonterminals to 30 resulted in Cachat’s algorithm to not

being able to solve any of 50 randomly generated instanceswithin the time limit. Our algorithm

solved all of these instances with an average running time of 1.8 milliseconds. This means that

in this case, our algorithm is more efficient by three orders of magnitude. For more data on the

evaluation of these algorithms, we refer to the publication [HMM16] and the code [Mus16].

We claim that oneof the reasonswhyour algorithm is superior for solving context-free inclusion

games is that it avoids the upfront determinization of the automaton for the target language. If

the existential player can enforce the derivation of a finite wordw, then our algorithmwill even-

tually compute the behavior of w in the finite automaton in the form of the transition monoid

element forw. For all words whose derivation cannot be enforced by the existential player, we

never consider their behavior in the automaton. This means that potentially, a large part of the

determinization of the automaton remains unexplored, which saves running time. In contrast

to this, solving context-free inclusion games by using Cachat’s algorithm requires us to deter-

minize the automaton at the start. The result is an instance that is potentially exponentially

larger, even if only a fraction of the deterministic automaton will actually be needed.

359



17 Context-free games

Non-linear grammars

We have investigated the behavior of the implementations on non-linear grammars, i.e. gram-

mars in which the right-hand side of a production rule may contain several nonterminals. This

means that when evaluating the system of equations, we need to compute the composition

of non-atomic formulas. Consequently, the formulas that we need to store can get very large

within few iterations. In unpublished experiments using our prototype, we have observed that

this quickly leads to an exorbitantmemory condition. For some instances, the solver consumes

the 12GB of available main memory of the machine we ran the tests on within a few seconds

and the program goes out-of-memory before it could exceed the 10-second timeout.

When comparing the performance of our procedure with the other approach that relies on

Cachat’s algorithm, we still obtain that our procedure is vastly superior. However, in the case

of non-linear grammars, our procedure was often unable to solve instances that consisted of

an automaton with more than 5 states without exceeding the available main memory, which

is unsatisfactory.

Our prototype implementation does notminimize formulas and it keeps all formulas that occur

as approximants when conducting Kleene iteration in memory until the fixed point has been

computed. Changing these aspects can potentially mitigate the problems with solving games

defined by non-linear grammars. We have tasked a group of students, supervised by Roland

Meyer and the author of this thesis, to develop a more advanced implementation of the al-

gorithm. While the resulting tool indeed performs better than the prototype implementation,

especially on instances with non-linear grammars, it could not fully overcome the problems

that arise from the high memory consumption of some instances. This tool is also the basis

for several attempts to improve the algorithm that we will report on in the following. The idea

behind some of these attempts has already been outlined in the full version [HMM16a] of our

publication [HMM16] on context-free games.

Non-CNF formulas

Our prototype implementation stores formulas in conjunctive normal form (CNF). Using

Lemma 17.5.2, this allows us to check whether a formula implies another in quadratic time. The

result of computing the conjunction of two formulas is additive, computing the disjunctive is

multiplicative, and computing the composition is exponential in the size of the given formulas.

In his Bachelor’s thesis [Stu17], Felix Stutz, supervised by Roland Meyer and the author of this

thesis, has explored theoptionofnotnormalizing the formulas to conjunctivenormal form. This

potentially allows us to obtain a smaller representation for formulas, which decreases both the

memory consumption and the timeneeded for computing subsequent operations on these for-

mulas. However, there is a major drawback. Recall that the Kleene iteration terminates as soon

as two subsequent approximants are equal, where checking the equality of equivalence classes

of formulas amounts to checking logical equivalence for representatives. Since implication in
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one direction is guaranteed to hold, checking whether the algorithm terminates means check-

ing an implication among positive Boolean formulas. For formulas in conjunctive normal form,

Part d) of Lemma 17.5.2 provides a characterization of implication that can be used to imple-

ment a check using quadratic time. For non-normalized formulas, the problem is substantially

more involved. Felix Stutz has proven in his bachelor’s thesis that checking the implication be-

tween positive Boolean formulas is coNP-complete. Intuitively, checking whether F ⟹ H

holds amounts to checking whether ¬F ∨ H is a tautology, with is a coNP-complete problem,

even if F and H are not allowed to contain negations.

To handle the implication check, Stutz proposes several approaches. One of them is simply

encoding the implication as an instance of the unsatisfiability problem and employing a SAT

solver. However, an implementation of this approach did not consistently outperform the ver-

sion that uses formulas in conjunctive normal form. A more promising approach uses that the

implication F ⟹ H holds if and only if all minimal satisfying assignments for F also satisfy H.

A minimal satisfying assignment is a variable assignment M ⊆ MA under which F evaluates to

true so that F does not evaluate to true under any strict subset M′ ⊊ M. One can design a pro-

cedure that computes a superset of theminimal assignments that satisfy F and checks whether

they also satisfy H. Implication holds if and only if this true for all minimal assignments, and as

soon aswe encounter an assignment that is a counterexample to implication, we can terminate.

An implementation of the implication check that uses this approach consistently outperforms

the CNF-based implementation. It can solve more instances in a ten-second time frame and

in the case that both implementations can solve an instance, the approach based on minimal

satisfying assignments is at least twice as fast on average.

Antichain optimizations

A second approach to increasing the performance of our solver for context-free games is the

so-called antichain optimization. It was successfully used in the context of transition-based

methods for universality and inclusion testing for nondeterministic finite automata [DDHR06;

ACHMV10]. In his Master’s thesis [Hai17], Fajar Haifani, supervised by Roland Meyer and the

author of this thesis, has explored the antichain optimization for solving context-free games

using fixed-point iteration.

In the development throughout this chapter, we have considered the transition monoid ele-

ments as distinct and unrelated atoms of positive Boolean formulas. The key observation en-

abling the antichain optimization is that transitionmonoid elements carry additionally informa-

tion that can be used to relate them to each other. Let us see a transition monoid element as a

box, i.e. as an element of P(Q × Q). If a box is a subset of another, ρ ⊆ ρ′, then box ρ′ can only

be rejecting if ρ is rejecting, since being rejecting is defined as the absence of a transition from

the initial to a final state. We can extend this subset relation from boxes to formulas as follows.

Instead of considering the standard definition for the implication F ⟹ H, i.e. we require all

assignments that satisfy F to also satisfy H, we restrict ourselves to assignments that respect

the relation among boxes. More formally, we only consider assignments with the property that
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if they set some box ρ′ to true, then they also set all its subsets ρ′ ⊆ ρ to true. We redefine

implication so that F ⟹ H holds if every assignment that respect the relation among boxes

and that satisfies F also satisfies H.

Considering less assignments in the definition of implicationmeans that it is easier for a formula

to imply another. When we redefine logical equivalency using our new notion of implication,

weget larger equivalence classes. Hence, we expect Kleene iteration to terminate in fewer steps

compared to thenaive approach that does not consider relations amongboxes. However, using

the antichain approach also requires amore involved implication check. We have to replace the

characterization of implication provided by Part d) of Lemma 17.5.2 by a version that considers

the subset relation among boxes.

In addition to just considering subset relations among boxes, there are relations that are even

more powerful, meaning that they relate more boxes. These relations on boxes arise from so-

called simulation relations [DHW91] on states of the automaton. Using these relations gives us

even larger equivalence classes, so we expect faster termination. However, this comes at the

cost of having to precompute simulation relations on states of the automaton.

Using an extension of the aforementioned tool, Fajar Haifani has implemented various relations

on boxes and compared their performance to the naive approach. In all cases, the evaluation

represents formulas using conjunctive normal form. Some cases also reduce the formulas in

the current approximant every few steps, meaning that they try to exploit the relations among

boxes tofinda smaller representative for the sameequivalence class. Thehope is that this reduc-

tion will improve the space consumption of the formulas and the time needed for subsequent

operations on these formulas.

The evaluation in Haifani’s thesis suggests that on average, the refined implementation using

relations on boxes slightly outperforms the naive approach. In the best case, it cuts the time

needed to solve the instances in half. Unfortunately, one also encounters instances where the

cost of the precomputation and the more expensive implication check outweighs the reduced

number of iterations – the optimization increases the running time of the algorithm. Interest-

ingly, Haifani’s data suggests that for almost all game instance, either the naive approach is bet-

ter than all versions of the antichain optimization (using the subset relation or various relations

arising from simulation relations), or every version of the antichain optimization outperforms

the naive approach.

One should note that both our publication, and the theses by Stutz and Haifani, use randomly

generated instances for the evaluation of the implementations. Randomly generated instances

are known from e.g. SAT solving to have much less structure that algorithmic optimizations

can exploit to speed up the solving process, compared to instances that occur in practical ex-

amples. It would be interesting to see the behavior of the various implementations and op-

timizations on instances that result from e.g. encoding real program synthesis problems as

context-free games.
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17.8 Deterministic target languages

We consider the special case of context-free regular inclusion games where the regular target

language is given by a deterministic automaton. It can be show that solving such games is EXP-

complete, instead of 2EXP-complete as in the case of an NFA representing the target language.

We modify our algorithm to achieve a matching running time.

To show EXP-completeness, on can for example use that the context-free games on the con-

figuration graphs of pushdown automata that were considered by Walukiewicz [Wal01] and

Cachat [Cac02] can be translated into a grammar-based context-free game with a DFA target

languagewithinpolynomial time. Hence,Walukiewicz’sproof of EXP-completeness for this type

of game applies.

One also can immediately see that our proof of 2EXP-hardness, Theorem 17.5.4, does not work.

Dealingwith configurations of an alternating Turingmachinewith exponential space consump-

tion requires dealingwithbinary strings of polynomial length. Anautomatonof polynomial size

for this task is necessarily nondeterministic. One could adapt the proof to the case of a deter-

ministic target language as follows: We assume that the given alternating Turing machine has

polynomial space consumption, using that APSPACE = EXP. Hence, the binary strings index-

ing cells on the tape are only of logarithmic size. The logarithmic nondeterministic automaton

dealing with these strings can be transformed into a polynomially sized deterministic one to

complete the proof.

Unfortunately, the algorithm that we have outlined in this chapter cannot exploit the fact that

the target language is deterministic to achieve a better running time. The crucial factor in the

running time of the algorithm is the size of transition monoid MA, the number of boxes. If

automaton A is a DFA, then there are fewer potential boxes: For each of states, there is only

a single successor state along each word. Hence, there are at most ∣Q∣∣Q∣ = 2log∣Q∣⋅∣Q∣ different
boxes inMA. This number is substantially smaller than 2∣Q∣2 , the number of boxes in the general

case, but it still is exponential.

To overcome this problem, we propose a variation of the algorithm that uses pBF(Q) as domain.

Insteadof formulas over the transitionmonoid, where the atoms track the full behavior ofwords

in the automaton, we have formulas over Q, where each atom corresponds to a target state. To

make this approach work, we also need to fix the source state. Formally, we have a system of

equations with variables of the shape qX , where q is a (source) state and X is a nonterminal. An

atom p in the formula sol(qX), taken from the least solution to the system, corresponds to a

wordw derivable from X with q
w
−−→ p in A.

However, this introduces a new challenge. Recall that the composition of two formulas

sol(Y) . sol(Z) is defined so that it captures the structure of words derivable from Y .Z : Each

such word is a word derivable from Y followed by a word derivable from Z . When using for-

mulas over the transition monoid, we can simply compose the atoms corresponding to these
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words using relational composition. With the modified system of equations, sol(qY) . sol(pZ)
only makes sense if we derive from Y a word that indeed leads to target state p. However, the

words derivable from Y can lead to many different target states, and a priori it is not clear to

which ones.

The solution to this problem is to compose sol(qY) not with a single sol(pZ), but with the family

of formulas (sol(pZ))p∈Q for all p ∈ Q simultaneously. The composition will be defined so that it

first resolves the operators in sol(qX) until arriving at an atom p. It then selects the appropriate

formula sol(pZ) from the family to complete the composition.

Formally, wedefineanewcompositionoperator ; . It is (∣Q∣+1)-ary, but for the sakeof readability

we write the last ∣Q∣ arguments as a family of formulas. This means we write F ; (Hq)q∈Q where

F and Hq for every q ∈ Q are formulas. The definition is as follows:

(F ∧
∨ F

′) ; (Hq)q∈Q = F ; (Hq)q∈Q ∧
∨ F

′ ; (Hq)q∈Q
p ; (Hq)q∈Q = Hp .

The operation essentially replaces each atom p in the first formula by Hp.

With this definition at hand, we can formally define the system of equations. As variables, we

use expressions of the shape qX where q ∈ Q and X ∈ N. Assume that X → β(1) ∣ . . . ∣ β(k) are
all production rules for nonterminal X . For each state q, the defining equality for qX is

qX = preprocessq(β(1)) ∧∨ . . . ∧∨ preprocessq(β(k)) .
As usual, ∧∨ is disjunction if the owner of X is the existential player and conjunction otherwise.

The operation preprocessq is defined on sentential forms β as follows: If β consists of a single

symbol, β ∈ N ∪ Σ ∪ {ε}, we have

preprocessq(β) = q β .

If β = β1 .β2 . . . βm , we prefix the first symbol with q, replace the rest of the symbols with the

corresponding families, and connect the results using the new composition operator,

preprocessq(β1 .β2 . . . βm) = q β1 ; (p β2)p∈Q ; . . . ; (p βm)p∈Q .

The system of equations uses disjunction, conjunction, the new composition operator and con-

stants of the shape q a for q ∈ Q and a ∈ Σ ∪ {ε} as function symbols. We provide amodel over

which the system can be interpreted. The domain is pBF(Q) factored by logical equivalence,

i.e. equivalence classes of positive Boolean formulas over states of the DFA, ordered by impli-

cation. The interpretation of conjunction, disjunction, and the new composition operator are

as expected. For each state q, the interpretation of qε is q ∈ pBF(Q). For state q and terminal

a ∈ Σ, q a is p ∈ pBF(Q), where p is the unique state of the DFA with q
a
−→ p.
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Given an instance (G , A) of a context-free regular inclusion gamewith a DFA A representing the

target language, one solves the game as follows. We first construct the system of equations,

and then compute its least solution using the above interpretation. The least solution provides

us with a formula sol(qinitS) ∈ pBF(Q) for the initial state of A and the initial symbol of G. We

consider the variable assignment Qrej = Q \ Qfinal ⊆ Q that sets to true the non-final states. The

existential player has a winning strategy for the game iff sol(qinitS)(Qrej) evaluates to true.

To show this, one canprove a correspondencebetweenvariable assignmentsQ ′ ⊆ Q that satisfy

a formula sol(qX) and strategies for the existential player that enforce thederivationof awordw

from X such that q
w
−−→ q′ with q′ ∈ Q ′. To make this formal, the theory that we have developed

in Section 17.3 can be adapted easily.

The resulting algorithm solves the game in exponential time, which is the optimal complexity.

The new system of equations is substantially larger as it features one equation per state and

nonterminal, but its size remains polynomial. For solving the interpreted system of equations,

using Q as the set of atoms is the determining factor for the complexity. This means that the

heightof thedomainaswell as themaximumsizeof a single formula in conjunctivenormal form

are singly exponential. This can be made formal by adapting the proof of Proposition 17.5.3.

Altogether, we have shown the following.

17.8.1 Theorem
Context-free regular inclusion games with the target language represented by a DFA are EXP-

complete, and an algorithmbasedon effective denotational semantics solves them in exponen-

tial time.

Whenwe are given a context-free regular inclusion game (G , A)where A is an NFA, we nowhave

two procedures with doubly exponential running time for solving it. The first is the algorithm

that we have discussed earlier in this the chapter. The second procedure starts by determiniz-

ing the automaton, obtaining a new instance (G , Adet) that is potentially exponentially larger.

However, we can now apply the algorithm described in this section to solve this larger instance

in singly exponential time (in its size), resulting in doubly exponential time overall.

While both algorithms solve the problem, we expect the first approach to be much more effi-

cient for the same reasons that we have discussed in Section 17.7. An upfront determinization

of the automaton introduces a guaranteed blowup, even if some parts of the automaton may

actually never be used by words that can be derived in the grammar. The first approach uses

an on-the-fly determinization that may avoid this blowup.
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17 Context-free games

17.9 ω-context-free inclusion games

We complete our study of context-free games by studying ω-context-free ω-regular inclusion

games. In the case of context-free inclusions games with a regular language of finite words as

the target language, all infinite plays are won by the universal player. In order to be able to win,

the existential player had to be able to enforce the termination of any play. Here in this section,

we will take the opposite approach. We define the winning condition so that the universal

player wins all plays that do terminate. For plays that are infinite, the winner is determined

by whether the play corresponds to an infinite word in the given ω-regular target language. To

be precise, the existential player wins if the play corresponds to a right-infinite left-derivation

process that produces an infinite word that is not contained in the target language.

Formal definition

Formally, an ω-context-free (ω-regular) inclusion games is given by a context-free game gram-

mar G = (N ∪⋅ N , P, S) and a nondeterministic Büchi automaton A = (Q , δ, qinit , Qfinal). The

game arena is defined as for context-free regular inclusion games in Section 17.1: Starting from

the initial symbol, a play is a left-derivation process in which each player chooses the produc-

tion rules applied to the nonterminals owner by her. They key difference is that the winning

condition for the existential player is now non-inclusion in an ω-regular language. To this end,

she has to enforce that the play of the game corresponds to a right-infinite (left-)derivation pro-

cess as defined in Section 5.2. Recall that this means that the play is a sequence of sentential

forms that have a nonterminal as their rightmost symbol which is replaced infinitely often. Con-

sequently, the derivation of all other nonterminals is a finite process. The existential player wins

the play if and only if it constitutes such a right-infinite derivation process, deriving an infinite

word w not contained in Lω(A). In all other cases, the universal player wins: This applies when

the play is a right-infinite derivation process deriving a word from Lω(A), but it also applies if

the play is finite, or if it is infinite, but it is not a right-infinite derivation process, or if it is a right-

infinite derivation process that does not derive an infinite word. The latter case could occur

if starting at some point, the terminal prefix of the sentential form stops growing. Our hope

is to extend the techniques for context-free games in the same way that we extended our al-

gorithm for context-free regular inclusion to ω-context-free ω-regular inclusion in Section 16.3.

There are two major challenges. The first lies in the fact that the automaton representing the

ω-regular target language is nondeterministic. The second one is that least fixed-points as used

in effective denotational semantics seem to be insufficient to capture the semantics of this type

of game. We discuss each of the problems in detail and present our solutions.

Determinizing the automaton

We have explained in Chapter 15 that a nondeterministic automaton representing the target

language poses a problem, as it essentially introduces a third player that can be merged with

neither of the other two players without changing the semantics of the game. In the case of
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17.9 ω-context-free inclusion games

context-free inclusion games, we have overcome this problem by using the transition monoid.

We have relied on the fact that using the transition monoid is a way of implicitly determinizing

the automaton. The same is not true for nondeterministic Büchi automata: Firstly, we cannot

determinize an NBA into a deterministic Büchi automaton in general. Secondly, even by consid-

ering a more involved acceptance condition for which deterministic automata are sufficiently

expressive, like the parity orMuller acceptance conditions, considering the transitionmonoid is

not enough. Unlike in the case of automata on finite words, in general there is no deterministic

automaton that uses transition monoid elements (boxes) as states that is equivalent to a given

NBA. We have used in Section 16.3 that infinite words can be represented by pairs of boxes τρω.

However, during the derivation of a word, it is impossible to decide on-the-fly which pair of

boxes τρω is the correct one and where the split between theL(τ) and theL(ρ)ω part happens.

In the case of a verification problem, we could overcome this by guessing nondeterministically.

In the case of a game, this mechanism is invalid: We cannot let one of the players guess for the

same reasons that cannot let one of players pick the moves of the automaton (as explained in

Chapter 15).

Our solution to this problem is anupfront determinizationof the automaton, the very thing that

we successfully avoided in the case of context-free inclusion games. In the rest of this section,

we assume that the automaton representing the target language is a deterministic parity au-

tomaton A = (Q , Σ, δ, qinit , Ω). Using a famous result by Safra [Saf88], a given NBA with n states

can be transformed into a DPA with 2O(n⋅log n) states. These states are so-called Safra-trees, and

the construction is a variant of the powerset construction that is rather involved. We also as-

sume that the priority function Ω∶Q → N does not assign the priority 0 to any state, as we will

need this priority later for the empty word. This condition can be easily enforced by increment-

ing all priorities by 2. Let d be the largest priority assigned to any state of the automaton in the

following.

Solving finite subgames

Before actually considering the ω-context-free game, we set up a system of equations whose

least solutions characterizes the effect of finite words on the parity automaton. We re-use the

system that we have developed in the previous section for context-free games with the target

language being represented by a DFA. The only modification that is needed is tracking the pri-

orities in the automaton. Formally, we consider formulas in pBF(Q × [0, d]) whose atoms are

tuples of a target state and the largest priority that has been seen.

We quickly recall the construction. For each state q and each nonterminal X , there is a variable

qX . Its defining equation is

qX = preprocessq(β(1)) ∧∨ . . . ∧∨ preprocessq(β(k)) .
Here, X → β(1) ∣ . . . ∣ β(k) are all production rules for nonterminal X , and ∧

∨ is disjunction if

and only if the owner of X is the existential player. The operation preprocessq applied to a
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sentential form β1 .β2 . . . βm prefixes the first symbol by q, replaces all other symbols βi by the

family (p βi)p∈Q , and connects them using the composition operator ; . Formally, we define

preprocessq(β1 .β2 . . . βm) = q β1 ; (p β2)p∈Q ; . . . ; (p βm)p∈Q .

This system is interpreted over (equivalence classes of ) positive Boolean formulas from

pBF(Q × [0, d]), ordered by implication. Conjunction and disjunction are interpreted in the

expected way. For each terminal a ∈ Σ and each state q ∈ Q, the interpretation of the constant

q a is the formula just consisting of the atom (p, j), where p is the unique state with q
a
−→ p in

the automaton, and j = max{Ω(q), Ω(p)}. For any state q, the interpretation of the constant q ε

is the atom (q, 0). Our rationale behind using priority 0 here (which by assumption is not as-

signed to any state) is that in the ω-context-free game, the existential player has to guarantee

the derivation of an infinite word. If the game derives an infinite sequence of ε starting at some

point, the result of the play is not an infinite word, and the play is won by the universal player.

Therefore, we should assign an even priority to ε, since even priorities correspond towords that

are acceptedby the automaton (which is good for theuniversal player). However, thederivation

of infinitely many ε is only problematic if no non-ε word is derived infinitely often – therefore,

we assign the lowest even priority to ε.

The composition operator ; is a (∣Q∣ + 1)-ary operator that composes a formula F with a family

of formulas (Hq)p∈Q . Compared to the previous section, the definition is altered so that it keeps

track of the maximal priority. We inductively define F ; (Hq)p∈Q to be

(F ∧
∨ F

′) ; (Hq)q∈Q = F ; (Hq)q∈Q ∧
∨ F

′ ; (Hq)q∈Q(p, j) ; (Hq)q∈Q = max j Hp ,

where max j Hp is defined by

max j (H ∧
∨ H

′) = max jH ∧
∨ max jH

′

max j (s, j′) = (s,max{ j, j′}) .
The intuition behind the definition is as follows: Assume the automaton is in state q, and we

derive a finiteword from the sentential form Y .Z . Thismeanswe first derive a finiteword from Y ,

tracking the target state p and the maximum priority j that has occurred during the run of the

automaton from q to p. We then derive a word from Z while tracking the target state s of this

word from the source state p and the maximum priority j′ along the way. The information of

interest for the concatenation of these words is the target state s and the maximum priority

max{ j, j′} seen along the run from q to s.

With the interpretation fixed, we can solve the system of equations. We obtain for each pair qX

of state and nonterminal a formula sol(qX) ∈ pBF(Q × [0, d]). The atoms (p, j) in that formula
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correspond to finite words derivable from X that introduce a run from q to p with maximum

priority j in the automaton.

Solving the ω-game

It remains to use the information about the finite subgames to solve the ω-context-free game.

Recall that a derivation of an infinite word in the language of an ω-context-free grammar can

be seen as a nested process consisting of an infinite path in the spinal graph of the grammar (as

defined in Section 4.4) and a sequence of finite derivations from the symbols occurring as tran-

sition labels along that path. Similarly, a play of an ω-context-free game consists of an infinite

play in the spinal graph constructing an infinite sentential form, and a sequence of plays from

the symbols of that sentential form. In order to win, the existential player has to enforce that

the latter are finite, i.e. they are plays of a context-free game.

We use this insight to construct a parity game on a finite arena that is induced by the spinal

graph and the parity automaton representing the target language. For each nonterminal X and

state q of the DPA, (X , q) is a position of the game. The initial position is (S , qinit), consisting of

the initial symbol and the initial state. When the parity game that we construct is in some posi-

tion (X , q), it proceeds as follows. Firstly, the owner of X picks some production of the grammar

for X . If this production is not of the shape X → β.Y , i.e. its rightmost symbol is not a non-

terminal, the play does not represent a right-infinite left-derivation process and the universal

player wins immediately. Else, we consider the formula F = sol(preprocessqβ) that describes
the behavior of the finite play from β with respect to the initial state q. Here, we have used the

preprocessq operator to insert the states of the automaton into the sentential form. Secondly,

we let the players resolve the operators in F in the expectedway: The existential player resolves

disjunctions, the universal player resolves conjunctions. Finally, the play arrives at an atom of

the shape (p, j). From this position, the play continues at (Y , p), the position formedby the right-

most nonterminal of the production and the state that was reached by the finite word that was

derived from β. The priority of each position in the parity game is 0, unless the position is of the

shape (p, j), in which case it is j.

A play of the parity game inwhich only transitions of the shape X → β.Y are picked corresponds

to a right-infinite left-derivation process. The finite play that unfolds from β is represented by

the formula structure. This means we use the formulas to represent a play of finite, but un-

bounded length by a play on the formula of bounded length. The literal (p, j) that is the result

of such a bounded play corresponds to the behavior of the finite word that is derived from β on

the DPA. In particular, the priority j corresponds to themaximumpriority seen in the run on the

word. If the existential player wins the parity game, i.e. she can enforce a play in which the dom-

inating priority is odd, she can enforce the derivation of an infinite word that is not accepted by

the DPA. This means she wins the ω-context-free game by proving non-inclusion.

Before giving the proof, it is necessary to make the construction of the parity game formal. For

the sake of simplicity, we proceed as in the proof of Proposition 17.5.3 and assume that all for-
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mulas are in conjunctive normal form. Thismeans that sol(preprocessqβ) is a set of clauses, and

each such clause is a set of literals. The parity game has as positions a sink ⊥, positions of the

shape (X , q) and positions for the formulas, clauses, and literals,

Γ = (N × Q) ∪ {⊥}
∪ {(sol(preprocessqβ), Y) »»»»» X → β.Y is a production}
∪ {(K , Y) »»»»» K ∈ sol(preprocessqβ), X → β.Y is a production}
∪ {((p, j), Y) »»»»» (p, j) ∈ K ∈ sol(preprocessqβ), X → β.Y is a production} .

The initial position is (S , qinit). The existential player owns all positions of the shape (X , q) for
X ∈ N and all positions (K , Y) corresponding to clauses. All other positions are owned by the

universal player. The priority of a position (p, j) is j. The priority of all other positions is 0.

The transitions connect positions of the shape (X , q) to formulas according to the productions

for X , or to the sink state. The sink state has a self-loop as its unique outgoing transition. They

also connect formulas to their clauses and clauses to their literals. Empty clauses are connected

to the sink state. Finally, literals are connected to the positions of the shape (X , q),
T = {(X , q) → ⊥ ∣ X → η is a production with η /∈ (N ∪ T )∗ .N}

∪ {⊥ → ⊥}
∪ {(X , q) → (sol(preprocessqβ), Y) »»»»» X → β.Y is a production}
∪ {(sol(preprocessqβ), Y) → (K , Y) »»»»» K ∈ sol(preprocessqβ), X → β.Y is a production}
∪ {(K , Y) → ((p, j), Y) »»»»» (p, j) ∈ K ∈ sol(preprocessqβ), X → β.Y is a production}
∪ {(K , Y) → ⊥

»»»»» K = ∅, K ∈ sol(preprocessqβ), X → β.Y is a production}
∪ {((p, j), Y) → (Y , p) ∣ Y ∈ N, p ∈ Q} .

With the formal construction at hand, we can prove the main result.

17.9.1 Theorem
The winner of the finite parity game equals the winner of the ω-context-free ω-regular game.

Proof:
It is well-known that parity games are determined: Exactly one of the players has a winning

strategy. We prove that this winning strategy induces a winning strategy for the ω-context-free

game. We give the formal proof in the case that the existential player wins the parity game. The

proof for the universal player is easier as one has to care less about various corner cases.

Assume that some winning strategy for the existential player is fixed. We show how to turn a

conforming play of the parity game into a play of the context-free game. We do this in a way
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that implicitly defines awinning strategy. In particular, whenever the universal player canmake

a choice, we consider all of these choices.

Assume that theplayof theparity game is in somenode (X , q) and theplayof theω-context-free

game is in some sentential form w .X . Initially, we have X = S, w = ε, and q = qinit. The owner

of X selects a transition X → β.Y in the parity game, andwe pick the corresponding production

in the ω-context-free game. If X ∈ N , this transition is chosen according to the winning strat-

egy. Note that any production that is not of the shape X → β.Y will never be chosen, since it

would lead to the sink state of the parity game in which the universal player wins.

The parity game is now in the state (sol(preprocessqβ), Y), in which the universal player can

choose one of the clauses of the formula. Since we are following a winning strategy, we know

that the existential player can react to any choice that the universal player can make. More for-

mally, for each clause K ∈ sol(preprocessqβ) that the universal player could select, there is one

atom (p, j) ∈ K contained in that clause so that thewinning strategywould select the transition(K , Y) → ((p, j), Y) in the parity game. Note that this in particular implies that the formula can-

not be equivalent to false: A positive Boolean formula in conjunctive formal is unsatisfiable if

and only if it contains the empty clause. The empty clause in the game is connected to the sink

state, which would lead to the universal player winning the play.

We define a variable assignment that sets the atoms to true that are picked by thewinning strat-

egy. More precisely, (p, j) is evaluated to true true if the winning strategy picks the transition(K , Y) → ((p, j), Y) for some clause K . Since every clause contains at least one such atom, the

formula sol(preprocessqβ) evaluates to true under that assignment. By an analogue of Proposi-

tion 17.3.4, adapted to the setting under consideration, one can show that the existential player

has a strategy from β that enforces the derivation of a finite word v whose effect is described

by (p, j). Thismeans q
v
−→ p in the DPA, and themaximumpriority seen in the run is j. We invoke

this strategy in the ω-context-free game to go from sentential formw .β.Y (which we obtained

from w .X by applying X → β.Y ) to w .v .Y . Now, the play of the ω-context-free game continues

from that sentential form, while the play of the parity game continues from (Y , p). We repeat

this process ad infinitum.

When following this strategy in the ω-context-free game, we encounter an infinite sequence of

sentential forms of the shape

S →
∗ w(1)X1 →∗ w(1)w(2)X2 →∗ . . . →∗ w(1)w(2) . . .w(k)XK →

∗ . . .

We argue that this constitutes a right-infinite left-derivation process deriving an infinite word

not in the language of the DPA. Firstly, we note that the strategies that we invoke for the sub-

games enforce deriving a finite word. Thus, every subgame terminates after finitelymany steps,

and the process is indeed right-infinite. Secondly, each infix w(i) that is derived in such a sub-

game corresponds to an atom (pi , ji) of some formula that is chosen by the winning strategy in

the parity game. The fact that the strategy wins the parity gamemeans that the largest priority
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occurring infinitely often is odd. In particular, it is not zero, the priority that we have assigned

to ε above. Winning the parity game implies that infinitely many of the w(i) are not equal to ε,

and we indeed derive an infinite word. Finally, the atoms are witnesses for the unique run

qinit
w(1)
−−−→ p1

w(2)
−−−→ p2

w(3)
−−−→ . . .

of the DPA on the infinite word w(1)w(2)w(3) . . . that is derived by the process. Each priority ji
is the maximum priority seen during the run on the finite infix w(i). If the largest priority that

occurs infinitely often among the ji is odd, then so is the largest priority that occurs infinitely

often in the run. (Summarizing finite infixes in the sequence of priorities by taking their maxi-

mum does not change the dominating priority.) Hence, the run of the DPA on the word is not

accepting. The existential player has enforced the derivation of an infinite word that is not in

the language of the DPA. ⬛

With the soundness of the construction proven, we turn to considering its complexity. Assume

thatwe have fixed a grammarG and aDPAwithQ as its sets of states. We claim that the running

timeof our algorithm is polynomial inG andexponential inQ. Note thatwe can assumewithout

loss of generality that the maximum priority d is inO(∣Q∣), d ⩽ ∣Q∣ + 4 to be precise.

Firstly, we can argue similarly to theprevious section that computing sol(preprocessqβ) for each
transition X → β.Y can be done in that time. Also, the number of such transitions is bounded

by ∣G∣. The formulas themselves can be shown to obey a similar bound: The number of atoms

is ∣Q × [0, d]∣ = ∣Q∣ ⋅ (d + 1). This also bounds the size of any clause, and there are at most

2∣Q∣⋅(d+1) clauses, which bounds the size of any formula. Combining atmost ∣G∣ of these objects

into a parity game leads to a parity gamewhose size is polynomial in ∣G∣, exponential in ∣Q∣, and
whosemaximumpriority is inO(∣Q∣). We cannowuse the recent breakthrough result [CJKLS17]

that parity games are fixed-parameter tractable: They can be solved in time polynomial in the

size of the arena and exponential only in the maximum priority. Since the maximum priority is

linear in the size of the original input, solving the parity game overall is exponential in the size

of the input. Altogether, we obtain the desired running time.

Ifwe imagine startingwithanondeterministic Büchi automaton insteadof adeterministic parity

automaton, we first have to apply the Safra construction for determinization. It transforms an

NBA with set of states Q into a parity automaton with a set of states of size 2O(∣Q∣⋅log∣Q∣) and
maximum priority in O(∣Q∣). Applying the determinization and then the rest of the algorithm

leads to a running time that is polynomial in the size of the grammar and doubly exponential

in the size of the NBA. This is the optimal time complexity. Obviously, solving ω-context-free

games with an NBA representing the target language is 2EXP-hard: A context-free game with

an NFA representing the target language can be seen as a special case of such a game, and for

this case, we have proven 2EXP-completeness in Theorem 17.5.4. To transform the instance, it

is sufficient to modify the grammar and the automaton so that they first produce a finite word

as usual, and then proceed to generate an infinite sequence of occurrences of a filler symbol.
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Can the parity game construction can be avoided?

We have provided an algorithm for ω-context-free games with the optimal time complexity.

The fact that this algorithm relies on solving a parity game might seem undesirable. An algo-

rithm that simply solves a system of equations to compute the winner of the game with no

additional steps would be a cleaner solution and potentially more efficient. However, solving

parity games is a well-studied topic, so it would be easy enough to actually implement the al-

gorithm by combining a modified version of the solver we have presented in Section 17.7 with

a solver for parity game like Oink [Dij18].

In the following, we want to argue that it might be impossible to devise an algorithm for com-

puting thewinningof anω-context-free inclusiongameby simply computinga least fixedpoint.

In their papers [SW15b; SW15a], Salvati and Walukiewicz have considered the λY calculus as a

tree-generating mechanism which is closely related to higher-order recursion schemes. They

have shown that a so-called Scott model (which is similar to the model template for HORSes

that wewill introduce in Section 18.2) that is based on either least or greatest fixed points is not

very expressive when it comes to its capabilities of accepting trees generated by λY-calculus

terms. Its expressiveness is equal to boolean combination of Ω-blind automata. The precise

definition of Ω-blind automata is beyond the scope of this thesis; it shall suffice to say that an

Ω-blind automatawill accept all infinite branches of a tree (and its negationwill reject all infinite

branches of a tree). Hence, a boolean combination of Ω-blind automata is insufficient to check

liveness properties (like membership in an ω-regular language) along an infinite branch of the

tree generated by a λY-calculus term.

In personal communication with the author of this thesis, Roland Meyer has conjectured that

the result by Salvati andWalukiewicz can be used to show that ω-context-free inclusion games

cannotbe solvedwith analgorithmbasedoneffectivedenotational semantics that simply trans-

lates the problem of computing the winner into computing the least solution to a system of

equations. Recall that a context-free grammar can be seen as a higher-order recursion scheme.

It should be possible to transform a game grammar into a term in the λY-calculus that gener-

ates a tree so that each possible play of the game corresponds to a branch of that tree. We leave

making this correspondence formal for future work.

Walukiewicz’swork also provides uswith an explanationwhy this problemcanbe circumvented

by constructing and solving a parity game instead of trying to read off the winner from the

solution to the system of equations directly. He has shown in [Wal02] that the winning regions

of parity games can be described by formulas in µ-calculus that contain an alternation of least

and greatest fixed-point operators. Hence, solving a parity game based on the solution to the

system of equations means computing a so-called non-extremal fixed point that is obtained

by nesting least and greatest fixed-point operators. The expressiveness results by Salvati and

Walukiewicz do not apply to semantics featuring non-extremal fixed point operators.
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We think that if this part of the computation potentially cannot be avoided, then representing

it via parity games, for which there is a plethora of research and numerous solvers like the ones

implemented in the aforementioned tool Oink, is the most elegant way to deal with the issue.
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We demonstrate the versatility of our technique for solving inclusion games based on effective

denotational semantics by applying to it to games induced higher-order recursion schemes.

The setting is similar to the one in the previous chapter: We consider a word-generating recur-

sion schemewhosederivationprocesses are controlledby theplayers, and thegoal of the game

is membership resp. non-membership in a regular target language. The approach that we take,

however, is vastly different.

After giving the formal definition of HORS games, we consider themore general case of the sys-

tem of equations associated to a deterministic HORS. We design a model template that allows

us to get a full model for interpreting such a system. To instantiate the template, it is sufficient

to provide a domain for kindground and the interpretations for the nonterminals. We apply this

model template to the determinization of a game HORS and show that the associated least so-

lution to the interpreted system of equations characterizes the winner of the game. This leaves

us with the problem that we cannot compute this least solution since we have used a domain

that does not satisfy the ascending chain condition.

Returning to a more general setting, we present a framework for exact fixed-point transfer. It

allows us to transfer the properties of the least fixed point with respect to one model to the

least fixed point with respect to another one. We then use this framework to go from the afore-

mentioned infinite domain to amodel with a finite domain. The latter allows us to compute the

least solution while preserving the information about the winner of the game.

Publication

The chapter presents material that has been published in the form of the paper [HMM17]

(resp. its full version [HMM17a]). Compared to the publication, thematerial has been improved.

We will discuss both the improvements and the authors author’s contributions to the publica-

tion in Chapter 20.
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18 Higher-order games

18.1 Higher-order games

We define inclusion games on arenas induced by word-generating higher-order recursion

schemes. A higher-order (regular) inclusion game is of the shape (G , A), whereG is a gameHORS¹,

a word-generating HORS whose nonterminals N = N ∪⋅ N are partitioned into the nontermi-

nals owned by each of the players. Recall that being word generatingmeans that the terminals

are of the shape T = Σ∪⋅ {$∶ o}, consisting of a set Σ of terminals of kind o → o and theword-end

marker. The second component Aof the inclusion game is an NFA over Σ, specifying the regular

target language.

A game HORS induces a game arena. The positions in the arena are the terms of the HORS of

kind ground, i.e. well-kinded expressions of kind o that can be built using the nonterminals,

terminals, and variables. We fix S, the initial nonterminal of kind o, to be the initial position of

interest. The moves in the arena are defined by outermost-to-innermost (OI) derivation steps.

Recall that this means replacing an outermost redex (a subexpression that starts with a nonter-

minal and has all parameters present so that it is of kind o) using one of the rules of the HORS.

The restriction to OI derivations in conjunction with the assumption that the HORS is word gen-

erating means that each term of kind o has a unique outermost redex. To be precise, such a

term will either not contain a nonterminal, being of the shape a1(. . . an($)), which we identify

with the finite word a1 . . . an ∈ Σ
∗, or it will be of the shape

a1(a2(. . . an(F t1 . . . tk) . . .)) ,
where F is the outermost nonterminal, uniquely determining the outermost redex. To see that

this is true, note that the initial term S satisfies this property and that applying a replacement to

the outermost redex in a term of this shape will result in another term of this shape. Here, it is

crucial that we cannot obtain terms of the shape a (F . . .) (G . . .), i.e. a terminal with two redexes

as parameters, in a word-generating scheme.

The aboveobservation allowsus to assign to each termanownerbasedon its outermost nonter-

minal: Player owns the term a1(a2(. . . an(F t1 . . . tk) . . .)) if F ∈ N . For terms not containing

nonterminals, the ownership does not matter.

With the definition of the game arena completed, we observe that a play from S is an OI-

derivation process of the HORS in which each player selects the replacement steps for the

nonterminals owned by her. This is similar to the definition of context-free games in the

previous chapter.

The winning condition is (non-)membership in the regular target language defined by automa-

ton A. Aplay that ends in a terminalword a1 . . . an not contained inL(A) iswonby theexistential

player. All other plays, including all infinite ones, are won by the universal player.

¹ Game HORSes should not be confused with horse games, e.g. polo.

376



18.1 Higher-order games

Note that one could also give a definition that fits our framework for games from Chapter 15 by

basing it on the growth of the terminal prefix a1 . . . an of a term a1(a2(. . . an(F t1 . . . tk) . . .)).
The rest of this chapter is dedicated to solving higher-order inclusion games by computing the

player that has a winning strategy from the initial position. The difficulty lies in having to com-

pute information about a game on an infinite arena based on the finite syntactical representa-

tion of that arena – the HORS and the automaton for the target language.

Related work

Similar to context-free inclusion games, HORS games can be approached from various angles.

Instead of considering games on arenas induces by HORSes, one can consider games induced

by higher-order pushdown automata [Cac03; BM04; KNUW05; HMOS08; HO07; HO09; BCHS12],

whichareequivalent to (a subclass of )HORSes [Dam82; DG86; KNU02]. As inWalukiewicz’swork

on the µ-calculus and context-free games [Wal01], the game aspect can also be present in the

form of the specification that is used in a verification problem that takes a HORS as input. For

example, the decidability ofmonadic second-order logic (MSO) resp. themodal µ-calculus over

trees generated by recursion schemes can be seen as such a result [KNU02; Cau02; Ong06], es-

pecially since the latter result by Ong explicitly uses game semantics. Kobayashi [Kob09; KO09]

has pioneered an approach to µ-calculus model checking on trees generated by HORSes that

is based on so-called intersection types. The typing algorithm that solves the problem then

amounts to computing a least-fixed point, which is similar to our approach using effective de-

notational semantics.

While our definition of HORS inclusion gameswith a regular target language seems to be novel,

thedecidability result thatwe strive toobtain in the rest of this chapter is not particularly surpris-

ing. It would have been possible to obtain the decidability of HORS inclusion games by reduc-

ing them to the setting considered in one of the aforementioned papers. Rather than the result

itself, the interesting aspect of our study is the way in which we obtain that result. It demon-

strates the versatility of our approach based on effective denotational semantics. Furthermore,

the technical development will yield results of independent interest, like the framework for ex-

act fixed-point transfer that we are going to present in Section 18.4, as a byproduct.
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18 Higher-order games

18.2 Amodel template for deterministic schemes

Our goal is to solve HORS games using effective denotational semantics. In order to do so, we

will design a system of equations, find a suitablemodel to interpret this system, and then argue

that the least solution to the interpreted system allows us to determine thewinner of the game.

For now, however, we will not focus on HORS games. Instead, we develop a general framework

for interpreting the systems of equations associated to HORSes. This framework is not only of

independent interest, wewill also instantiate itmultiple timeswhenwe solveHORS games later.

Associating equations to a deterministic HORS

We start with discussing on how to associate a system of equations to a HORS. We will provide

this construction for an arbitrary deterministic HORS.

Let G = (V , N, T , R, S) be a deterministic HORS, i.e. each nonterminal F has a unique rule F → t.

We design a system of equations representing G. As in the case of context-free grammars, it

has one variable for each nonterminal. In particular, the variables of the HORS do not become

variables of the system of equations. Each rule F → t of the HORS yield one equation F = t of

the system. To this end, we need to introduce function symbols that allow us to see the HORS

term t as a term of the system of equations, where the syntactic fragments that build up the

HORS term t yield the syntactic fragments that build the term t of the system of equations.

Following the definition of HORS terms in Section 5.3, each HORS term is obtained by compos-

ing three types of constructs: (1) HORS variables, terminals, and nonterminals, (2) function ap-

plication, and (3) lambda abstraction. As alreadymentioned, the HORS nonterminals are simply

the variables of the systemof equations. For everything else, we introduce appropriate function

symbols: We see terminals and HORS variables as constants, function symbols with arity zero.

Function application is a binary function symbol: If f and t are terms in the system of equation,

then f t is also a term. As usual for function application in the context of HORSes, we use infix

notation and omit brackets. For each variable x , the lambda abstraction λx is a unary function

symbol, so if t is a valid term in the system of equations, then so is λx .t

Choosing HORS terminals to have arity zero instead of assigning them their arity as specified by

the kindmight seempeculiar. The reason here is that a terminal in a HORS termdoes not always

have all its parameter present. For example, a terminal a∶ o → o may occur in a term like F a

without any parameter. Therefore, it makes sense to let terminals and variables be constants

and encode function application as a separate function symbol.

Introducing all of these function symbols allows us to see the set of production rules of the

HORS as a systemof equations. Note that an (interpreted) systemof equations according to our

definition from Section 16.1 is essentially a first-order construction, as it just deals with values

and functions that transform these values. By associating a system of equations to a HORS,
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18.2 A model template for deterministic schemes

we have essentially turned a higher-order object into a first-order one. In order to recover the

higher-order aspect, we will have to interpret the system of equations accordingly.

Themodel template

Later, wewill consider several interpretations of the same systemof equations associated to the

determinization of a game HORS. Each interpretation is of a similar shape. In order tomake this

formal, we define a model template for the system of equations associated to a deterministic

HORS. This model template can be instantiated using a very restricted amount of information,

yielding a full model, i.e. a domain and interpretations for all function symbols.

Formally, the model template is M− = (D− , I−) consisting of a domain D− and the interpreta-

tion I− of the function symbols. Instantiating the template requires a domainDo for elements

of kind ground and an interpretation for all terminals. The template then provides the rest of

the model: The domain for all other kinds and the interpretation of the variables, function ap-

plication, and lambda abstraction.

The domain

Westart by explaining thedomain. Assume that a CPPODo has been chosen. For anyother kind

κ1 → κ2, the domainDκ1→κ2 is then defined to be the set of join-continuous functions fromDκ1

toDκ2 . Wewill denote this domain byDκ1 →⊔Dκ2 in the following. Note that any such function

ismonotonic since join-continuity impliesmonotonicity. (Here, we generalize the definitions of

join-continuity and monotonicity from functions with signature D → D to arbitrary functions

where source and target set do not have to coincide.)

It is well-known that if D, D′ are CPPOs, then the set D →⊔D
′ of join-continuous functions from

D to D′ is also a CPPO. The ordering is component-wise, i.e. f ⩽ g iff f (x) ⩽ g(x) for all x . The

function f ∶ D → D′ that maps all elements of D to the bottom-element of D′ is the bottom

element of the function domain. The join of an ascending chain of functions is the function

that takes a value and returns the join of the chain of function values,

(⨆
i∈N

fi)(d) = ⨆
i∈N

(fi(d)) .
It is easy to verify that this is indeed the join of the chain. Let us briefly argue that ⨆i∈N fi
is join-continuous. Consider an ascending chain of values (d j) j∈N. We need to prove that(⨆i∈N fi)(⨆ j∈N d j) = ⨆ j∈N((⨆i∈N fi)(d j)).
By the definition of the join, the left-hand side of the equality is

⨆i∈N(fi(⨆ j∈N d j)) = ⨆i∈N⨆ j∈N fi(d j), using that each fi is join-continuous. We now ob-

serve that the two joins commute and use the definition of ⨆i∈N fi to get the right-hand side

of the desired equality.

We have obtained a CPPO Dκ for every kind κ ∈ K , and we define D = ⋃κ∈K Dκ to be their

union. However, the domains of the shape Dκ are insufficient to evaluate terms of the kind κ
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18 Higher-order games

that contain free variables. The right-hand sides of all rules of the HORS are guaranteed to be

closed in that each occurrence of a variable is bound by a preceding lambda abstraction, but

when applying structural induction, we will encounter subterms that contain free variables. In

order to handle free variables, the elements of our domain are functions that expect a valuation,

a partial function that assigns a value to each HORS variable that is free in the term of interest.

Hence, the domainD− that is used by our template is actually

D− = (V →p D) →⊔D ,

the set of join-continuous functions from valuations to D. Here V →p D, denotes the set of

partial functions from the variables toD, functions that may be undefined for some variables.

In order for the notion of join-continuity to make sense here, we need to see V →p D itself

as a CPPO. In order for this to succeed, we will need to restrict (V →p D) in the following way.

For each variable x of kind κ, we assume that a valuation either is undefined or it assigns a

value fromDκ . Whenever we write V →p D in the following, we implicitly assume that we only

consider valuations that respect the kinds of the variables. With this restriction in place, we can

define an order on valuations. We define ν ⩽ ν′ by requiring that for each HORS variable x ,

either ν(x) is undefined or both ν(x) and ν′(x) are defined and ν(x) ⩽ ν′(x) holds (using the

order ⩽ on Dκ , where κ is the kind of x). The least element of this CPPO is the function that

is undefined everywhere. The join of an ascending chain of valuations (νi)i∈N is the valuation

⨆i∈N νi with (⨆i∈N νi)(x) = ⨆i∈N(νi(x)). For the latter expression to make sense, we extend the

order on Dκ to an order on Dκ together with the undefined value by seeing undefined as the

new least element. In words, ⨆i∈N νi is the valuation that is undefined for a variable x if all νi
are undefined for x and that returns the join of the defined values νi(x) otherwise.

We summarize our definition of the domain.

18.2.1 Definition
LetDo be a CPPO. We recursively defineDκ1→κ2 = Dκ1 →⊔Dκ2 for all kinds κ1 , κ2 to be the CPPO

of join-continuous functions fromDκ1 toDκ2 . LetD = ⋃κ∈K Dκ .

We define D− = (V →p D) →⊔ D to be the set of join-continuous functions from valuations

ν∶ V →p D to domain elements d ∈ D.

In order to enable Kleene iteration later, we need a domain that is a CPPO. Formally, we would

need to argue that D− = (V →p D) →⊔ D is a CPPO. However, we will make sure that we

interpret each term t of kind κ as a value from (V →p D) →⊔ Dκ . In particular, we will never

need to compare a value from (V →p D) →⊔ Dκ to a value from (V →p D) →⊔ Dκ′ for distinct

kinds κ ≠ κ′. Hence, it will suffice to make sure that (V →p D) →⊔Dκ is a CPPO for each kind κ.
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18.2 A model template for deterministic schemes

18.2.2 Lemma
For each kind κ, (V →p D) →⊔Dκ is a CPPO.

Proof:
The set V →p D of valuations is a CPPO under the assumption that we only consider valuations

that respect the kinds of the variables. The set Dκ is either Do which is a CPPO by assump-

tion or it is a CPPO as the set of join-continuous functions from one CPPO to another. Hence,(V →p D) →⊔Dκ is the CPPO of join-continuous functions from one CPPO to another.

Note that the least element of (V →p D) →⊔Dκ is the function that ignores the given valuation

and returns the least element ofDκ . The join of a chain of functions is the function that returns

the join of the chain of function values. ⬛

The interpretations

After fixing the domain D−, it remains to provide interpretations for all function symbols. We

assume that for each terminal a of kind κ, an interpretation, aI− ∈ Dκ has been provided. We

can see aI− as a function with signature (V →p D) →⊔ D that ignores the provided valuation

and always returns the same element. Indeed, in the term a itself, no variable occurs freely.

The template should provide the interpretations for all other types of function symbols: vari-

ables, function application, and lambda abstraction. A HORS variable x is interpreted as

xI− ∶ (V →p D) →⊔ D, the function that takes a valuation ν and returns ν(x). This function is

indeed join-continuous by the definition of the join on V →p D. Note that if the valuation re-

spects the kinds of the variables, ν(x)will be an element ofDκ , where κ is the kind of variable x .

The interpretation of function application is a function with signature

D−
2
→ D− = ((V →p D) →⊔D)2 → (V →p D) →⊔D .

It expects three parameters: two values fI , tI ∈ D− and a valuation ν. We define the interpreta-

tion (fI tI )I−ν of function application to be (fI )ν (tIν). Intuitively, fI and tI are interpretations

of terms and ν specifies the values of variables that are free in f or t.

18.2.3 Lemma
The interpretation of function application has signature D−

2
→ D−: For any f

I , tI ∈ D−, the

result of function application is the value (fI tI )I− ∈ D−.

If ν∶ V →p D respects the kinds of the variables, fIν ∈ Dκ1→κ2 , and tIν ∈ Dκ1 , then(fI tI )I−ν = (fIν) (tIν) ∈ Dκ2 .
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18 Higher-order games

Proof:
We prove the second part of the statement first. We have that fIν is a value fromDκ1→κ2 , which

is a join-continuous function from Dκ1 to Dκ2 . Similarly, tIν is in Dκ1 . Hence, (fI−ν) (tI−ν) is in

Dκ2 , and κ2 is indeed the kind of f t.

To show that the interpretation of function application has the required signature, we need to

argue that (fI tI )I− is join-continuous on the level of valuations. Consider an ascending chain

of valuations (νi)i∈N. We need to prove

(fI tI )I−(⨆
i∈N

νi) = ⨆
i∈N

(fI tI )I−(νi) .
By definition, we have (fI tI )I−(⨆i∈N νi) = (fI (⨆i∈N νi))(tI (⨆i∈N νi)) . By assumption, fI and

tI are elements of D−, so they are join-continuous. We can rewrite the right-hand side of the

equality as (⨆i∈N f
Iνi)(⨆i∈N t

Iνi) . Asmentioned before, each fIνi is a join-continuous function

fromDκ1→κ2 . The join onDκ1→κ2 is defined to be simply the function that returns the join of the

function values, so we can rewrite this expression as ⨆i∈N (( fIνi)(⨆i∈N t
Iνi)) . Because each

fIνi is join-continuous, we finally obtain⨆i∈N⨆i∈N( fIνi)( tIνi) .Omitting one of the joins does

not change the result and applying the definition of the interpretation of function application

proves the desired equality. ⬛

To complete the specification of the model, we have to define the interpretation of lambda

abstraction. For each variable x , the interpretation (λx)I− is a function with signature

D− → D− = ((V →p D) →⊔D) → (V →p D) →⊔D .

It takes as parameters a value tI ∶ (V →p D) →⊔ D, which intuitively is the interpretation of a

term, and a valuation ν. It returns the function d ↦ tI (ν[x ↦ d]) that expects a value d for x

and evaluates tI at ν with the value for x replaced by d.

18.2.4 Lemma
The interpretation of lambda abstraction has signature D− → D−: For any variable x and any

tI ∈ D−, the result of lambda abstraction is (λx)I− tI ∈ D−.

If ν∶ V →p D respects the kinds of the variables, x has kind κ1 and tIν ∈ Dκ2 , then(λx)I− tIν ∈ Dκ1→κ2 .

Proof:
We prove the second part of the statement first. Assume that variable x has kind κ1, and that

term t has kind κ2. We have that ((λx)I− tI )ν is a function that takes d ∈ Dκ1 and returns

tI (ν[x ↦ d]) ∈ Dκ2 . Hence, it is indeed a function from Dκ1 to Dκ2 . This matches the kind

κ1 → κ2 of the term λx .t. To conclude that the function d ↦ tI (ν[x ↦ d]) is an element of

Dκ1→κ2 , we need to argue that it is join-continuous. Let (di)i∈N be an ascending chain in Dκ1 .
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18.2 A model template for deterministic schemes

We first observe that the valuation ν[x ↦ ⨆i∈N di] equals the join⨆i∈N ν[x ↦ di] by the defini-

tion of the join on V →p D. We then note that tI ∶ (V →p D) →⊔D is join-continuous, and obtain

tI (ν[x ↦ ⨆i∈N di]) = ⨆i∈N t
I (ν[x ↦ di]) as desired.

To prove the first part of the statement, we need to argue that (λx)I− tI is join-continuous on

the level of valuations. Let (νi)i∈N be an ascending chain of valuations. We need to show

(λx)I−(tI )(⨆
i∈N

νi) = ⨆
i∈N

(λx)I−(tI )νi .
The left-hand side of the equality is the function d ↦ tI ((⨆i∈N νi)[x ↦ d]) . The valuation(⨆i∈N νi)[x ↦ d] equals ⨆i∈N(νi[x ↦ d]) using the definition of the join on V →p D. Since

tI ∶ (V →p D) →⊔ D is join-continuous, the function equals d ↦ ⨆i∈N t
I (νi[x ↦ d]) . By

the definition of the join on the level of functions, this function is the join of the functions

d ↦ tI (νi[x ↦ d]), which by the definition of the interpretation of lambda abstraction is the

right-hand side of the equality we wanted to show. ⬛

Join-continuity

We have fully specified our M− = (D− , I−) by providing a domain and interpretations for all

function symbols. In order to prove that the model satisfies the requirements for Kleene it-

eration as presented in Section 16.1, we need to argue that the interpretation of all function

symbols are join-continuous.

When we have considered join-continuity in the proofs of the previous lemmas, we were dis-

cussion join-continuity on the level of valuations. We were merely arguing that for each term t,

its interpretation is a value of (V →p D) →⊔ D, i.e. a join-continuous function that expects a

valuation. To satisfy the requirements of Kleene’s theorem, we need to argue that the functions

are also join-continuous with respect to their arguments fromD−.

Remark
In the previous chapter, it was sufficient to prove that the interpretations are monotonic by

relying on finiteness of the domain and Remark 16.1.4. In this chapter, we are interested in

instantiating the model template for domains that are not necessarily finite and that do not

necessarily satisfy the ACC.

For constants, function symbols without arguments, there is nothing to do. This applies to the

interpretations of terminals andHORS variables. It remains to consider the unary interpretation

of lambda abstraction and the binary interpretation of function application.

18.2.5 Lemma
The interpretation of lambda abstraction is a join-continuous functionwith signatureD− → D−.
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Proof:
Let us consider a lambda abstraction λx where x is of kind κ1. Let (ti)i∈N be an ascending chain

of values in (V →p D) → Dκ2 . We have to show (λx)I−(⨆i∈N ti) = ⨆i∈N (λx)I−(ti). The expression

on the left-hand side is equal to

(ν, d) ↦ (⨆
i∈N

ti)(ν[x ↦ d]) ,
a function that takes a valuation ν anda value d for x andevaluates⨆i∈N ti at ν[x ↦ d]. Similarly,

the expression on the right-hand side equals,

⨆
i∈N

((ν, d) ↦ ti(ν[x ↦ d])) .
Using the definitions of the join on (V →p D) →⊔D and the join onDκ1→κ2 , this equals

(ν, d) ↦ ⨆
i∈N

(ti(ν[x ↦ d])) .
We use the definition of the join on (V →p D) →⊔D again to establish

(⨆
i∈N

ti)(ν[x ↦ d]) = ⨆
i∈N

(ti(ν[x ↦ d])) ,
which yields the desired equality. ⬛

We proceed similarly for function application, which is a binary function. We need to prove

join-continuity in both parameters, which we will do simultaneously.

18.2.6 Lemma
The interpretation of function application is a join-continuous function with signature

D−
2
→ D−.

Proof:
Let (fi)i∈N be an ascending chain in (V →p D) →⊔Dκ1→κ2 and let (t j) j∈N be an ascending chain

in (V →p D) →⊔Dκ1 . We need to prove the following equality

((⨆
i∈N

fi) (⨆
j∈N

t j))I− = ⨆
i∈N

⨆
j∈N

(fi e j)I− .
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Both expressions are functions that expect a valuation ν∶ V →p D and return a value from Dκ2 .

Evaluating the left-hand side at some valuation ν yields

((⨆
i∈N

fi) (⨆
j∈N

t j))I− ν = ((⨆
i∈N

fi) ν) ((⨆
j∈N

t j) ν) = ⨆
i∈N

(fi ν) ⨆
j∈N

(t j ν)
= ⨆
i∈N

((fi ν) ⨆
j∈N

(t j ν)) = ⨆
i∈N

⨆
j∈N

((fi ν) (t j ν)) ,
using the definition of the interpretation of function application, the definition of the join on(V →p D) → Dκ for all kinds κ, the definition of the join onDκ1→κ2 and the fact that each fi ν is a

join-continuous function. Evaluating the right-hand side of the above expression at ν gives us

(⨆
i∈N

⨆
j∈N

(fi e j)I−) ν = ⨆
i∈N

⨆
j∈N

((fi e j)I− ν) = ⨆
i∈N

⨆
j∈N

((fi ν) (t j ν)) ,
using the definition of the join on (V →p D) →⊔Dκ2 and the definition of the interpretation of

function application. The desired equality holds. ⬛

The semantics of terms

We have completed the definition of the model template M− = (D− , I−). Each term of the

HORS that does not contain nonterminals can be interpreted as a value from D. Furthermore,

if the kind of term t is κ and ν is a valuation that respects the kinds of the variables, then we get

that the interpretation of t evaluated at ν is a value fromDκ .

It remains to consider terms that contain variables of the system of equations, i.e. nonterminals

of the HORS. The theory from Section 16.1 fixes a semantics M−JtK for each term t. In particu-

lar, it does so for the terms that occur as the right-hand sides of the rules of the deterministic

HORS, which are the right-hand sides of the equations in our system. Let us consider what the

signature of MJtK is. Formally, it is a function that expects an assignment of the variables of

the system of equations and then evaluates t at this assignment. The variables of the system of

equations are the nonterminals of the HORS. We get the signature

M−JtK∶ (N → D−) →⊔D− .

Here, we have used the fact that the interpretation of each function symbol is join-continuous

(Lemmas 18.2.5 and 18.2.6) and join-continuity is preserved under composition. Hence, the

interpretation of each term is also join-continuous.

By substitutingD− using its definition, this signature equals

(N → ((V →p D) →⊔D)) →⊔ (V →p D) →⊔D .
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Our first observation is that to evaluate the variables (nonterminals), a valuation of the HORS

variables is not needed. A term that only consists of a nonterminal does not contain a free

variable. Hence, we can simplify the expression to

(N → D) →⊔ (V →p D) →⊔D .

Intuitively, to evaluate a term in order to obtain an element of D, we need an assignment of

values to the nonterminals and a valuation of the HORS variables. We merge the assignment

and the valuation into a single valuation, a partial function with signature N ∪⋅ V →p D. When

evaluating a term t, this valuation should be defined for all nonterminals and all HORS variables

that are free in t. Furthermore, wewill implicitly assume that we only consider valuations ν that

respect the kinds (of both HORS variables and nonterminals), i.e. if F resp. x is of kind κ, then

ν(F) resp. ν(x) is a value fromDκ . Under this assumption, a term of kind κ should evaluate to a

value fromDκ .

Altogether, we have proven the following.

18.2.7 Lemma
The semantics of a HORS term t is a join-continuous function

M−JtK∶ (N ∪⋅ V →p D) →⊔D .

If ν is a valuation that respects the kinds and t is of kind κ, thenM−JtKν ∈ Dκ .

Applying Kleene’s theorem

Consider the interpretation of the system of equations under a model that results from instan-

tiating the model template. The least solution to the interpreted system is the least fixed point

of the function that is obtained by combining the interpretations of the right-hand sides of the

equations, i.e. the rules of the deterministic HORS. Because themodel satisfies the requirement

of Kleene’s theorem, the existence of this least fixed point is guaranteed.

18.2.8 Proposition
The system of equations associated to a deterministic HORS interpreted under a model that

results from instantiating the model template has a least solution.
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Overview: Model template

Domain
Input: CPPODo for kind ground (partially ordered; least element exists; ascending chains

have a join).

Recursively define Dκ1→κ2 = Dκ1 →⊔Dκ2 , the join-continuous functions from Dκ1 to Dκ2 .

This is a CPPO with the component-wise order; the least element is the function that al-

ways returns the least element; the join of a chain is the function that, given an input,

returns the join of the chain of function values.

We define the domain D− = (V →p D) → D with D = ⋃κ Dκ . For each kind κ,(V →p D) → Dκ is a CPPO. Elements of this domain are functions that take a valuation, an

assignment of a value fromDκ to each variable of kind κ.

Interpretations
Input: For each terminal s∶ κ of a deterministic HORS G an interpretation sI− ∈ Dκ .

Specify I− by defining the interpretation of variables (M−JxKν = ν(x)), func-

tion application (M−Jt1 t2Kν = M−Jt1Kν M−Jt2Kν), and lambda abstraction

(M−Jλx .tKν ∶ d ↦ M−JtK(ν[x ↦ d])). Altogether, we get a modelM− = (D− , I−).
Semantics
We obtain for each term t of kind κ the semantics

M−JtK∶ (N ∪⋅ V →p D) →⊔Dκ ,

a join-continuous function that expects a valuation of the nonterminals and the HORS

variables that are free in t.

Kleene iteration
For each i ∈ N, inductively define the valuation soli .

For i = 0 and each nonterminal F of kind κ,

soli(F) = ⊥κ , the least element ofDκ .

For i + 1 and a nonterminal F whose unique rule in the HORS is F → t,

soli+1(F) = M−JtKsoli , the right-hand side for F evaluated at soli .

The system of equations associated to G interpreted with respect to M− = (D− , I−) has
a least solution, namely

sol = ⨆
i∈N

soli .

Figure 18.2.a: Overview: Model template.

387



18 Higher-order games

Proof:
We may design a function

rhs∶ (N → D) →⊔ (N → D)
with rhs(ν, F) = M−JtKν for eachnonterminal F , where F → t is theunique rule of theHORS for F .

Note that since each such t does not contain any free variables, we can omit the valuation for

the HORS variables here. We have argued that for each term t,M−JtK is a join-continuous func-

tion on a CPPO. Hence, also rhs is a join-continuous function on a CPPO. By Kleene’s theorem,

Theorem 16.1.3, the least fixed point of rhs is the join

sol = ⨆
i∈N

soli ,

where the ith approximant soli = rhsi(⊥) is obtained by the i-fold application of rhs to the least

element of N → D. This least element is the function that assigns to each nonterminal F of kind

κ the least element ofDκ . Note that the definition of soli implies soli+1(F) = M−JtKsoli for each
nonterminal F whose unique rule is F → t.

Using the theory from Section 16.1, sol is the least solution to the interpreted system of equa-

tions. ⬛

Note that the proposition guarantees the existence of the least solution as the join of an infinite

ascending chain. Unlike in the previous chapter, our domainwill not satisfy the ascending chain

condition in general. Hence, we do not necessarily get that the solution equals soli for some

fixed i. Kleene iteration does not allow us to compute the fixed point in finite time. When we

want to apply our theory to solveHORS games, this is a challenge thatwewill have to overcome.

We conclude the section with an overview in the form of Figure 18.2.a. It specifies what a user

of the template has to provide to instantiate it and what the result of the instantiation is.

Remark
The models that result from instantiating our model template are similar to what Salvati and

Walukiewicz [SW15a] call Scott models for λY-calculus.
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18.3 Fixed-point semantics for higher-order games

Wecomeback to the task of solvinghigher-order inclusiongames. Wewant to take an approach

based on effective denotational semantics. To this end, we instantiate themodel template that

we have introduced in the previous section. The result is the solution to a system of equations

fromwhich we can read off the winner of the game. However, Proposition 18.2.8 will only guar-

antee the existence of the solution. Wewill not be able to compute it in finite. This is a problem

that we will tackle later.

Determinizing HORSes

The first challenge that we have to overcome is that the theory from Section 18.2 only applies

to deterministic HORSes. A game HORS is inherently nondeterministic. Hence, the system of

equations that we consider will not represent the game HORS of interest, but rather its deter-

minization. We have briefly mentioned that HORSes can be determinized in Section 5.3; it is

time to make this explicit.

Let F → λx1 . . . λxm .e1 , . . . , F → λx1 . . . λxm .ek be an exhaustive list of all rules for nonterminal

F in a HORS with k > 1. Note that we assume that the ei are λ-free terms of kind o and that

each right-hand side uses the same sequence of variables. The latter property can be enforced

by an appropriate renaming of the variables. In order to determinize the HORS, we replace this

collection of rules by the single rule

F → λx1 . . . λxm .branchF e1 . . . ek .

Here, branchF ∶ o → o → . . . → oÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
k times

→ o is a fresh terminal symbol whose arity corresponds to the

number of rules for F .

Applying this process to each nonterminal of the HORSwithmore than one rule results in a new

HORS that is deterministic – it has exactly one rule for each nonterminal. However, this process

does not preserve the property of being word generating: The new terminal symbols that we

have introduced have arity greater than one.

One could formally establish the following correspondence between a word-generating HORS

and its determinization: Theunique (typically infinite) derivationprocess of thedeterminization

generates an infinite tree as its limit. Each finite branch of that tree (with the occurrences of the

terminals of the shapebranchF removed) is a finiteword in the languageof theword-generating

HORS and vice versa. Since we will not need this correspondence in the following, we forgo

giving the formal proof.

Workingwith the determinization of the gameHORShas the advantage thatwe can encode the

semantics of the choices of the two players into the interpretation of the symbols of the shape

branchF for their respective nonterminals.
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The concrete model

Assume we apply the determinization procedure to a game HORS. We consider the system of

equations associated to the deterministic HORS as defined in Section 18.2. In order to interpret

it, we instantiate our model template. The resulting model is what we will call the concrete

model Mc .

Instantiating the model requires us to provide a domain Dc,o for kind ground. Intuitively, we

want to use positive Boolean formulas over words. In contrast to the development in Chap-

ter 17, this means that we consider an infinite set of atoms. As a consequence, it will be easier

to establish a correspondence between the winner of the game and the least solution to the

interpreted system of equations, but we will not be able to compute the least solution in finite

time.

Let us consider the set of positive Boolean formulas over words as atoms, factorized by logical

equivalence and ordered by implication. Because the set of atoms is infinite, the set of equiv-

alence classes is not finite. Unfortunately, this also means that this domain is not a CPPO. Let{w(i) ∣ i ∈ N} be an infinite set of distinct words. Then the sequence of formulas

w(0) , w(0) ∨ w(1) , w(0) ∨ w(1) ∨ w(2) , . . .

is a strictly ascending chain with respect to implication. If the proposed domain were a CPPO,

its join ⨆i∈Nw
(0) ∨ . . . ∨ w(i) would need to exist. Intuitively, this join should be ⋁i∈Nw

(i), but
this is an infinite disjunction and not a finite formula.

To overcome the problem, we consider (potentially infinite) sets of formulas that we see as the

(potentially infinite) disjunction of all formulas in the set¹. More formally, we define the domain

Dc,o associated to kind ground as

Dc,o = ((P(pBF(Σ∗)) \ ∅)/⟺ , ⟹ ) ,
non-empty sets of positive Boolean formulas over words, factorized by logical equivalence and

ordered by implication.

In order to formally define implication, we proceed as follows. Since the set of atoms is the set

of words over Σ, variable assignments correspond to languages L ⊆ Σ∗ by setting L(w) = true

iff w ∈ L. A language L satisfies a formula H, H(L) = true, if the formula evaluates to true

under the standard evaluation semantics. A languageL satisfies a non-empty set of formulasH,

H(L) = true, if it satisfies at least one formula H ∈ H. A set of formulasH implies another set of

formulasH′,H ⟹ H′, if any language that satisfiesH also satisfiesH′. Two sets of formulas

H,H′ are logically equivalent,H ⟺ H′, if bothH ⟹ H′ andH′
⟹ H hold.

¹ Note that this contrastswith the convention in logic to see setsof formulas as their (potentially infinite) conjunction.
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Note that our definition of implication extends the usual notion of implication for formulas to

sets of formulas in a straightforward way by seeing them as (potentially) infinite disjunctions.

For example, the singleton {H∨H′} is logically equivalent to the set {H, H′}. In the following, we

will proceed as in the previous chapter and work with formulas that represent the correspond-

ing equivalence class.

It remains to argue that Dc,o is indeed a CPPO. Let (Hi)i∈N be an ascending chain of sets of

formulas. The join of this chain is simply its union, ⨆i∈NHi = ⋃i∈NHi . Using the definition of

implication, it is not hard to verify thatHi ⟹ ⋃i∈NHi holds for all i and that any formula that

is implied by all Hi is also implied by their union. The least element of Dc,o is the equivalence

class of the singleton set {false}.
With the definition of Dc,o fixed, the model template defines Dc,κ for all kinds κ their union

Dc = ⋃κ Dc,κ . To complete the instantiation, we still need to provide the interpretation Ic of

the terminals.

OurHORShas three types of terminals. The first is theword-endmarker $ of kind o. We interpret

it as the singleton set containing the atom ε as a formula, $Ic = {ε}. This is an element of Dc,o

as expected. The second type are the letters a∶ o → o. We define the interpretation to be

aIc = prependa(−), a function that is defined as follows: Given a set of formulas, it distributes

over that set, prependa(H) = {prependa(H) ∣ H ∈ H}. In a single formula, it distributes over

conjunctions and disjunctions until it reaches an atom, where it prepends the word consisting

of the letter a,

prependa(H ∧
∨ H

′) = prependa(H) ∧∨ prependa(H′)
prependa(w) = a.w .

The prepend-function is an element ofDc,o→o, i.e. a join-continuous function fromDc,o toDc,o.

The definition makes it easy to verify join-continuity.

Finally, there are terminals of the shapebranchF (where F is a nonterminal) thatwere introduced

by the determinization. We interpret these symbols as disjunctions or conjunctions, depending

on whether the owner of F is the existential or the universal player. We give the definitions in

the case that branchF has arity two. The general case can be easily derived. If F is owned by the

existential player, then branchIc
F is the function that takes two sets of formulas and returns their

union, which corresponds to the disjunction of the sets:

branchIc
F (H,H′) = H ∨H′ ∶= H ∪H′ .

If F is owned by the universal player, then branchIc
F is the function that takes two setsH andH′

and returns {H ∧ H′ ∣ H ∈ H, H′ ∈ H′}, which corresponds to the conjunction of the sets:

branchIc
F (H,H′) = H ∧H′ ∶= {H ∧ H′ ∣ H ∈ H, H′ ∈ H′} .
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Using distributivity, one can check that these definitions have the expected properties and sat-

isfy join-continuity.

The domain for kind ground and the interpretations of the terminals satisfy the requirements of

themodel template. Instantiating it yields the concretemodelMc = (Dc , Ic). By Lemma 18.2.7,

we get for each term t of kind κ the concrete semantics of term t as a function

McJtK∶ (N ∪⋅ V →p Dc) →⊔Dc,κ .

Soundness

Assume that we are given a higher-order inclusion game (G , A). We construct the sys-

tem of equations associated to the HORS and interpret it using the concrete model Mc .

Proposition 18.2.8 proves the existence of the concrete solution solc , the least value so that

solc(F) = McJtKsolc for each nonterminals F , where F → t is its unique rule. We also get that

the concrete solution is the join of the chain of approximants. We will deal with the issue of

computing this least solution later.

The following theorem tells us how the concrete solution yields the winner of the game.

18.3.1 Theorem
The existential player wins the inclusion game iff solc(S) is satisfied by L(A).
The valueof solc(S) is an (an equivalence class of ) a set of formulas overwords, so thenotationof

being satisfied by a languagemakes sense. Note that the concrete solution associates elements

of the domain to terms of the determinization of the game HORS. In the following proofs, we

will apply solc to terms of the game HORS. Since every term of the game HORS is a valid term of

its determinization, this is formally valid. In the proof of Theorem 18.3.1 we will have to bridge

the gap between the two HORSes by showing that the information about the determinization

that is captured by the concrete solution indeed characterizes the winner of the game.

We first show that whenever solc(S) is not satisfied byL(A), then the universal player has a win-

ning strategy. The strategy maintains the property that the solution associated to each term

that occurs in the play is not satisfied by L(A).
For the proof of this property, we will need the following substitution lemma.

18.3.2 Lemma
For any two terms t, t′ and a valuation ν, we have

Mc
q
t[x ↦ t′]yν = McJtK(ν[x ↦ Mc

q
t′
y
ν]) .
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Proof:
We proceed by induction on t. If t is a HORS variable other than x , a terminal, or a nonterminal,

equality obviously holds. If t = x we get

Mc
q
x[x ↦ t′]yν = Mc

q
t′
y
ν = McJxK(ν[x ↦ Mc

q
t′
y
ν]) .

For the induction step, consider function application, i.e. t = t1 t2. We have

McJt1 t2K(ν[x ↦ Mc
q
t′
y
ν]) = (McJt1K(ν[x ↦ Mc

q
t′
y
ν])) (McJt2K(ν[x ↦ Mc

q
t′
y
ν])) .

We apply induction to t1 and t2, obtaining that the latter term is equal to

(Mc
q
t1[x ↦ t′]yν) (Mc

q
t2[x ↦ t′]yν) = Mc

q
t1[x ↦ t′] t2[x ↦ t′]yν = Mc

q(t1 t2)[x ↦ t′]yν .
Consider the case that t = λx .t1 starts with a lambda abstraction for variable x . We have

Mc
q(λx .t1)[x ↦ t′]yν = McJλx .t1Kν = McJλx .t1K(ν[x ↦ Mc

q
t′
y
ν]) .

The first equality is because the replacement x ↦ t′ will only replace the free occurrences of x

in t. Since t starts with λx , there are no free occurrences. The second equality is because the

interpretation of lambda abstraction will discard the value for x that is present in ν.

Finally, consider t = λy.t1 where y ≠ x . We have thatMcJλy.t1K(ν[x ↦ McJt′K ν]) is a function

that takes a value d for y and returns McJt1K(ν[x ↦ McJt′K ν, y ↦ d]) . By induction, this

return value is equal toMcJt1[x ↦ t′]K(ν[y ↦ d]) . If we start from the other side of the desired

equality, we obtain thatMcJ(λy.t1)[x ↦ t′]Kν equalsMcJλy.(t1[x ↦ t′])Kν ,which is a function

that expects a value d and returns McJt1[x ↦ t′]K(ν[y ↦ d]) . Equality holds and the proof is

complete. ⬛

With the lemma at hand, we can prove one direction of Theorem 18.3.1.

18.3.3 Proposition
If solc(S) is not satisfied by L(A), then the universal player has a winning strategy.

Proof:
We construct a strategy for the universal player such that every play that starts in a (variable-

free) term t′ with solc(t′) not satisfied byL(A), then for any term t occurring the play, solc(t) not
satisfied by L(A).
To see that this is indeed a winning strategy, note that if the play ends after finite time in a

terminal wordw, then we guarantee that solc(w) = w is not satisfied by L(A). Hence,w ∈ L(A),
and the universal player wins this play.
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Let us now show that whenever term t is not a deadlock (i.e. it contains a nonterminal), then

the strategy can maintain the invariant. Let t = a1(. . . (an(F t1 . . . tm)) . . .) be the current term.

If F is owned by the universal player, the strategy can pick the next replacement step and it

is sufficient so show that a suitable successor (whose associated solution is not satisfied by the

complement language) exists. If F , however, is ownedby the existential player, we have to show

that any applicable replacement step yields a successor that is not satisfied by L(A).
We assume that

solc(t) = McJtKsolc = McJa1(. . . (an(F t1 . . . tm)))Ksolc
= prependa1 ...an ((McJFKsolc) (McJt1Ksolc) . . . (McJtmKsolc))

is not satisfied by L(A). Here, we have used that the composition of prependa1 , prependa2 , . . . ,

prependan equals prependa1 ...an . We have also evaluated the function applications in F t1 . . . tm
using the interpretation of function application.

Let F → λx1 . . . λxm .e1 , . . . , F → λx1 . . . λxm .ek be an exhaustive list of all rewriting rules for F in

the game HORS. Recall that the unique rule for F in the determinization is

F → λx1 . . . λxm .branchF e1 . . . ek .

The concrete solution satisfies solc(F) = McJFKsolc = McJλx1 . . . λxm .branchF e1 . . . ekKsolc .
Using the interpretation of lambda abstraction, we obtain that McJFKsolc is a function that

takes values d1 , . . . , dm for the variables x1 , . . . , xm and returns

McJbranchF e1 . . . ekK(solc[x1 ↦ d1 , . . . xm ↦ dm]) .
Evaluating the function applications and using the interpretation of branchF , this value equals

branchF
Ic McJe1K(solc[x1 ↦ d1 , . . . xm ↦ dm]) . . . McJe1K(solc[x1 ↦ d1 , . . . xm ↦ dm]) .

Consider this case that F is owned by the universal player. This means the interpretation of

branchF is conjunction and we get that the above value equals

McJe1K(solc[x1 ↦ d1 , . . . xm ↦ dm]) ∧ . . . ∧McJe1K(solc[x1 ↦ d1 , . . . xm ↦ dm]) .
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We plug this definition ofMcJFKsolc into the value we have obtained for solc(t) and get

solc(t) = prependa1 ...an ((McJFKsolc) (McJt1Ksolc) . . . (McJtmKsolc))
= prependa1 ...an (McJe1K(solc[x1 ↦ McJt1Ksolc , . . . xm ↦ McJtmKsolc])

∧ . . . ∧McJe1K(solc[x1 ↦ McJt1Ksolc , . . . xm ↦ McJtmKsolc]))
= prependa1 ...an (McJe1K(solc[x1 ↦ McJt1Ksolc , . . . xm ↦ McJtmKsolc]))
∧ . . . ∧ prependa1 ...an (McJe1K(solc[x1 ↦ McJt1Ksolc , . . . xm ↦ McJtmKsolc])) ,

where the latter equality uses that the prepend function distributions over conjunctions.

Since solc(t) is not satisfied by L(A), there must be at least one i such that the conjunct

prependa1 ...an (McJeiK(solc[x1 ↦ McJt1Ksolc , . . . xm ↦ McJtmKsolc]))
is not satisfied by L(A). We define the strategy of the universal player to pick the rule

F → λx1 . . . λxm .ei in the game.

It remains to prove that the strategy maintains the invariant, i.e. we have to argue that the so-

lution associated to the term that results from picking this rule is not satisfied by L(A). The

rewriting rules of HORSes are defined so that replacing F in a1(. . . (an(F t1 . . . tm)) . . .) yields the
term

t′ = a1(. . . (an(ei[x1 ↦ t1 , . . . , xm ↦ tm])) . . .) .
The solution associated to this term is

solc(t′) = prependa1 ...an (McJei[x1 ↦ t1 , . . . , xm ↦ tm]Ksolc) .
We apply the substitution lemma, Lemma 18.3.2,m times to obtain the equality

McJei[x1 ↦ t1 , . . . , xm ↦ tm]Ksolc = McJeiK(solc[x1 ↦ McJt1Ksolc , . . . xm ↦ McJtmKsolc]) .
Plugging this equality into the expression for solc(t′) shows that this value equals the value for

the conjunct ei in solc(t). We have argued before that the value for the conjunct is not satisfied

by L(A), so solc(t′) is not satisfied by L(A) as desired.
The argumentation is similar in the case that the existential player owns F . In this case, branchF
is interpreted as disjunction, and solc(t) is a disjunction with one disjunct for each ei . Since

solc(t) is not satisfied byL(A), none of the disjuncts is. No matter which rule F → λx1 . . . λxm .ei
is picked by the existential player, the resulting term t′ has an associated solution solc(t′) that
is not satisfied by L(A) since it corresponds to one of the disjuncts. The strategy maintains the

invariant as desired. ⬛
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We consider the case of the existential player. While the result looks very similar, its proof is

much more involved. This is because a winning strategy for the existential player needs to en-

force that all plays that conform to it terminate after finitely many steps.

18.3.4 Proposition
If solc(S) is satisfied by L(A), then the existential player has a winning strategy.

Proof:
We introduce some notation to simplify the rest of the proof. For a domain element ϕ ∈ Dc,o

and a variable-closed term t of kind o, we define ϕ to be sound for t, denoted by ϕ ⊧ t, if for all

words w = w1 . . .wk ∈ Σ∗ such that prependw(ϕ) is satisfied by L(A), the existential player has

a winning strategy from term w(t), where w(t) is the term w1(. . .wk(t) . . .). For w = ε, we set

prependε(ϕ) = ϕ and let ε(t) = t.
We claim that in order to prove the proposition, it is sufficient to show that

solc(S) ⊧ S ,
i.e. solc(S) is sound for S. Indeed, by choosing w as ε and using the fact that

solc(S) = prependε(solc(S)) is satisfied by L(A), establishing soundness implies showing that

the existential player has a winning strategy from ε(S) = S.
In the proof, we will also need the notion of soundness for terms of higher order. For a variable-

closed term t of kind κ1 → κ2 and a function Φ ∈ Dc,κ1→κ2 , we define Φ ⊧ t to hold whenever

for all variable-closed terms t′ of kind κ1 and Φ′ ∈ Dc,κ1 such that Φ′ ⊧ t′ we have Φ Φ′ ⊧ t t′;

written as formula

Φ ⊧ t iff ∀ Φ′ , t′ such that Φ′ ⊧ t′∶ Φ Φ′ ⊧ t t′ .

Note that this is an inductive definition that defines the notion of soundness for kind κ1 → κ2
assuming that it has already been defined for κ1 and κ2.

We will also need to extend the notion of soundness to terms t with free variables. Assume

that the variables x1 . . . xm are free in t. For Φ ∶ (V →p Dc) →⊔ Dc , we define Φ ⊧ t by requir-

ing that for any variable-closed terms t1 , . . . , tm and any Φ1 , . . . ,Φm ∈ Dc with Φ j ⊧ t j for all

j ∈ [1,m], we have Φ[∀ j∶ x j ↦ Φ j] ⊧ t[∀ j∶ x j ↦ t j]. Here, we use [∀ j∶ x j ↦ Φ j] as a shorthand

for [x1 ↦ Φ1 , . . . , xm ↦ Φm], similar for [∀ j∶ x j ↦ t j].
Our goal is to prove solc(S) ⊧ S. We first show that each approximant that occurs during the

fixed-point iteration is sound for the respective term, i.e. McJtKsolic ⊧ t for all i and all terms t

of the gameHORS. Since the domain is infinite, this is not sufficient to prove solc(S) ⊧ S. Wewill

also need to show that soundness holds for the least fixed point.
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18.3 Fixed-point semantics for higher-order games

Let us prove that for any term t that may occur in a play of the game and every i ∈ N,

McJtKsolic is sound for t, McJtKsolic ⊧ t. Note that terms t that occur in the game are terms

of the game HORS. They do not contain the terminals of the shape branchF . Additionally,

these terms do not contain lambda abstraction. Indeed, the initial position S does not con-

tain lambda abstraction and the rewriting rules of the HORS maintain this property. Whenever

we replace a redex F t1 . . . tm in the current position using a rule F → λx1 . . . λxm .e, we obtain

e[x ↦ t1 , . . . , xm ↦ tm]where e does not contain lambda abstraction.

To prove McJtKsolic ⊧ t, we proceed with a nested induction: The outer induction is on the

iteration count i, the inner is on the structure of the term t. Since we will need to consider non-

variable-closed terms during the induction, we need to consider valuations that assign values

to the free HORS variables. We use ν i to denote any valuation that coincides with solic on the

nonterminals, i.e. ν i(F) = solic(F) for all nonterminals F .

Base of the outer induction, i = 0:

In the base case, we have i = 0 and ν i(F) = ⊥ for all nonterminals F . We show McJtKν i ⊧ t for

all terms t, proceeding by induction on the structure of terms. We emphasize that in almost all

cases, the reasoning is independent of i, which will enable us to reuse it later.

The following base cases of the inner induction are independent of the iteration count.

Base case t = $. For all i, we haveMcJ$Kν i = ε. Take any wordw such that prependw(ε) = w
is satisfied by L(A). This means thatw ∈ L(A), and the existential player has won the play from

w($).
Base case t = a. Terminal a has kind o → o, so we need to consider an arbitrary variable-

closed term t of kind ground and Φ ∈ Dc,o so that Φ ⊧ t and show

McJaKν i Φ = prependa(Φ) ⊧ a(t) .
Take any word w such that prependw(prependa(Φ)) = prependw .a(Φ) is satisfied by L(A). By

Φ ⊧ t, the existential player has a winning strategy fromwa(t) = w(a(t)) as required.
Base case t = x . For all i and all extensions ν i of solic , we have

McJxKν i = ν i(x).
Take any ν i(x) = Φ and any variable-closed term t′ with Φ ⊧ t′; ν i(x) ⊧ x[x ↦ t′] is immediate.

The only base case of the inner induction that depends on the iteration count is t = F .
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18 Higher-order games

Base case t = F (and i = 0). Assume that F∶ κ has arity m. Consider variable-closed terms

t1 , . . . , tm with corresponding Φ1 , . . . , Φm such that Φ j ⊧ t j for all j. Note that F t1 . . . tm is of

kind o. We have

McJFKν0 Φ1 . . .Φm = sol0c (F) Φ1 . . .Φm = {false} ,
since ν0(F) = sol0(F) = ⊥ is the least element ofDc,κ , the function that takes a suitable number

of arguments and returns {false}, the least elementofDc,o. Hence, thepremiseof the statement,

McJFKν0 Φ1 . . .Φm being satisfied by some language, cannot be true, and the implication that

we wanted to prove trivially holds.

We come to the induction step of the inner induction. As we have discussed, the terms of in-

terest never contain lambda abstraction. We only need to consider function application. Our

argumentation is independent of the iteration count i.

Induction step, t = t′ t′′. Using induction, we can assume

Mc
q
t′
y
ν i ⊧ t′ and Mc

q
t′′

y
ν i ⊧ t′′ .

We need to prove

Mc
q
t′ t′′

y
ν i = (Mc

q
t′
y
ν i) (Mc

q
t′′

y
ν i) ⊧ t′ t′′ .

Assume that x1 , . . . , xn are all free variables in t′ t′′ and consider terms t1 , . . . , tn and Φ1 , . . .Φn
so that Φ j ⊧ t j for all j. Let ν

i map x j to Φ j for all j ∈ [1, n]. By the definition of ⊧ for terms with

free variables, we have McJt′Kν i ⊧ t′[∀ j ∶ x j ↦ t j] and McJt′′Kν i ⊧ t′′[∀ j ∶ x j ↦ t j]. Then, by
the definition of ⊧ for functions, we obtain

Mc
q
t′ t′′

y
ν i = (Mc

q
t′
y
ν i) (Mc

q
t′′

y
ν i)

⊧ (t′[∀ j ∶ x j ↦ t j]) (t′′[∀ j ∶ x j ↦ t j]) = (t′ t′′)[∀ j ∶ x j ↦ t j] .
This meansMcJt′ t′′Kν i ⊧ t′ t′′ as required.
Induction step of the outer induction, i → i + 1:

We again proceed by induction on structure of the term t. All cases but t = F have already

been treated in full generality in the base case of the outer induction. We have to show

McJFKν i+1 ⊧ F .
We first observe that

McJFKν i+1 = McJtFKν i
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where F → tF is the unique rule for F in the determinization of the game HORS. For the sake

often simplicity, we assume that there are only two rules with left-hand side F , i.e. we have the

rules F → λx1 . . . λxm .e1 and F → λx1 . . . λxm .e2 in the game HORS. (Proving the general case

with an arbitrary number of right-hand sides for F is analogous.) Hence, the unique rule for F in

the determinization is F → λx1 . . . λxm .branchF e1 e2. Consequently,

McJFKν i+1 = McJλx1 . . . λxm .branchF e1 e2Kν i .
Using the interpretation of lambda abstraction, the latter value is a function that takes values

d1 , . . . , dm and returns

McJbranchF e1 e2Kν i[x1 ↦ d1 , . . . , xm ↦ dm] .
By evaluating the interpretation of function application, this return value equals

branchF
Ic McJe1Kν i[x1 ↦ d1 , . . . , xm ↦ dm]McJe2Kν i[x1 ↦ d1 , . . . , xm ↦ dm] .

In order to showMcJFKν i+1 ⊧ F , consider terms t1 , . . . , tm and Φ1 , . . . ,Φm so that Φ j ⊧ t j for all

j ∈ [1,m]. We need to prove

McJFKν i+1 Φ1 . . .Φm ⊧ F t1 . . . tm .

By substituting the definition ofMcJFKν i+1 that we have obtained above, the left-hand side of

this expression equals d where

d = branchF
Ic McJe1Kν i[x1 ↦ Φ1 , . . . , xm ↦ Φm]McJe2Kν i[x1 ↦ Φ1 , . . . , xm ↦ Φm] .

Consider a word w ∈ Σ∗. We need to show that if prependw(d) is satisfied by L(A), then the

existential player has a winning strategy fromw(F t1 . . . tm).
Assume that the existential player owns F . In this case, the interpretation branchF

Ic of branchF
is disjunction. We have

prependw(d) = prependw(McJe1Kν i[x1 ↦ Φ1 , . . . , xm ↦ Φm]
∨McJe2Kν i[x1 ↦ Φ1 , . . . , xm ↦ Φm])

= prependw(McJe1Kν i[x1 ↦ Φ1 , . . . , xm ↦ Φm])
∨ prependw(McJe2Kν i[x1 ↦ Φ1 , . . . , xm ↦ Φm]) ,

using that the prepend function distributes over disjunctions. If prependw(d) is satisfied by

L(A), then at least one of the disjuncts is satisfied by L(A). Wlog., we will assume that the first

disjunct prependw(McJe1Kν i[x1 ↦ Φ1 , . . . , xm ↦ Φm]) is satisfied by L(A) in the following.
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18 Higher-order games

We claim that we obtain a winning strategy fromw(F t1 . . . tm) for the existential player by first

applying the move associated to the rule F → λx1 . . . λxm .e1 and then using the winning strat-

egy from the resulting term. The resulting term isw(t′)where

t′ = e1[x1 ↦ t1 , . . . , xm ↦ tm] .
In order to complete the argument, we need to show that there is a winning strategy fromw(t′).
Using the induction hypothesis of the outer induction, we have that solic(ei) is sound for ei ,

solic(ei) ⊧ ei . Consider the terms t j and the Φ j for j ∈ [1,m]. The definition of soundness for

terms with free variables means that solic(ei) ⊧ ei implies

solic(ei)[x1 ↦ Φ1 , . . . , xm ↦ Φm] ⊧ e1[x1 ↦ t1 , . . . , xm ↦ tm] ,
and note that the right-hand side of this expression is t′. Consider the wordw as before. Apply-

ing prependw(−) to the left-hand side yields

prependw(solic(ei)[x1 ↦ Φ1 , . . . , xm ↦ Φm])
= prependw(McJeiK(ν i[x1 ↦ Φ1 , . . . , xm ↦ Φm])) ,

which is the same value that we have obtained for the disjunct associated to e1 above. We

already know that this value is satisfied by L(A), so we obtain that there is a winning strategy

for the existential player fromw(t′).
If F is owned by the universal player, prependw(d) is a conjunction. We can argue similarly:

The value associated to both conjuncts must be satisfied by L(A). No matter which rule

F → λx1 . . . λxm .ei is picked by the universal player, we can apply the induction hypothesis to

ei . We obtain that the existential player has a winning strategy from both positions that result

from applying one of the rules. By using one of these winning strategies, depending on which

rule is used by the universal player, we obtain a winning strategy fromw(F t1 . . . tm) as required.
From solic to solc

With both inductions finished, we have shown McJtKsolic ⊧ t for all terms t and all i ∈ N. It

remains to showMcJtKsolc ⊧ t. Since the CPPO under consideration is not finite, this needs to

be proven separately (since we do not necessarily have solc = solic for some i.)

To this end, we proceed by induction on kinds. Let t be a variable-closed term of kind κ, and let(Φi)i∈N be an ascending chain inDc,κ so that each Φi is sound for t, Φi ⊧ t. We prove that then

the join⨆i∈N Φi is sound for t,⨆i∈N Φi ⊧ t.

Base case t∶ o. Let (Φi)i∈N be an ascending chain in Dc,o so that Φi ⊧ t for all i. We prove

⨆i∈N Φi ⊧ t.

400



18.3 Fixed-point semantics for higher-order games

Take any word w ∈ Σ∗ and assume that prependw(⨆i∈N Φi) is satisfied by L(A), then we need

to show by the definition of ⊧ that the existential player has a winning strategy from w(t). The
prepend function is join-continuous, so we obtain

prependw(⨆
i∈N

Φi) = ⨆
i∈N

prependw(Φi) .
Recall that the join on Dc,o is the union, which corresponds to an (infinite) disjunction. So this

value being satisfied by L(A)means that prependw(Φi) is satisfied by L(A) for at least one i. By
assumption Φi ⊧ t holds, so there is a winning strategy for the existential player fromw(t). This
proves⨆i∈N Φi ⊧ t as desired.

Induction step, t∶ κ1 → κ2. Let (Φi)i∈N be an ascending chain inDc,κ1→κ2 so that Φi ⊧ t for all i.

We prove⨆i∈N Φi ⊧ t.

Consider a term t′ and Φ′ so that Φ′ ⊧ t′. We need to show (⨆i∈N Φi) Φ ⊧ t t′. Consider the

left-hand side of this expression. EachΦi is a function fromDc,κ1→κ2 and by the definition of the

join onDc,κ1→κ2 we get

(⨆
i∈N

Φi) Φ = ⨆
i∈N

(Φi Φ) .
By assumption, Φi ⊧ t holds for all i. By the definition of soundness, this means Φi Φ ⊧ t t′

for all i. The sequence (Φi Φ)i∈N is an ascending chain in Dc,κ2 . (Indeed, Φi ∈ Dc,κ1→κ2 is join-

continuous and hence monotonic.) We can apply induction and obtain

⨆
i∈N

(Φi Φ) ⊧ t t′ .
This is what we wanted to show and the induction has been completed.

Let t be some term. Our goal is to show that sol(t) is sound for t. Consider the chain (solic(t))i∈N.
Using the first half of the proof, each solic(t) is sound for t. Using the second half of the proof,

then also⨆i∈N solic(t) is sound for t. We have

solc(t) = McJtKsolc = McJtK ⨆
i∈N

solic = ⨆
i∈N

McJtKsolic = ⨆
i∈N

solic(t) ,
using the definition of solc(t), the fact that solc = ⨆i∈N solic , the join-continuity of McJtK, and
the definition of solic(t). Hence, solc(t) is sound for t.

In particular, solc(S) is sound for S. As argued at the beginning of the proof, this means that

solc(S) being satisfied by L(A) implies the existential player having a winning strategy from S.

This is what we wanted to show, finishing the proof of the proposition. ⬛
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18 Higher-order games

A winning strategy for the existential player needs to enforce that all plays that conform to

it terminate. In the proof, this fact is hidden in the form of the outer induction on i. If

prependw(solic(t)) is satisfied byL(A), then the existential player can enforce a terminating play

that leads to a terminal word inL(A). The play corresponds to a derivation tree, a notion thatwe

have formally defined for context-free grammars, but not for higher-order recursion schemes,

whose height is at most i and whose width is bound by the size of the given game HORS. Once

we replace a nonterminal F in the proof using a rule F → t′, we go from considering solic(F) to
considering soli−1c (t′′), where t′′ is the term resulting from replacing F . This yields the aforemen-

tioned bound on the height.

Together, Proposition 18.3.3 and Proposition 18.3.4 prove Theorem 18.3.1. The winner of the

inclusion game induced by the HORS can be read off from the concrete solution. We are left

with the problem that we cannot compute this solution in finite time.
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18.4 Framework for exact fixed-point transfer

Our goal in this section is to develop a framework for the exact transfer of the fixed point with

respect to one model to the fixed point with respect to another model. Assume we are given

two modelsMc andMa and a function α that maps values from one domain to the other. We

want to provide aminimal set of criteria that will allow us to conclude that the function applied

to the fixed point wrt.Mc is the fixed point wrt.Ma , α(solc) = sola .

The following is a potential application for this framework. Assume thegoal is solving adecision

problem involving HORSes using effective denotational semantics. We have concrete model

Mc = (Dc , Ic), for which it is easy to prove that the associated fixed point solc captures the

answer to thedecisionproblem. In thismodel, it is hardor even impossible to compute the least

solution (e.g. because the domain is infinite anddoes not satisfy the ascending chain condition).

We also have an abstract model Ma = (Da , Ia) that is well-behaved with respect to the fixed-

point computation, but proving that sola also captures the answer to the decision problemmay

be much harder. Using the framework, it is sufficient to provide an abstraction function α from

the concrete to the abstract domain that satisfies some properties. We get exact fixed-point

transfer and have α(solc) = sola . If the property that allows us to read off the answer to the

decision problem is preserved under α, we conclude that reading off the answer to the decision

problem is indeed sound. Hence, we can replace a complicated proof, namely the proof that

sola captures the solution to the decision problem, by several simpler proofs.

In the next section, we will apply this approach to computing the winner of inclusion games

with game arenas defined by game HORSes. Since we think that the framework for exact fixed-

point transfer is of independent interest, we develop our theory for a general setting.

Assume that a deterministic HORS G and its associated system of equations are fixed. We con-

sider two models Mc = (Dc , Ic) and Ma = (Da , Ia) that are instantiations of the model tem-

plate described in Section 18.2 We callMc and the associated semantics concrete andMa ab-

stract to appeal to the intuition of the reader. However, these words have no formal meaning

here; in particular, both models could be finite or infinite. Each of the models provides an in-

terpretation Ic resp. Ia of all function symbols used in the system of equations, a domainDc,κ

resp.Da,κ for each kind κ and a signature (N ∪ V →p Dc) →⊔Dc resp. (N ∪ V →p Da) →⊔Da for

the semantics of HORS terms.

Assume that an abstraction function α∶Dc,o → Da,o is given. Note that it acts on the domains

for kind ground. The first step in the development of the framework will be to lift α to the

domains for other kinds. Intuitively, the abstraction α(fc) of a function fc ∈ Dc,κ1→κ2 should

be the function that takes an abstract value xa ∈ Da,κ1 , concretizes it by taking a preimage

xc ∈ Dc,κ1 with α(xc) = xa , applies f to the preimage and abstracts the result, α(fc) xa = α(fc xc).
This definition has two problems: The abstract value xa might have no preimage under α, and

even if it has one, the preimagemay not be unique. To solve the second problem, we introduce
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the notion of compatibility: A function is compatible (with α) if valueswith the same abstraction

are evaluated to function values with the same abstraction. Hence, the value of the abstraction

of such a function will not depend on which preimage is chosen.

Furthermore, we define α(fc) xa to be the least element of the domain for the appropriate kind

whenever xa has no α-preimage. This solves the first problem, but causes another one: We

now cannot hope that α(solc) = sola will hold for the components of the fixed-point that are

functions. Instead, we will only get what is essentially equality on the image of α. We formalize

this using an equivalence≈ on the abstract domain that is equality for kind ground and equality

on the image of α for function kinds. In the end, our exact fixed-point transfer result will prove

α(solc) ≈ sola instead of the desired equality. Since ≈-equivalence is equality for kind ground,

this will still give us equality, α(solc)(t) = sola(t), whenever t is a term of kind ground.

Remark
In our publication [HMM17], we solved the problem of missing preimages differently, namely

by simply requiring the abstraction function α to be surjective. This solves the problem, but

it has a cost attached to it: Showing surjectivity is an additional proof obligation for the user

of the framework. Indeed, it is often natural to use an abstraction that is not surjective. For

example, we will consider an abstraction function that is not surjective in Section 18.5. Usually,

it would be possible to restrict the abstract domain so that α becomes surjective (and this is in

fact the approach we took in the aforementioned publication), but this again is an additional

step for the user of the framework. The version of the frameworkwe present in this thesis works

without requiring surjectivity.

Basic definition

We formally define the notions that we have introduced before. For each kind κ, we provide

(1) a notion of compatibility of elements xc ∈ Dc,κ , (2) an extension of the abstraction function

to kind κ, i.e. α∶Dc,κ → Da,κ , and (3) an equivalence relation ≈ onDa,κ .

These definitions are interleaved with each other, so we have to proceed using induction. We

start with kind ground, where the abstraction function α∶Dc,o → Da,o is already fixed.

18.4.1 Definition
We define every element of Dc,o to be compatible. We define the equivalence ≈ on Da,o to be

equality.

Now consider kind κ1 → κ2, where we assume that α, ≈ and compatibility have been defined

for κ1 and κ2. Note that for each kind κ, we denote by ⊥c,κ and ⊥a,κ the least element of Dc,κ

andDa,κ , respectively.
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18.4.2 Definition

(1) A function fc ∈ Dc,κ1→κ2 is compatible if for every compatible value xc ∈ Dc,κ1 , fc xc is

compatible, and for every compatible xc , x
′
c ∈ Dc,κ1 such that α(xc) ≈ α(x ′c), we have

α(fc xc) ≈ α(fc x ′c).
(2) If fc ∈ Dc,κ1→κ2 is compatible, we define its abstraction α(fc) ∈ Da,κ1→κ2 as follows: Whenever

xa ∈ Da,κ1 is ≈-related to the α-image of a compatible element, i.e. xa ≈ α(xc) for some

compatible xc ∈ Dc,κ1 , we define the function value α(fc) xa = α(fc xc). If no such xc exists,

we define α(fc)xa = ⊥a,κ1 to be the least element ofDa,κ2 .

For non-compatible fc , we define α(fc) = ⊥a,κ1→κ2 as the bottom function for kind κ1 → κ2,

the function that maps any value fromDa,κ1 to⊥a,κ2 .

(3) The equivalence ≈ on Da,κ1→κ2 is defined as follows: For fa , f
′
a ∈ Da,κ1→κ2 , fa ≈ f ′a holds if for

any xa ∈ Da,κ1 that is ≈-equivalent to the α-image of a compatible element, xa ≅ α(xc) for
some compatible xc ∈ Dc,κ1 , we have fa xa ≈ f

′
a xa .

Before studying the definition in more detail, we consider an example.

18.4.3 Example
Consider kind o → o. A function fc ∈ Dc,o→o is compatible if for any two xc , xc ∈ Dc,o,

α(xc) = α(xc) implies α(fc xc) = α(fc x ′c). Note that this is just the second part of the defini-

tion of compatibility, since the first one is trivially satisfied. Also, the fact that ≈ is just equality

onDc,o and that every element ofDc,o is compatible play a role here.

Such a compatible function fc can be abstracted, obtaining α(fc), the function that takes a value

xa ∈ Da,o and returns α(fc xc), where xc ∈ Dc,o satisfies α(xc) = xa . If no such xc exists, the return

value is⊥a,o. This in particular means that α(fc) α(xc) = α(fc xc) holds for all xc ∈ Dc,o.

Two functions fa , f
′
a ∈ Da,o→o are ≈-equivalent if for any α(xc), their function values coincide.

This characterization can be generalized easily for any kind of order one with arbitrary arity. A

concrete function is compatible if swapping its arguments for ones that have the same image

under α does not change the α-image of the function value. The abstraction of the function

takes a preimage for each abstract value, applies the function, and abstracts the result. Two

abstract functions are ≈-equivalent if their function values coincide on the image of α.

We turn back to discussing the intricacies of Definition 18.4.2. It is not hard to verify using in-

duction that ≈ is indeed an equivalence. However, it quickly turns our there is an issue with the

well-definedness of α for compatible functions fc . The valueof α(fc) xa dependsonwhichpreim-

age xc wechose. However, assume xc , x
′
c are both compatible elementswith α(xc) ≈ α(x ′c) ≈ xa .

Because fc is compatible, we get α(fc xc) ≈ α(fc x ′c). Even if we chose a different preimage for

xa , we end up with an ≈-equivalent result. While α(fc) is technically not well-defined, it is at
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least well-definedmodulo applying the equivalence on the function domain. We will take care

of this issue by making sure that we never compare the function values of α(fc) using equality.

Instead, we always use ≈-equivalence in the following.

There is another issue. Recall thatDa,κ1→κ2 is defined to be the set of join-continuous functions

from Da,κ1 to Da,κ2 . Hence, α(fc) should be join-continuous, which in particular implies that it

should be monotonic. From the definition, it is obvious that monotonicity does not hold: If we

feed α(fc) an abstract value xa that is not≈-equivalent to some α(xc), then the result α(fc) xa will

be the least element of Da,κ1 . However, we will later show that α(fc) is indeed join-continuous

and hence monotonic if we restrict ourselves to applying it to values of the shape α(xc) where

xc is compatible. As in the above case, we will circumvent the issue by making sure that we

never use the monotonicity or join-continuity of α(fc) for arguments that are not of this shape.

One could solve both problems – thewell-definedness of α(fc) and its join-continuity – bymod-

ifying the abstract domain. Instead of considering Da,κ , we should only consider its subset

α({xc ∈ Dc,κ ∣ xc compatible}), the image of α on compatible elements, and we should addi-

tionally factorizemodulo the equivalence relation ≈. Not taking this approachwill require us to

be more careful, but it will also improve readability.

Basic properties

Later, we will put additional requirements on α to be able to prove exact-fixed point transfer.

For now, we will show some properties of the notions that we have introduced that do not

require further restrictions. The first one is that the equivalence ≈ is well-behaved with respect

to forming limits: The join of an ascending chain remains the same (modulo ≈) if we exchange

the elements of the chain for ≈-equivalent ones.

18.4.4 Lemma
If (xa,i)i∈N and (x ′a,i)i∈N are ascending chains inDa,κ for some κ such that xa,i ≈ x

′
a,i for all i, then

⨆i∈N xa,i ≈ ⨆i∈N x
′
a,i .

Proof:
Weproceed by induction on the kind κ. In the base case, the statement is trivial since ≈ is equal-

ity for kind ground.

Consider kind κ1 → κ2, and let (fa,i)i∈N and (f ′a,i)i∈N be two ascending chains fromDa,κ1→κ2 such

that fa,i ≈ f
′
a,i for all i. The join of these chains is a function, and the definition of ≈ for functions

requires us to consider xa ∈ Da,κ1 such that xa ≈ α(xc) for some compatible xc . We have to

argue that

(⨆
i∈N

fa,i) xa ≈ (⨆
i∈N

f ′a,i) xa
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holds. Using the definition of the join on the function domain, this simplifies to showing

⨆
i∈N

(fa,i xa) ≈ ⨆
i∈N

(f ′a,i xa) .
Since fa,i ≈ f

′
a,i , we have fa,i xa ≈ f

′
a,i xa for all i. Hence, wemay apply induction to conclude the

desired statement. ⬛

The other result tackles the following problem: The definition of ≈ essentially guarantees that

fa ≈ f ′a implies fa xa ≈ f ′a xa . However, we will later also need that ≈ is a congruence, i.e. that

fa xa ≈ fa x
′
a if xa ≈ x ′a . We then get the congruence property that will be required: If fa ≈ f ′a

and xa ≈ x
′
a , then fa xa ≈ f

′
a x

′
a .

Unfortunately, ≈ is not a congruence on Da,κ in general. Instead, we define the notion of per-

meable elements of Da,κ such that ≈ is a congruence on these elements. Our definition of per-

meability is again by induction on the kind.

For kind ground, an element xa ∈ Da,o is permeable if xa = α(xc) for some compatible xc ∈ Dc,o.

(Since ≈ is equality for ground kind, this is equivalent to requiring xa ≈ α(xc).)
A function fa ∈ Da,κ1→κ2 is permeable if (1) fa ≈ α(fc) for some fc ∈ Dc,κ1→κ2 , (2) for any perme-

able xa ∈ Dκ1 , fa xa ∈ Da,κ2 is permeable, and (3) for permeable xa , x
′
a ∈ Dκ1 with xa ≈ x ′a , we

have fa xa ≈ fa x
′
a .

Part (3) of the definition of permeability is exactly the congruencewith respect to ≈ that wewill

need later. We show that permeability is well-behaved with respect to ≈.

18.4.5 Lemma
If fa is permeable and fa ≈ f

′
a , then so is f ′a .

Proof:
Weproceedby induction on the kind, where the base case is trivial since≈ is equality for ground

kind. Consider functions fa , f
′
a ∈ Da,κ1→κ2 such that fa is permeable and fa ≈ f ′a . We argue that

f ′a is permeable. For (1), we have f ′a ≈ fa ≈ α(fc) for some compatible fc using the fact that

fa is permeable and the transitivity of ≈. For (2), consider a permeable xa ∈ Dκ1 . We have

fa xa ≈ f ′a xa , where the former value is permeable by the assumption that fa is permeable.

We apply induction to get that also the latter value is permeable. For (3), consider permeable

xa , x
′
a ∈ Dκ1 with xa ≈ x ′a . We have f ′a xa ≈ fa xa ≈ fa x

′
a ≈ f

′
a x

′
a , where we use the definition of

the equivalence ≈ twice and the fact that fa is assumed to be permeable. ⬛

The notion of permeability may give the impression that it introduces a new proof obligation

on the user of the framework. However, this is not the case: We will show that any α-image

α(xc) of a compatible xc is permeable. By Lemma 18.4.5, this also means that any element that
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is ≈-equivalent to an α-image is permeable. Before we can formally prove this, we need to state

some additional requirements on α that we will need to make in the rest of this section.

Precision

The exact fixed-point transfer will require α to have some special properties.

18.4.6 Definition
We call an abstraction function α∶Dc,o → Da,o precise if (P1) α(⊥c,o) = ⊥a,o, (P2) α is join-

continuous on Dc,o: If (xc,i)i∈N is an ascending chain in Dc,o, then α(⨆i∈N xc,i) = ⨆i∈N α(xc,i),
(P3) for each terminal s, Ic(s) is compatible, (P4) for each terminal s, α(sIc ) ≈ sIa .
The first requirement is that α maps the least element of the concrete domain to the least ele-

ment of the abstract domain. The second is that α is join-continuous. Since the least fixed point

is, by Kleene’s theorem, the join of an ascending chain that starts with the bottom element, re-

quiring these properties is not unexpected. Note that we only require these properties for kind

ground. We will show that this is sufficient to be able to lift them to the domains for arbitrary

kinds.

The latter two requirements are that the concrete interpretation of the terminals are compatible

and that under α, they are ≈-equivalent to the abstract interpretations. Recall that we have

required terminals to be first order. This means that the definitions if α and ≈ are simple, as

we have explained in Example 18.4.3. We lift the latter two properties from the terminals to

arbitrary HORS terms later. This lifting result be the key ingredient for proving exact fixed-point

transfer. At the end of the section, we will give an overview of what the user of the framework

has to show to be able to use it.

We start by considering the properties of⊥c,κ and⊥a,κ , lifting Property (P1) in the process.

18.4.7 Lemma
Assume that α satisfies Property (P1). For each kind κ,⊥c,κ is compatible and α(⊥c,κ) = ⊥a,κ .

Proof:
We proceed by induction on the kind κ. In the base case, compatibility of ⊥c,o is trivial. Prop-

erty (P1) guarantees α(⊥c,o) = ⊥a,o.

Consider kind κ1 → κ2. For compatibility, consider any elements xc , x
′
c ∈ Dc,κ1 .

We have that ⊥c,κ1→κ2 xc = ⊥c,κ2 is compatible by induction. Similarly, we have

α(⊥c,κ1→κ2 xc) = α(⊥c,κ2 ) = α(⊥c,κ1→κ2 x
′
c) as required.
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To see that α(⊥c,κ1→κ2 ) is ⊥a,κ1→κ2 , the function that sends any element xa ∈ Da,κ1

to ⊥a,κ2 , consider such an xa . If xa is not ≈-equivalent to the α-image of some com-

patible xc ∈ Dc,κ1 , α(⊥c,κ1→κ2 ) xa = ⊥a,κ2 holds by definition. Otherwise, we have

α(⊥c,κ1→κ2 ) xa = α(⊥c,κ1→κ2 xc) = α(⊥c,κ2 ) = ⊥a,κ2 by induction. ⬛

With this lemma, we can also tie up a loose end from earlier. It enables us to show that α(fc) is
always permeable. Hence, permeability is not an additional proof obligation; we get it for free

for any abstract element that is in the image of α.

18.4.8 Lemma
Assume that α satisfies Property (P1). For any fc ∈ Dc,κ , α(fc) ∈ Da,κ is permeable.

Proof:
Weproceedby inductionon the kind κ. We additionally prove that⊥a,κ is permeable. For kind o,

permeability just means being in the α-image, which is satisfied by assumption. The least ele-

ment⊥a,κ is in the image of α by Property (P1).

Consider kind κ1 → κ2. We first argue that ⊥a,κ1→κ2 is permeable. By Lemma 18.4.7, it is in the

image of α. For Part (2) of the definition of permeability, consider a permeable xa ∈ Da,κ1 and

note that ⊥a,κ1→κ2 xa = ⊥a,κ2 , which is permeable by induction. Similarly, for Part (3), consider

permeable xa , x
′
a ∈ Da,κ1 and we get⊥a,κ1→κ2 xa = ⊥a,κ2 = ⊥a,κ1→κ2 x

′
a .

Let us now consider fc ∈ Dc,κ1→κ2 . We need to prove that α(fc) is permeable, where the first

part of the definition is trivially satisfied. If fc is not compatible, α(fc) = ⊥a,κ1→κ2 , and we

have just argued that this value is permeable. Let us assume that fc is compatible, and let

xa ≈ x ′a be permeable values. This in particular means xa ≈ x ′a ≈ α(xc) for some compati-

ble xc . Consider α(fc) xa ≈ α(fc xc), using the definition of α(fc). The latter value is permeable

by induction, and so is the former by Lemma 18.4.5. For Part (3) of the definition, note that

α(fc) xa ≈ α(fc xc) ≈ α(fc) x ′a as required. ⬛

As a next step, we lift Property (P2), the join-continuity of α, beyond kind ground. To be precise,

we show a restricted version of join-continuity. We only consider ascending chains of compat-

ible elements, and instead of showing that the join of the function value equals the function

value of the join, we show that they are ≈-equivalent. For the proof by induction to work, we

need to strengthen the induction hypothesis and also show that the limit of a chain of compat-

ible elements is compatible.

18.4.9 Lemma
Assume that α satisfies the Properties (P1) and (P2). For all κ: The join⨆i∈N fc,i of an ascending

chain of compatible elements (fc,i)i∈N fromDc,κ is compatible, and α is join-continuous on such

chains: α(⨆i∈N fc,i) ≈ ⨆i∈N α(fc,i).
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Proof:
We proceed by induction on κ. Any element ofDc,o is compatible by definition, which in partic-

ular applies to the join of a chain. The join-continuity of α is simply Property (P2).

Consider kind κ1 → κ2, and let⨆i∈N fc,i be an ascending chain of compatible elements (fc,i)i∈N
fromDc,κ1→κ2 .

For the first part of the definition of compatibility, consider a compatible xc ∈ Dc,κ1 We have(⨆i∈N fc,i) xc = ⨆i∈N(fc,i xc) by the definition of the join on the function domainDc,κ1→κ2 . Since

xc is compatible and each fc,i is compatible, then so is each fc,i xc . Additionally, the fc,i forming

an ascending chain implies their function values fc,i xc forming an ascending chain. Induction

proves that⨆i∈N(fc,i xc) is compatible as desired.

For the second part, let xc , x
′
c ∈ Dc,κ1 be compatible so that α(xc) ≈ α(x ′c). We need to prove

α((⨆
i∈N

fc,i) xc) ≈ α((⨆
i∈N

fc,i) x ′c) .
Using the definition of the join on both sides, it would be sufficient to show

α(⨆
i∈N

(fc,i xc)) ≈ α(⨆
i∈N

(fc,i x ′c)) .
As in the first part of the proof, both (fc,i xc)i∈N and (fc,i x ′c)i∈N are ascending chains of compat-

ible elements in Dc,κ2 . We apply induction and use the join-continuity of α on Dc,κ2 to get the

desired statement.

For join-continuity, we need to show α(⨆i∈N fc,i) ≈ ⨆i∈N α(fc,i). By the definition of ≈, this
means we need to consider some xa ∈ Dκ1 such that xa ≈ α(xc) for some compatible xc .

We prove α(⨆i∈N fc,i) xa ≈ (⨆i∈N α(fc,i)) xa . By the definition of α for functions, we have

α(⨆i∈N fc,i) xa ≈ α((⨆i∈N fc,i) xc). By the definition of the join, this value equals α(⨆i∈N(fc,i xc)).
As before, (fc,i xc)i∈N is an ascending chain of compatible elements, so we apply induction to

get α(⨆i∈N(fc,i xc)) ≈ ⨆i∈N α(fc,i xc) . Starting from the other side of the desired equality we

get (⨆i∈N α(fc,i)) xa = ⨆i∈N(α(fc,i) xa) using the definition of the join. By the definition of α, we

have α(fc,i) xa ≈ α(fc,i xc), which completes the proof. ⬛

The previous lemma allows us to tie up another loose end. At the beginning of the section, we

have claimed that α(fc) is join-continuous on the α-images of compatible elements. We can

now prove this statement.

Let fc ∈ Dc,κ1→κ2 be a function. Consider an ascending chain (xc,i)i∈N in Dc,κ1 of compat-

ible elements. By Lemma 18.4.9, α is join-continuous and hence monotonic. We define

xa,i = α(xc,i) for each i and obtain that (xa,i)i∈N is an ascending chain in Da,κ1 . We prove that

α(fc) (⨆i∈N xa,i) ≈ ⨆i∈N(α(fc) xa,i). By the join-continuity of α, we get that the join ⨆i∈N xa,i
of the xa,i is ≈-equivalent to the join of the xa,i , ⨆i∈N xa,i ≈ α(⨆i∈N xc,i). Hence, the definition
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of α(fc) gives us α(fc) (⨆i∈N xa,i) ≈ α(fc (⨆i∈N xc,i)) . The function fc is join-continuous by our

definition of Dc,κ1→κ2 , so we can transform the latter expression to α(⨆i∈N fc xc,i) . We use the

join-continuity of α and the definition of α(fc) to get ⨆i∈N α(fc xc,i) ≈ ⨆i∈N(α(fc) xa,i) , which

proves the desired statement.

Exact fixed-point transfer

We hone in on proving exact fixed-point transfer. The key step is lifting the Proper-

ties (P3) and (P4) from the definition of precision from the nonterminals to arbitrary HORS terms.

Recall that the semanticsMJtK of a HORS term t is a function with signature (N∪⋅ V →p D) → D
that expects a valuation, an assignment of values to the nonterminals and the HORS variables

that are free in t. We extend some of the notions that we have defined in this section to val-

uations in the expected way. A concrete valuation νc∶ N ∪⋅ V →p Dc is compatible if νc(x) is
compatible for all x onwhich νc is defined. For such a concrete valuation νc , α(νc)∶ N∪⋅ V →p Da

is the abstract valuation with α(νc)(x) = α(νc(x)) for all x on which νc is defined.

We can now prove the proposition that shows thatMcJtKν is compatible and that its α-image

is ≈-equivalent toMaJtKα(ν). We also prove that if wemodify the valuation α(ν) by exchanging

its entries for ≈-equivalent ones, we obtain an ≈-equivalent result.

18.4.10 Proposition
Assume α to be precise. Let t be a term and νc be a compatible valuation.

a) McJtKνc is compatible.

b) α(McJtKνc) ≈ MaJtKα(νc).
c) If an abstract valuation νa∶ N ∪⋅ V →p Da satisfies νa ≈ α(νc), meaning νa(x) ≈ α(νc)(x) for

all x , thenMaJtKα(νc) ≈ MaJtKνa .
Proof:
Weproceedby induction on the structure of the term t andprove all statements simultaneously.

Base case t = s for a terminal s. We have McJtKνc = sIa . For Part a), note that compatibility

is simply Property (P3). For Part b), we have α(McJtKνc) = α(sIa ) ≈ sIa = MaJtKα(νc) using
Property (P4) and the fact that the valuation does not play a role when evaluating a terminal.

The latter fact also provesMaJsKα(νc) ≈ MaJsKνa .
Base case t = F for a nonterminal F. The value McJFKνc = νc(F) is compatible since νc is

compatible. We have α(McJFKνc) = α(νc(F)) = α(νc)(F) = MaJFKα(νc) using the definition of

α(νc). Finally,MaJFKα(νc) = α(νc)(F) ≈ νa(F) = MaJFKνa since α(νc) ≈ νa by assumption.
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Base case t = x for a HORS variable x . The reasoning is exactly the same as for t = F .

Inductive step, t = λx .t1. Observe that McJλx .t1Kνc is a function that takes xc and returns

McJt1K(νc[x ↦ xc]).
For Part a), we prove compatibility using its definition. Let xc be compatible, then the value

McJλx .t1Kνc xc equals McJt1K(νc[x ↦ xc]). Since both νc and xc are compatible, νc[x ↦ xc]
is a compatible valuation. We apply Part a) of the proposition using induction and obtain that

McJt1K(νc[x ↦ xc]) is compatible as required. Consider compatible xc , x
′
c with α(xc) ≈ α(x ′c).

We have α(McJλx .t1Kνc xc) = α(McJt1K(νc[x ↦ xc])) ≈ MaJt1Kα(νc[x ↦ xc]) by using Part b)

of the induction hypothesis. Similarly, α(McJλx .t1Kνc x ′c) ≈ MaJt1Kα(νc[x ↦ x ′c]). We have

α(νc[x ↦ xc]) ≈ α(νc[x ↦ x ′c]) since α(xc) ≈ α(x ′c) so we can use Part c) of the induction

hypothesis to concludeMaJt1Kα(νc[x ↦ xc]) ≈ MaJt1Kα(νc[x ↦ x ′c]) as desired.
For Part b), consider α(McJλx .t1Kνc). Weneed to show that it is≈-equivalent toMaJλx .t1Kα(νc).
The latter is a function that takes xa and returnsMaJt1Kα(νc)[x ↦ xa]. We check the definition

of ≈ for functions by considering xa with xa ≈ α(xc) for some compatible xc . We have

α(McJλx .t1Kνc) xa ≈ α(McJλx .t1Kνc xc)
= α(McJt1K(νc[x ↦ xc]))
≈ MaJt1Kα(νc[x ↦ xc])
= MaJt1K(α(νc)[x ↦ α(xc)])

using the definition of α, the definition of the interpretation of lambda abstraction, and the

induction hypothesis. The last step is simply evaluating α(νc[x ↦ xc]). We now observe that

α(νc)[x ↦ α(xc)] ≈ α(νc)[x ↦ xa] since xa ≈ α(xc). We use Part c) of the induction hypothesis

and get

MaJt1K(α(νc)[x ↦ α(xc)]) ≈ MaJt1K(α(νc)[x ↦ xa]) = MaJλx .t1Kα(νc) xa
as desired.

For Part c), we compare MaJλx .t1Kα(νc) and MaJλx .t1Kνa . Consider xa such that xa ≈ α(xc)
for some compatible xc . We have MaJλx .t1Kνa xa = MaJt1K(νa[x ↦ xa]) and similarly

MaJλx .t1Kα(νc) xa = MaJt1K(α(νc)[x ↦ xa]). We have α(νc)[x ↦ xa] ≈ α(νc[x ↦ xc]), so
we apply the induction hypothesis to get MaJt1K(α(νc)[x ↦ xa]) ≈ MaJt1Kα(νc[x ↦ xc]).
We now use α(νc[x ↦ xc]) ≈ νa[x ↦ xa] and apply the induction hypothesis again to get

MaJt1Kα(νc[x ↦ xc]) ≈ MaJt1K(νa[x ↦ xa]) as desired.
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Inductive step, t = t1 t2. For Part a), we have

McJt1 t2Kνc = McJt1Kνc McJt2Kνc
using the definition of the interpretation of function application. BothMcJt1Kνc andMcJt2Kνc
are compatible by induction. The valueMcJt1Kνc is a function, and using the definition of com-

patibility for functions, the function value of a compatible function at a compatible argument

is again compatible. We obtain thatMcJt1Kνc McJt2Kνc is compatible.

For Part b), we get

α(McJt1 t2Kνc) = α(McJt1Kνc McJt2Kνc)
≈ α(McJt1Kνc)MaJt2Kα(νc)

where the last transformation requires some explanation. By induction, we have

α(McJt2Kνc) ≈ MaJt2Kα(νc). Hence, McJt2Kνc is an α-preimage of MaJt2Kα(νc) (mod-

ulo ≈) and we may use the definition of α for functions. We have α(McJt1Kνc) ≈ MaJt1Kα(νc)
by induction, so following the definition of ≈ for functions, we obtain

α(McJt1Kνc)MaJt2Kα(νc) ≈ MaJt1Kα(νc)MaJt2Kα(νc)
= MaJt1 t2Kα(νc) ,

proving the desired statement.

Finally, we consider Part c). We have

MaJt1 t2Kα(νc) = MaJt1Kα(νc)MaJt2Kα(νc) .
By inductionMaJt1Kα(νc) ≈ MaJt1Kνa andMaJt2Kα(νc) ≈ MaJt2Kνa hold. Also by induction,

we know that MaJt2Kα(νc) is ≈ related to an element in the image of α (namely McJt2Kνc), so
we can use the definition of ≈ for functions and get

MaJt1Kα(νc)MaJt2Kα(νc) ≈ MaJt1Kνa MaJt2Kα(νc) .
Have you noticed that we have not used the concept of permeability yet? The value

α(McJt1Kνc) is permeable by Lemma 18.4.8. Since α(McJt1Kνc) ≈ MaJt1Kα(νc) ≈ MaJt1Kνa ,
so is MaJt1Kνa by Lemma 18.4.5. Similarly, α(McJt2Kνc) is permeable by Lemma 18.4.8, and

both MaJt2Kα(νc) and MaJt2Kνa are permeable because they are ≈-equivalent to this value.

We use Property (3) from the definition of permeability to conclude

MaJt1Kνa MaJt2Kα(νc) ≈ MaJt1Kνa MaJt2Kνa = MaJt1 t2Kνa .
This completes the proof. ⬛
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The previous proposition enables us to prove our main result, exact fixed-point transfer.

18.4.11 Theorem
If α is precise, then sola ≈ α(solc).
Here, we use the notation for valuations, i.e. sola ≈ α(solc) means that for every nontermi-

nal F , we have sola(F) ≈ α(solc)(F) = α(solc(F)). This result also extends to arbitrary terms t:

sola(t) ≈ α(solc(t)). If t is variable-closed and of kind o, we even get sola(t) = α(solc(t)) because
≈ is simply equality onDa,o. We state this result as a corollary.

18.4.12 Corollary
If t is a variable-closed term of kind ground, then sola(t) = α(solc(t)).
Note that the corollary in particular applies to the initial nonterminal S of the scheme, which

we have required to be of kind o.

To finish this section, it remains to prove the theorem.

Proof of Theorem 18.4.11.:
Firstly, we show

α(solic) ≈ solia

for every i ∈ N using induction. We also argue that each solic is compatible.

In the base case, consider i = 0. For a nonterminal F of kind κ, sol0a(F) = ⊥a,κ , as the 0th ap-

proximant is the least element in every component. Similarly, α(sol0c (F)) = α(⊥c,κ) = ⊥a,κ using

Lemma 18.4.7. Also by Lemma 18.4.7, we get that sol0c is compatible.

For the induction step, assume we have proven α(solic) ≈ solia and consider i + 1. Consider a

nonterminal F of kind κ whose unique rule in the HORS is F → t. By the definition of the (i + 1)st
approximant, we have soli+1c (F) = McJtKsolic , similar for sola . By induction, solic is compatible,

then so isMcJtKsolic using Part a) of Proposition 18.4.10. We get

α(soli+1c (F)) = α(McJtKsolic)
≈ MaJtKα(solic)
≈ MaJtKsolia
= soli+1a (F) .
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Overview: Exact fixed-point transfer

Consider a deterministic HORSG, a concretemodelMc = (Dc , Ic), and an abstractmodel

Ma = (Da , Ia), both instantiations of the model template described in Section 18.2 (see

Figure 18.2.a). Note that these models in particular provide domains Dc,o and Da,o for

kind o.

We get the existence of the least solution solc and sola of the interpreted system of equa-

tions associated to G for these models.

Precision
Assume we are given an abstraction function α∶Dc,o → Da,o satisfying the

following properties.

• α maps the least element ⊥c,o ∈ Dc,o to the least element ⊥a,o ∈ Da,o,

α(⊥c,o) = ⊥a,o.

• α∶Dc,o → Da,o is join-continuous.

• For each terminal symbol s of order one, say with arity k, consider

x1 , x
′
1 , . . . , xk , x

′
k ∈ Dc,o so that α(xi) = α(x ′i) for all i ∈ [1, k].

The concrete interpretation of s should satisfy

α(sIc x1 . . . xk) = α(sIc x ′1 . . . x ′k) .
• For each terminal symbol s, say with arity k, consider x1 , . . . , xk ∈ Dc,o.

The interpretations of s should satisfy

α(sIc x1 . . . xk) = sIa α(x1) . . . α(xk) .
Exact fixed-point transfer
Then for each variable-closed term t of kind ground, the abstraction of the value assigned

to t by the concrete least solution is the value of t in the abstract least solution,

α(solc(t)) = sola(t) .
Figure 18.4.a: Overview: Exact fixed-point transfer.
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The first and the last equality are the above observation. The second transformation is Part b)

of Proposition 18.4.10, which we can apply because solic is compatible by induction. The penul-

timate transformation is α(solic) ≈ solia together with Part c) of Proposition 18.4.10.

Equipped with the knowledge that α(solic) ≈ solia for all i, we turn to proving α(solc) ≈ sola .

Kleene’s theorem, Theorem 16.1.3, gives us

solc = ⨆
i∈N

solic and sola = ⨆
i∈N

solia ,

see also Proposition 18.2.8. We get

α(solc) = α(⨆
i∈N

solic) ≈ ⨆
i∈N

α(solic) ≈ ⨆
i∈N

solia = sola .

The first and the last equality are Kleene’s theorem. The second transformation is the join-

continuity of α on chains of compatible elements, Lemma 18.4.9, together with our earlier ob-

servation that each solic is compatible. The penultimate transformation is the very first lemma

in this section, Lemma 18.4.4, together with α(solic) ≈ solia for all i. ⬛

We conclude the section with an overview in the form of Figure 18.4.a. It lists what a potential

user of the framework has to show to guarantee that Corollary 18.4.12 holds. The contents

of the overview are based on the basic definition from Definition 18.4.2, the observation of

what these definitions mean for order one in Example 18.4.3, and the definition of precision in

Definition 18.4.6.
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18.5 Solving higher-order inclusion games

Wefinally discuss how todecide the regular inclusions gamesdefinedbyhigher-order recursion

schemes. In Section 18.3, we have defined a concrete semantics for HORS games using the

mode template that we have introduced in Section 18.2. In the form of Theorem 18.3.1, we

have shown that the least solution to the system of equations interpreted using the concrete

model provides the winner of the game. Unfortunately, this result is non-constructive. If we

were able to compute the least solution, we could read off the winner, but since the domains

used by the concrete semantics are infinite and do not satisfy the ascending chain condition,

this is not possible.

In this section, we overcome this problemby using our framework for exact fixed-point transfer.

We define an abstract model by again instantiating the model template. The abstract domains

are finite, so it is possible to actually compute the least solution to the interpreted system of

equations. Showing that thewinner of the game can be read off from the least solution directly

would be difficult. To this end, we use exact fixed-point transfer. We define a precise abstrac-

tion from the concrete to the abstract model and get that the abstraction of the concrete least

solution is essentially the abstract least solution. This will tell us how to read off the winner of

the game and prove that this approach is sound.

The abstract model

We start by defining the abstractmodel, using themodel template fromSection 18.2. We follow

our overviewon themodel template, Figure 18.2.a. The template requires us to define adomain

Da,o for kind ground. Wewant to use positive Boolean formulas over a finite set of atoms. Recall

that the winning condition of the game for the existential player is deriving a finite word that

is in the regular language L(A), the complement of the language of an NFA A. Let Q be the set

of states of A. We define Da,o to be the set of positive Boolean formulas over Q, factorized by

logical equivalence and ordered by implication,

Da,o = (pBF(Q)/⟺ , ⟹ ) .
Similar to the domain that we have used in Chapter 17, this set is a CPPO. Its least element is the

equivalence class of false. The join of an ascending chain of (equivalence classes of ) formulas

is the disjunction of the formulas. Since the set of atoms Q is finite, there are only finitely many

equivalence classes. Hence, an infinite chain only consists of finitely many distinct elements

and the disjunction of these elements is a well-defined finite formula. Themodel template now

provides us withDa,κ1→κ2 = Da,κ1 →⊔Da,κ2 for every kind κ1 → κ2.

The idea behind using formulas over states is the following. Wewant to represent each wordw

by the set {q ∣ q w
−−→ qfinal ∈ Qfinal} of states from which w is accepted, i.e. the states q so that

there is a run of A from q to a final state. Since our atoms are states and not sets of states, we
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transform the above set into a conjunction. This means we representw by⋀
q s.t. q

w
−−→qfinal∈Qfinal

q.

To improve readability, wewrite such a conjunction as⋀{q ∣ q w
−−→ qfinal ∈ Qfinal} in the following.

The existential player needs to enforce the derivation of a finitewordw inL(A). Thismeans that

no run of A onw can be accepting. For each run of A onw, it must not be true that the run is a

run from the initial to the final state. Using conjunction represents the fact that the existential

player has to show that each run is non-accepting.

Following this intuition, we complete the instantiation of themodel template by specifying the

interpretation of the terminals. The word-end marker $∶ o is the representation of the empty

word. Hence, it corresponds to the set of final states, which we see as conjunction,

$Ia = ⋀
qfinal∈Qfinal

qfinal ∈ Da,o .

For each terminal a∶ o → o corresponding to a letter a ∈ Σ, we define the interpretation as

aIa = predeca ∈ Da,o→o .

It takes a formula in Da,o and distributes over conjunction and disjunction. When it reaches

an atom q, it computes the a-predecessors of q in A and connects them using conjunction.

Formally, the definition is

predeca(H ∧
∨ H

′) = predeca(H ∧
∨ H

′)
predeca(q) = ⋀{q′ ∈ Q »»»»»» q′ a

−→ q} .
It remains to define the interpretations of the terminals of the shape branchF that are present in

thedeterminizationof thegameHORS. Consider branchF ∶ o → . . . → owith arity k. If F is owned

by the existential player, then the interpretation branchF
Ia is k-ary disjunction. Otherwise, it is

k-ary conjunction.

Before we can finalize the instantiation of the template, we need to show that the interpreta-

tions are join-continuous. Before doing so, we make the following observation.

18.5.1 Lemma
For each kind κ,Da,κ and (N ∪⋅ V →p Da) →⊔Da,κ are finite.

Proof:
Since the set of states Q is finite, so is the set Da,o of equivalence classes of formulas. The

set of function from a finite domain to a finite target set is finite. The same is true for the

subset of join-continuous functions. Hence, it is easy to show using induction that each

Da,κ1→κ2 = Da,κ1 →⊔Da,κ2 is finite.
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For (N ∪⋅ V →p Da) →⊔ Da,κ , note that we do not actually consider arbitrary valuations. We

only consider valuations ν that assign to each HORS variable or nonterminal of kind κ a value

from Da,κ . As we have just argued, each Da,κ is finite. Since there are only finitely many HORS

variables and nonterminals, the set of valuations that respect the kinds is finite. Hence, there

are only finite many functions with signature (N ∪⋅ V →p Da) →⊔Da,κ . ⬛

The finiteness of each Da,κ allows us to use Remark 16.1.4. For a finite domain, join-continuity

and monotonicity are equivalent. In order to show that the interpretations are values in their

respective domain, weneed to show that they aremonotonic (andhence join-continuous) func-

tions. The interpretation of the word-end marker is just a value and not a function, so there is

nothing to do. The interpretation of each branchF is conjunction or disjunction, and we have

argued that these functions are monotonic in Section 17.2. It remains to show that predeca is

monotonic, which we prove in the form of the following lemma.

18.5.2 Lemma
If H, H′ ∈ Da,o with H ⟹ H′, then predeca(H) ⟹ predeca(H′).
Proof:
The proof is similar to the proof of Lemma 17.2.6 and uses the same observations on the equiv-

alence of Boolean formulas.

We proceed by a nested induction. The outer induction is an induction on the structure of H.

In its base case, H = q is an atom. We proceed using an induction on the structure of H′. In the

base case, H′ = q′ is an atom, too. The implication H ⟹ H′ can only hold if q = q′. In this case

predeca(H) = predeca(H′) holds and we get the desired implication.

In the induction stepof the inner induction, considerH′ = H′1∧H
′
2. SinceH ⟹ H′, we get both

H ⟹ H′1 and H ⟹ H′1 using the 2nd Observation from the proof of Lemma 17.2.6. Using in-

duction, weobtain predeca(H) ⟹ predeca(H′1) andpredeca(H) ⟹ predeca(H′2). Using the

observation again, we conclude predeca(H) ⟹ predeca(H′1)∧predeca(H′2) = predeca(H′2) as
desired. If H′ is a disjunction, the argumentation is similar.

In the induction step of the outer induction, consider H = H1 ∧ H2 and H′ arbitrary. Using

the 3rd Observation from the proof of Lemma 17.2.6, we obtain that H ⟹ H′ implies

H1 ⟹ H′ or H2 ⟹ H′. With induction, we get predeca(H1) ⟹ predeca(H′)
or predeca(H2) ⟹ predeca(H′). Applying the observation again gives us

predeca(H) = predeca(H1) ∧ predeca(H2) ⟹ predeca(H′) as desired. If H is a disjunction,

the argumentation is similar. ⬛
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This completes the instantiation of the model template. We get the abstract model

Ma = (Da , Ia) and for each term t of kind κ the abstract semantics

MaJtK∶ (N ∪⋅ V →p Da) →⊔Da,κ .

By Proposition 18.2.8, the least abstract solution to the interpreted system of equation exists. It

is obtained as the join of the abstract approximants,

sola = ⨆
i∈N

solia .

In contrast to the concrete domains, the abstract domains satisfy the ascending chain condition

as they are finite, see Lemma 18.5.1. Hence, the chain of the solia is stationary, and sola equals

soli0a for some i0 ∈ N. This will later allow us to compute the winner of the game. We come back

to the details when we discuss the complexity of the algorithm.

Exact fixed-point transfer

We want to prove that we can read off the winner of this game from the abstract least solution

sola . Instead of reproving a result similar to Theorem 18.3.1, we want to apply exact fixed-point

transfer. This will allow us to simply reuse Theorem 18.3.1.

We instantiate the framework from Section 18.4 by following our overview, Figure 18.4.a. The

first step is defining an abstraction function α∶Dc,o → Da,o. The definition will follow the intu-

ition behind the translation from words to formulas over states we have explained earlier. For

the formal definition, we proceed as follows. For a set of formulasH ∈ Dc,o, we define

α(H) = ⋁
H∈H

α(H)
as the disjunction of the result of applying α to the elements of H. Note that there are only

finitely many distinct values inDa,o, so the disjunction on the right-hand side is a well-defined

finite formula, even ifH is an infinite set. For a formula in pBF(Σ∗), we define α as follows.

α(H ∧
∨ H

′) = α(H) ∧∨ α(H′)
α(w) = ⋀{q »»»»»» q w

−−→ qfinal ∈ Qfinal}
α(false) = false .

This means that α distributes over disjunctions and conjunctions. For a wordw, it produces the

conjunctions of the states q so that A has an accepting run onw from q.

Since formally, Dc,o and Da,o are equivalence classes of (sets of ) formulas, we should argue

that α is well-defined. It is sufficient to argue that α is monotonic: H ⟹ H′ implies

α(H) ⟹ α(H′). For individual formulas, it is easy to show that H ⟹ H′ implies

α(H) ⟹ α(H′) with the same line of reasoning as in Lemma 18.5.2. For sets of formulas,
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we observe that H ⟹ H′ means that for every H ∈ H, there is some H′ ∈ H′ so that

H ⟹ H′. This is because we have defined the evaluation semantics to treat sets of formulas

as disjunctions. Hence, for every disjunct α(H) of α(H), there is a disjunct α(H′) of α(H′) so that

α(H) ⟹ α(H′). We obtain α(H) ⟹ α(H′) as desired.
In order to be able to use exact fixed-point transfer, we need to show that α is precise.

18.5.3 Lemma
The abstraction function α is precise.

Proof:
We use the definition of precision, Definition 18.4.6, and our outline, Figure 18.4.a.

Property (P1). The least element ofDc,o is the (equivalence class of the) set {false}. Its α-value
is the disjunction with the unique disjunct α(false) = false, which is the least element ofDa,o.

Property (P2). We consider join-continuity. Let (Hi)i∈N be an ascending chain of sets of for-

mulas, and note that their join in Dc,o is the union ⋃i∈NHi , corresponding to the disjunction

of all formulas contained in some Hi . We have that the join of the α(Hi) is the disjunction

⨆i∈N α(Hi) = ⋁H∈Hi for some i∈N α(H), which equals α(⋃i∈NHi).
Property (P3). We prove that the concrete interpretations of the terminals are compatible.

For the word-endmarker, the interpretation is not a function and there is nothing to show. The

abstraction function α distributing over disjunction and conjunction means the concrete inter-

pretations of the terminals of the shape branchF are compatible.

Let a ∈ Σ be a letter and consider elements of Dc,o whose abstractions coincide. Here, it is

important to take into account that the equality of equivalence classes means that their rep-

resentatives are logically equivalent. Hence, consider H,H′ so that α(H) ⟺ α(H′). Using

the definition of α, α(H) ⟺ α(H′) means ⋁H∈H α(H) ⟺ ⋁H′∈H′ α(H′). As in the above

proof that α is well-defined, this means that for every H ∈ H, there is some H′ ∈ H′ so that

α(H) ⟹ α(H′) and vice versa.

We need to show α(prependa(H)) ⟺ α(prependa(H′)). Using the definition of the prepend

function and of α, this is equivalent to showing

⋁
H∈H

α(prependa(H)) ⟺ ⋁
H′∈H′

α(prependa(H′)) .
We use the characterization of the equivalence of disjunctions again and get that we have to

show that for every H ∈ H, there is some H′ ∈ H′ so that α(prependa(H)) ⟹ α(prependa(H′))
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and vice versa. If we show that α(H) ⟹ α(H′) implies α(prependa(H)) ⟹ α(prependa(H′)),
we are done. We proceed by a nested induction on H and H′. In the base case of the inner

induction, both H = w and H′ = w ′ are atoms, words over Σ. We have α(H) = ⋀Qw with

Qw = {q ∣ q w
−−→ qfinal ∈ Qfinal}, and α(H′) = ⋀Qw ′ with Qw ′ = {q ∣ q w ′

−−→ qfinal ∈ Qfinal}.
Similarly, α(prependa(H)) = α(aw) = ⋀Qaw and α(prependa(H′)) = α(aw ′) = ⋀Qaw ′ with

Qaw = {q ∣ q aw
−−−→ qfinal ∈ Qfinal} and Qaw ′ = {q ∣ q aw ′

−−−→ qfinal ∈ Qfinal}. Observe that for two

sets of states Q ′ , Q ′′ ⊆ Q, we have⋀Q ′ ⟹ ⋀Q ′′ if and only if Q ′′ ⊆ Q ′. Since we assume that

α(H) ⟹ α(H′), we get Qw ′ ⊆ Qw . Furthermore, we have that Qaw = preA(a, Qw) is the set of

a-predecessors of Qw in A, similarly Qaw ′ = preA(a, Qw ′). The predecessor function preA(a,−)
is monotonic with respect to the set of states, so Qw ′ ⊆ Qw implies Qaw ′ ⊆ Qaw . This means

the desired implication α(prependa(H)) = ⋀Qaw ⟹ ⋀Qaw ′ = α(prependa(H′)) holds. This
finishes the base case of the inner induction. The induction steps can be proven analogously to

the proof of Lemma 18.5.2, using the fact that α distributes over conjunctions and disjunctions.

We forgo giving the formal proof.

Property (P4). Finally, we need to prove that the abstractions of the concrete interpretations

are ≈-equivalent to the abstract interpretations. For the word end marker, we have

α($Ic ) = α({ε}) = α(ε) = ⋀Qfinal = $Ia .

Since the terminals of the shape branchF are interpreted as conjunctions resp. disjunctions in

both domains, the desired property holds. It remains to consider a letter a ∈ Σ. Let H ∈ Dc,o.

We need to show α(aIc H) = aIa α(H). We have

α(aIc H) = α(prependa(H)) = α( ⋃
H∈H

prependa(H)) = ⋁
H∈H

α(prependa(H))
and

aIa α(H) = predeca(α(H)) = predeca( ⋁
H∈H

α(H)) = ⋁
H∈H

predeca(α(H))
using the definitions of prependa , predeca , and α. If we show α(prependa(H)) = predeca(α(H)),
we are done. We proceed by induction on the structure. In the base case, H = w and

α(prependa(w)) = α(aw) = ⋀
q∶q

aw
−−−→qfinal∈Qfinal

q = ⋀
q′∶q

w
−−→qfinal∈Qfinal

⋀
q∶q′

a
−→q

q

= predeca( ⋀
q′∶q

w
−−→qfinal∈Qfinal

q′) = predeca(α(w)) .
The induction step is again trivial because all involved functions distribute over conjunctions

and disjunctions. This completes the proof. ⬛
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The fact that α is precise allows us to use Theorem 18.4.11 resp. Corollary 18.4.12.

18.5.4 Corollary
We have α(solc) ≈ sola . In particular, for the initial symbol S of the HORS of kind o, we have

α(solc)(S) = sola(S).
Determining the winner

We have proven in the form of Theorem 18.3.1 that the existential player wins the higher-

order inclusion game iff solc(S) is satisfied by the language L(A). It remains to see how this

property can be translated to the abstract domain. The following lemma establishes the

desired connection.

18.5.5 Lemma
For H ∈ Dc,o, H is satisfied by L(A) if and only if α(H) is satisfied by Q \ qinit, where qinit is the

initial state of A.

Proof:
By definition,H is satisfied by L(A) if and only if at least one formula H ∈ H is satisfied by L(A).
Similarly, α(H) = ⋁H∈H α(H) is satisfied byQ \{qinit} if and only if at least one α(H) is satisfied by

Q \ {qinit}. If we prove that every formula H is satisfied by L(A) iff α(H) is satisfied by Q \ {qinit},
we are done. We proceed by induction on the structure of H. In the base case, we have H = w.

This formula is satisfied by L(A) iff w ∈ L(A), i.e. w /∈ L(A). This means that A has no accepting

run onw, no run from the initial state qinit to a final state. Every run of A that ends in a final state

and processes wordw must not start in the initial state.

Recall that α(w) is the conjunction of the states q so that q
w
−−→ qfinal ∈ Qfinal. This conjunction

is satisfied by Q \ {qinit} if and only if qinit is not one of these states, i.e. if qinit
w
−−→ qfinal ∈ Qfinal

does not hold. This proves the desired equivalence. Because α distributes over conjunctions

and disjunctions, the induction step is again trivial. ⬛

With the previous lemma, we finally obtain a characterization of the winner of the higher-order

inclusion game in terms of the abstract least solution.

18.5.6 Theorem
The existential player has a winning strategy for the higher-order inclusion game iff sola(S) is
satisfied by Q \ {qinit}.
Proof: Theorem 18.3.1, Corollary 18.5.4, and Lemma 18.5.5. ⬛
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We have already argued that sola can be computed because the domains that are used in the

fixed-point iteration are finite. Hence, we in particular get the decidability of higher-order in-

clusion games as a result.

18.5.7 Corollary
Higher-order inclusion games with a regular target language are decidable.

We state thealgorithmthat, givenan instance (G , A)of ahigher-order inclusiongame, computes

the winner, i.e. the player who has a winning strategy.

Given an instance (G , A), it works as follows.

1. Determinize the given game HORS G.

2. Construct the system of equations associated to the determinization of G as described in

Section 18.2.

3. Solve the system of equations interpreted over the abstract modelMa .

• Initialize sol0a(F) = ⊥a,κ for each nonterminal F of kind κ.

• Starting with i = 0, compute soli+1a by evaluating the interpreted right-hand sides

of the equations at solia . For each nonterminal F , we set

soli+1a (F) = MaJtKsolia ,
where F → t is the unique rule for F in the determinization of G.

While soli+1 ≠ soli , increment i and repeat this step.

• Let i0 be the first index so that soli0a = soli0+1a .

4. The existential player has a winning strategy from S if and only if soli0a (S) evaluates to true

under the assignment Q \ {qinit}.
Note that the equality soli0a = soli0+1a in Step 3 of the algorithm means that for each nontermi-

nal F of κ, soli0F = soli0+1F , where the two values are from Da,κ . If F is of kind ground, this

means the two values are equivalence classes of formulas in pBF(Q) and we need to check the

implication soli0+1F ⟹ soli0F . (The implication in the other direction will always hold as

the approximants solia form an ascending chain.) If F is of kind κ1 → κ2, sol
i0F and soli0+1F are

functions, and checking equality means checking for each value inDa,κ1 whether the function

values of the two functions coincide.
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Computational complexity

We conclude this chapter by analyzing the complexity of solving higher-order inclusion games.

This complexity of the problem is mostly determined by order k of G. Recall that the order

of a HORS is the maximum order of any of its nonterminals, where the order of a term is the

order of the associated kind. We will show that the problem is (k + 1)EXP-complete, i.e. it is

complete for the class of problems solvable in deterministic (k + 1)-fold exponential time. For

the upper bound, i.e. proving membership in (k + 1)EXP, we will show the algorithm outlined

above achieves this optimal time complexity.

Let us make these statements formal.

Solving higher-order inclusions games of order k

Given: Game HORS G of order k, NFA A.

Question: Does the existential player have a winning strategy for (G , A)
from the position S?

18.5.8 Theorem
Solving higher-order inclusions games of order k is (k + 1)EXP-complete, and the above algo-

rithm achieves this optimal time complexity.

Remark
The theorem also shows the following. If we do not restrict the order of the input game HORS,

then solving higher-order inclusions games is primitive recursive, but non-ELEMENTARY. The

time needed to solve the game is described by a tower of exponentials, where the height of the

tower depends on a property of the input, namely the highest order of any nonterminal.

Upper bound / Membership

In order to show that higher-order inclusions games of order k can be solved in (k + 1)EXP, we

analyze the running time of the above algorithm. We start by considering various properties of

the domainDa,κ for kind κ.

Whenwe say that a number is k-fold exponential in the following, weman that the number can

be described as expk(f (∣Q∣)), where f is a polynomial.

18.5.9 Lemma
For each kind κ of order k, the size ofDa,κ is at most (k + 2)-fold exponential, the height ofDa,κ

is at most (k + 1)-fold exponential, and objects fromDa,κ can be represented using (k + 1)-fold
exponential space.
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Proof:
We proceed by induction on the order of the kind κ. In the base case, the order is zero, and

the only kind of order zero is o. Hence, we analyze Da,o = pBF(Q)/⟺ . We may represent

(equivalence classes of ) formulas in Da,o in conjunctive normal form, see Lemma 17.5.2. This

allows us to identifyDa,o with P(P(Q)). The size of this domain is 22
∣Q∣

. Additionally, a formula

can be represented as a conjunction of at most 2∣Q∣ different clauses of size at most ∣Q∣, which

is singly exponential. We can analyze the height of the domain using the same reasoning as in

the proof of Proposition 17.5.3 and get that its height is 2∣Q∣ as desired.
Assume we have proven statement for all orders strictly less than k. Consider kind κ of order

k > 0. In order to be able to apply the induction hypothesis, we need to conduct an inner

induction on the arity of the kind. In the base case, the arity of κ is zero. However, this is only

possible if κ is o, which violates the assumption that the order is k > 0. Hence, our desired

statement trivially holds.

Consider κ = κ1 → κ2 of order k. We have order(κ1 → κ2) = max(order(κ1) + 1, order(κ2)).
This means that κ1 has order at most k − 1 and κ2 has order at most k. We can apply

the induction hypothesis of the outer induction to Da,κ1 . By the definition of the arity,

arity(κ1 → κ2) = arity(κ2) + 1, the arity of κ2 is strictly less than the arity of κ. We can ap-

ply the induction hypothesis of the outer induction to Da,κ2 . In summary, we get that the size

of Da,κ1 is expk+1(f1) for a suitable polynomial f1. Similarly, the size of Da,κ2 is expk+2(f2), the
height is expk+1(h2), and the space needed to represent an element is expk+1(g2) for suitable
polynomials f2, h2 , g2.

Let us analyze Da,κ1→κ2 , which is a subset of the set of functions from Da,κ1 to Da,κ2 . Hence,

the height and size of Da,κ1 → Da,κ2 bound the height and size of Da,κ1→κ2 . An element of

Da,κ1→κ2 can be represented as a map that assigns a function value from Da,κ2 to each of the∣Da,κ1 ∣ elements of Da,κ1 . Each function value can be represented using expk+1(g2) space, so
the function itself can be represented using

expk+1(f1) ⋅ expk+1(g2) = 2expk (f1) ⋅ 2expk (g2) = 2expk (f1)+expk (g2)
⩽ 2expk (f1 ⋅g2) = expk+1(f1 ⋅ g2)

space. The size ofDa,κ1 → Da,κ2 is bounded by

∣Da,κ2 ∣»»»»»Da ,κ1
»»»»» = (expk+2(f2))expk+1(f1)
= (2expk+1(f2))expk+1(f1) = 2expk+1(f2) ⋅ expk+1(f1)
⩽ 2expk+1(f2 ⋅f1) = expk+2(f2 ⋅ f1) .

Finally, we observe that a chain inDa,κ1 → Da,κ2 can be decomposed into atmost ∣Da,κ1 ∣ chains
inDa,κ2 , one chain for each value in the domain of the functions. The length of each such com-
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ponent chain is bounded by the height of Da,κ2 . Altogether, the height of Da,κ1 → Da,κ2 is

bounded by

expk+1(f1) ⋅ expk+1(h2) ⩽ expk+1(f1 ⋅ h2) .
This completes the induction step of the inner induction, which also finishes the induction step

of the outer induction and the proof. ⬛

With the technical lemma at hand, we can prove one direction of Theorem 18.5.8.

18.5.10 Proposition
The above algorithm solves higher-order inclusions games of order k in (k + 1)EXP.
Proof:
We analyze the time needed for each step of the algorithm. In contrast to the determinization

of NFAs, the determinization of HORSes can be completed in polynomial time, and the result is

a deterministic HORS of polynomial size. Constructing the associated system of equations can

also be done in polynomial time.

Assumewe had obtained soli0a (S), the least solution associated to the initial symbol S. Since S is

of kindground, soli0a (S) is a valueofDa,owhose size is atmost exponential by Lemma18.5.9. This

value is atmost (k+1)-fold exponential for all k ∈ N. Evaluating this formula for the assignment

Q \ {qinit} can be done in time polynomial in the size of the formula.

It remains to analyze the cost of solving the interpreted system of equations. This cost is de-

termined by two factors: the maximum number of iterations and the cost per iterations. The

approximants solia form a chain in N → Da , the domain of valuations from nonterminals toDa

Hence, the height of this domain bounds the number of iterations. The height of the domain

of valuations is the product of the heights of the domainsDa,κ associated to the kind κ of each

nonterminal. In the worst case, the order of each κ is the maximum order k, soDa,κ has (k + 1)-
fold exponential height by Lemma 18.5.9. In this case, the total height is ∣N∣ times a (k + 1)-fold
exponential number, which is a (k + 1)-fold exponential number.

If we prove that each iteration of the loop needs at most (k + 1)-fold exponential time, we are

done. The number of operations needed for each iteration is polynomial in the size of the de-

terminized scheme, which is polynomial in the size of the original HORS. We need to argue that

each operation itself can be completed in (k + 1)-fold exponential time. Here, we need to be

careful. When evaluating e.g.MaJtKsolia for some term t, wewill encounter subterms t′ that are

not variable free. For these subterms, the semantics is not simply a value fromDa,κ′ , where κ′ is

the kind of t′. Instead, it is a function (V →p Da) → Da,κ′ that takes a valuation that assigns val-

ues to the free variables of t′. Wewill need to argue that each such function can be represented

using space at most (k + 1)-fold exponential.
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18 Higher-order games

We make the following observation. If k is the maximum order of any nonterminal in G, then

k−1 is themaximumorder of any variable that is used on the right-hand sides of the rules forG.

Assume the contrary and consider a term λx .t. Its kind is κ1 → κ2, where κ1 is the kind of x and

κ2 is the kind of t. The order of κ1 → κ2 is max(order(κ1) + 1, order(κ2)). If variable x were of

order k or higher, the term λx .t would be of order at least k + 1. Since the kinds of the terms

on the right-hand sides of HORS rules coincide with the kinds of the variables, and the highest

order of any nonterminal is k, we are not able to use a variable of order more than k − 1.

Using the observation, we get that each valuation assigns at most a value from Da,κ to each

variable, where κ is of order at most k − 1. With the same argumentation as in the proof of

Lemma 18.5.9, we obtain that the number of such valuations is at most (k +1)-fold exponential.

Hence, each function with signature (V →p Da) → Da,κ′ can be represented using (k + 1)-fold
exponential space. It remains to note that all operations that we need to compute, e.g. function

applications, disjunctions and conjunctions, and predecessor computations, can be conducted

in time polynomial in the size of the objects that are involved. As we have just argued, the size

of each object involved is at most (k + 1)-fold exponential, so each operation can be computed

in (k + 1)-fold exponential time. This completes the proof. ⬛

Hardness / Lower bound

To show that solving games define by a HORS of order k is (k + 1)EXP complete, it remains to

provide a matching lower bound, showing the hardness of the problem.

18.5.11 Proposition
Solving higher-order inclusions games of order k is (k + 1)EXP-hard.
The author conjectures that one could prove this proposition similar to the proof of Theo-

rem 17.5.4. This means one would use (k + 1)EXP = kAEXPSPACE and try to simulate an alter-

nating Turingmachine with k-fold exponential space consumption by a higher-order inclusion

game. Thiswould require accurately generating configurations of length expk(n), where n is the

size of the input of the machine. To this end, it should be possible to use the fact that HORSes

can be used to generate k-fold exponential numbers [CW07].

However, this is not the approach to the proof that we will take in the following. Instead, we

will give a reduction from another kind of automata model. Introducing this automata model

in full detail would be beyond the scope of this thesis. We will give a sketch of the proof and

refer to our publication [HMM17] resp. its full version [HMM17a] for the technical details.

Proof sketch for Proposition 18.5.11:
Wereduce thewordproblem for the languages of alternatingorder-k pushdownautomatawith

a work tape. At the end of Section 5.3, we have explained that there is a generalization of push-

down automata that is polynomially equivalent [KNU02] to a subclass of HORSes. An order-k
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18.5 Solving higher-order inclusion games

pushdown is a pushdown automaton thatmaintains an order-k stack, where an order-one stack

is a normal stack consisting of symbols, while an order-n stack for n > 1 is a stack of order-(n−1)
stacks. Alternatingautomata are defined, similar to alternating Turingmachines, by partitioning

the control states into existential and universal control states. In contrast to Turing machines,

the word that should be processed is not initially written on a tape. Instead, it is read letter-by-

letter. If the automaton is in an existential control state and it reads letter a, there needs to be

an a-labeled transition that can be used in an accepting run. If the automaton is in a universal

control state and it reads letter a, there needs to be an accepting run nomatterwhich a-labeled

transition is chosen. An automatonwith awork tape has a tape of polynomial length that it can

use to store information during its computation. Combining these three properties leads to the

aforementioned model of alternating order-k pushdown automata with a work tape.

Engelfriet [Eng91] has shown that the word problem for this model, given a word w and an

alternating order-k pushdown automata with a work tape B, decide whether w ∈ L(B) holds,
is (k + 1)EXP-complete. If we manage to encode this word problem into an instance of a HORS

game (G , A)where G and A are of size polynomial in ∣w∣ + ∣B∣ and G has order k, we obtain the

desired result.

The first step is to get rid of the work tape. To this end, we first construct a DFA for the singleton

language {w}. We then take the product of this DFA and B, and get an alternating order-k push-

down automaton with a work tape whose language is either empty ifw /∈ L(B), or it is equal to{w} if w ∈ L(B). In this automaton, the language does not play a role anymore, it just matters

whether a final state canbe reached. Hence, we can redefine the automaton to not readwordw,

but instead read the sequence of worktape contents that occur during the computation. (Here,

it is more intuitive to think of the pushdown automaton as an automaton that generates words

rather than reading them.) If we drop the worktape of B, we are not actually able to output the

precise worktape content. Instead, wewill have to guess a worktape content. For the cell of the

worktape that is the current head position, we canmake sure that the output is consistent with

the transition of B that was used. For the rest of the cells, we simply have to guess. The techni-

cal details can be found in the proof of Proposition 20 in [HMM17a]. Let B′ be the alternating

order-k pushdown automaton without a worktape that is the result of this operation.

An accepting computation of B′ producing some word v corresponds to an accepting compu-

tation of B for wordw if and only if v corresponds to a valid sequence of worktape contents. In

order to verify the latter, we design an NFA A of polynomial size. It accepts v iff v is not a valid

sequence of worktape contents. The idea behind this construction is similar to the construc-

tion of the NFA in the proof of Theorem 17.5.4. The NFA essentially detects if the head has been

moved in an illegal way or if the tape content has been modified in an illegal way. Again, we

omit the details of the construction. We get that w /∈ L(B) if and only if B has no accepting

computation forw, which is the case if and only if every output of B′ is accepted by A. We have

reduced the problem of checkingw ∈ L(B) to deciding the inclusion L(B′) ⊆ L(A).
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18 Higher-order games

It remains to encode checking L(B′) ⊆ L(A) as a higher-order inclusion game. It is well-known

that order-k pushdown automata can be translated into HORSes of order k of polynomial

size [KNU02]. This construction can be extended so that it translates an alternating order-k

pushdown automaton into a game HORS of order k. Basically, the players of the game HORS

correspond to the alternation in the automaton. We apply this construction to B′, obtaining a

HORS G. For the details of the translation, we gain refer to [HMM17a].

Finally, wemake use of the fact that we consider inclusion games where the winning condition

for the existential player is non-membership in a given regular language. The existential player

wins (G , A) if and only if she can enforce producing a word v not in A, which is the case if and

only if the inclusionL(B′) ⊆ L(A) does not hold, which is the case if and only ifw ∈ L(B). Hence,

the reduction that takes as input w and B and returns G and A is as required and proves that

solving higher-order inclusions games of order k is (k + 1)EXP-hard. ⬛

Together, Proposition 18.5.10 and Proposition 18.5.11 prove Theorem 18.5.8. We finish this

chapter with some concluding remarks on the case that the HORS has order one or zero.

Game HORSes of order zero

Let us consider the case of a higher-order inclusion game (G , A) where G has order zero. This

means that the nonterminals of G do not represent functions, but rather they are just values.

In particular, the right-hand sides of the rules of G do not use any variables. Additionally, since

the nonterminals represent values, they can only be used as the rightmost symbol in a term of

the shape a1(. . . an(F) . . .). This means that HORSes of order zero are equivalent to right-linear

grammars, a special type of context-free grammars. In a right-linear grammar, the right-hand

side of each rule either contains no nonterminal, or it contains a single nonterminal that is the

rightmost symbol. By translating nonterminals into states, it is easy to convert a right-linear

grammar to a finite automaton; the class of languages of right-linear grammars (resp. word-

generating HORSes of order zero) is the class of regular languages.

Theorem 18.5.8 states that higher-order inclusion games are EXP-complete when the HORS is

of order zero. Let us inspect our proofs for that case. In the proof of the upper bound, Propo-

sition 17.5.3, there is a small difficulty that we have swept under the carpet. Even though the

HORS is of order zero, which means that all its nonterminals are of order zero, the right-hand

sides of the rules can contain terminals of order one. Namely, theymay contain terminals of the

shape a ∈ Σ or of the shape branchF as introduced by the determinization of the HORS. This

intricacy is unique to the case of HORSes of order zero. Luckily, we will never have to explicitly

represent the interpretation of a terminal as a function. To be able to conduct Kleene iteration,

it is sufficient to be able to apply these functions, i.e. to compute the predecessors and to com-

pute disjunctions and conjunctions, in singly exponential time to formulas of exponential size.

Our upper bound holds for order zero.
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18.5 Solving higher-order inclusion games

For the lower bound, we need to inspect the results we rely on. Firstly, note that an order-0

pushdown is simply afinite automaton. Engelfriet’s results [Eng91] imply that thewordproblem

for alternating finite automata with a work tape is EXP-complete. The rest of the proof of the

lower bound, Proposition 17.5.3 also works: We can translate the word problem for alternating

finite automata with a work tape into an inclusion problemwhose left-hand side is given by an

alternating finite automaton (withoutwork-tape), and then translate this problem into a higher-

order inclusion game of order zero.

It would also be possible to obtain a different proof for the EXP-hardness based on our proof

of Theorem 17.5.4. In that proof, we have simulated an alternating Turing machine with expo-

nential space consumption by constructing a context-free inclusion game that proceeds in two

phases. The second phase of the game was used to be able to handle configurations of expo-

nential length with a finite automaton of polynomial size. If we are only allowed to use a game

grammar that is right-linear (or, equivalently, a gameHORSof order zero), we cannot implement

that second phase. However, this still allows us to simulate an alternating Turing machine with

polynomial space consumption. Using APSPACE = EXP, we get the desired result.

Game HORSes of order one

Consider higher-order inclusion games (G , A) where the game HORS G is of order one. In this

case, Theorem 18.5.8 states that solving these games is 2EXP-complete.

This should not be surprising. In Example 5.3.1, we have seen that a context-free grammar

can be translated into a HORS of order one. If we apply this construction to a game grammar

that specifies a context-free inclusion game, we end up with a game HORS of order one such

that the two games are equivalent. For context-free inclusion games, we have proven 2EXP-

completeness in Section 17.5.

It might be surprising that when solving context-free inclusion games in Chapter 17, we had

to consider positive Boolean formulas over boxes. When considering higher-order games, we

could get away with using formulas over states. This discrepancy is resolved by observing that

we associate formulas over states to terms of order zero. When translating a CFG into a HORS,

the nonterminals of the CFG are turned into symbols of order one. The abstract domain for the

associated kind is the set of functions from formulas over states to formulas over states. The

author conjectures that it is possible to convert such a function to a formula over boxes and

vice versa.
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In the previous chapters, we have studied games on infinite game arenas that are defined by

a finite syntax. We have seen that the finite description provided by the syntax is sufficient to

ensure decidability in the case of games defined by context-free grammars and HORSes. In this

chapter, our goal is to explore the frontier of decidability. We want to obtain a classification

result that specifies exactly for which automata models we can hope to solve games on the

induced infinite game arenas.

As the basis for this classification result, we use valence systems over graph monoids [Zet15b].

Valence systems are a general algebraic automata model. Some of the models that we have

considered in this thesis, including finite-state automata, pushdown automata, and Petri nets,

can be seen as restricted valence systems. Our classification results will show that among all

models that can be seen as valence systems, the only ones for which games on infinite arenas

are decidable are context-free models and models strongly related to them.

Sources

The first section of this chapter presents material that is standard in the literature. We will give

references in the main text. The second section is based on work by Roland Meyer, Georg Zet-

zsche, and the author of this thesis that has not been published. The final section gives a brief

summary of our publication [MMZ18] (resp. its full version [MMZ18a]) without presenting all de-

tails. Wewill discuss the authors author’s contributions to thematerial presented in this chapter

in Chapter 20.
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19 Valence games

19.1 Valence systems over graphmonoids

In this section, we will formally introduce the model of valence systems over graph

monoids [Zet15b] that we will use in the rest of this chapter.

Valence systems

Recall that a monoid is a tuple (M, ⋅, 1M) where M is a non-empty set and ⋅ ∶M ×M → M is a

binary operation onM that satisfies associativity, i.e. x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z holds for all x , y, z ∈ M.

Furthermore, 1M ∈ M is neutral with respect to the operation, x ⋅ 1M = 1M ⋅ x = x for all x ∈ M.

In the following, wewill usually say that a setM is amonoid and assume that the operation and

the neutral element are clear from the context.

A set of generators of a monoid M is a subset Gen ⊆ M such that all elements of M can be

obtained by iteratively composing elements of Gen. A monoid is finitely generated if it has a

finite set of generators. For example, consider the monoid (N,+, 0), the natural numbers with

addition. It is generated by the set {1}: Zero is obtained as the empty composition (which

always yields the neutral element), and every other number can be obtained by adding up 1

suitably often.

A valence system overmonoidM is an automatonwith finitelymany control states that uses the

elements of themonoidM as storage. Syntactically, it is a finite-state LTSwithmonoid elements

as transition labels. Its semantics is defined as follows: A configuration is of the shape (q,m),
consisting of a control state q and a monoid element m ∈ M. A transition q

m′

−−→ q′ that origi-

nates in control state q can be applied to this configuration, leading to the new configuration(q,m ⋅ m′). This means that monoid elements represent both storage values and operations

on the storage: The monoid element m′ induces the operation ⋅m′ that composes the current

storage value with m′. The neutral element represents the empty storage resp. the operation

that does not modify the storage.

For the reachability problem for valence systems, we assume that a unique initial and a unique

final control state, qinit and qfinal, have been fixed. The goal is to reach the final state with empty

storage starting from the initial state with empty storage.

Reachability for valence systems

Given: Valence system over some monoidM.

Question: (qinit , 1M) →∗ (qfinal , 1M)?
The definition of the reachability problem justifies the right-invertibility restriction that we in-

troduce in the following. A monoid elementm is called right invertible if it has a right inverse, a

monoid element m′ such that m ⋅ m′ = 1M. It is clear that it is only possible to reach (qfinal , 1M)
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from some configuration (q,m) if m is right invertible – right invertibility is a necessary con-

dition. This allows us to forbid transitions that would lead to a storage value that is not right

invertible without altering the answer to the reachability problem.

Altogether, we obtain the following formal definition of valence systems and their semantics.

19.1.1 Definition
Syntactically, a valence system is S = (M, Q , δ, qinit , qfinal)whereM is amonoid, Q is a finite set of

states, qinit , qfinal ∈ Q and δ ⊆ Q ×M×Q is finite. Its semantics is the induced transition system

whose configurations are from the set Q × M. The transition relation δ induces a transition

relation among configurations: (q,m) → (q′′ ,m′′) if there is a transition q
m′

−−→ q′′ in δ such that

m′′ = m ⋅m′ andm′′ is right invertible.

It is straightforward to define valence automata as versions of valence system in which transi-

tions are additionally labeled by letters from a finite alphabet. We can associate to the compu-

tations that are witnesses for reachability the finite words that occur as their labels, and hence

obtain a definition for the language of a valence automaton.

Whether the reachability problem (and other problems for valence systems and automata) can

be solved algorithmically depends on the underlying monoid. We will see later that there is a

fixed monoid such that the class of valence system over that monoid is Turing-complete and

hence the reachability problem is undecidable. The main goal of the research on valence sys-

tems is to classify the monoids for which certain problems are solvable.

However, the class of all monoids turns out to be too diverse to be able to obtain such classi-

fication results. There is a lack of criteria that are expressible on the level of general monoids

that would be needed for a classification. There are two subclasses that come to mind as can-

didates on which one could base a classification. The first is the class of all finitely generated

monoids. However, this class is still too diverse. In fact, since a valence system has a finite num-

ber of transitions, also the number of distinct transition labels is finite. The set of all reachable

storage values is contained in the submonoid that is generated by these transition labels. In

short, the restriction to finitely generated monoids is not a restriction at all. The second sub-

class that comes to mind is the class of all finite monoids. It is easy to see, however, that the

class of valence systems over such monoids is just as expressive as the class of finite-state sys-

temswithout any storage. The transition system induced by such a valence systemwould again

be finite state.
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Graphmonoids

In the following, the class of graph monoids [Zet15b; Cha07] will serve as a basis for our classi-

fication results. It is a class of potentially infinite monoids, each of which can be described by a

finite undirected graph.¹

WeconsidergraphsG = (V , I)whereV is a finite setof nodes, and theedges aregivenby I ⊆ V×V ,
the independence relation. The latter is symmetric, i.e. o1 I o2 implies o2 I o1. It is neither

necessarily reflexive nor necessarily anti-reflexive; o1 I o1 only holds if the graph has a self-loop

at node o1. We use infix notation and write o1 I o2 for (o1 , o2) ∈ I and o1 ¬I o2 for (o1 , o2) /∈ I.
Intuitively, the nodes of V are parts of the storage, and the independence relation specifies

which parts of the storage are independent of each other. The graph monoid induced by such

a graph consists of all sequences of storage operation, where we identify sequences that are

equal but for the order of actions on independent parts of the storage. More formally, we as-

sociate to each node o ∈ V two operations, a positive operation o+ (“push o”, “increment o”)

and a negative operation o− (“pop o”, “decrement o”). We call + resp. − the polarity of the op-

eration. By o± we denote an arbitrary element from {o+ , o−}. Let O = {o+ , o− ∣ o ∈ V} denote
the set of all operations. We start by considering the free monoid O∗ over O, i.e. the set of all

finite-length sequences overOwith concatenation as the operation and the empty sequence ε

as the neutral element. To obtain the graphmonoidMG = O∗/≅ for graphG, we factorizeO∗ by

the smallest congruence ≅ (with respect to concatenation) that satisfies

o+ .o− ≅ ε for all o ∈ V , and (G1)

o1
± .o2

± ≅ o2
± .o1

± for all o1 I o2 . (G2)

Intuitively, the first rule states that o− is the right inverse of o+ – an increment followed by a

decrement leaves the storage unchanged. The second rule formalizes the above-mentioned

intuition that sequences that differ only in the order of independent actions (actions o1
± , o2

±

with o1 I o2) should be identified.

Elements of the graph monoid are congruence classes of sequences over O wrt. ≅. The oper-

ation of the monoid can be applied by concatenating representatives of classes. The neutral

element is the equivalence class of the empty word ε. It represents the empty storage, and con-

catenating it is the operation that leaves the storage unchanged. We will often use sequences

to denotemonoid elements and extend the corresponding notations anddefinitionswhenever

there is no risk of causing ambiguity.

¹ Note the analogy to automata theory, where we are interested in systemswith a potentially infinite semantics that
admit a finite syntactic representation.
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19.1.2 Remark
We briefly discuss the implications of a node having or not having a self-loop in the graph.

If node o1 does not have a self-loop, o1 ¬I o1, then the negative operation o− is not the right

inverse of the positive operation o+. Rule (G1) only applies to the sequence o+ .o−, not to o− .o+.

In fact, o− is not right invertible in this case.

If o1 has a self-loop, o1 I o1, then o
− is the right inverse of o+. We can first apply Rule (G2) to

obtain o− .o+ ≅ o+ .o−, and then cancel the two operations using Rule (G1).

In the following, we will speak of a valence system over a graph and mean the valence system

over the graphmonoid definedby that graph. Wewill also call the underlying graph the storage

graph of the system for obvious reasons.

Before giving some examples, we will need the notion of an induced subgraph.

19.1.3 Definition
For a graph G = (V , I) and a set of nodes V ′ ⊆ V , the subgraph induced by V ′ is the graph(V ′ , I ∩ (V ′ × V ′)), i.e. the graph that is obtained from G by discarding all nodes not in V ′ and

all edges involving discarded nodes.

A graph is an induced subgraph of G if it occurs as the subgraph induced by a suitable set of

nodes. Unlike normal subgraphs, induced subgraphs do not allow us to discard arbitrary edges.

If a graph contains an edge, then any induced subgraph that contains the nodes connected by

the edge will also contain that edge.

The expressiveness of valence systems is monotonic with respect to the subgraph order: The

class of valence systemover somegraphG is at least as expressive as the class of valence system

over any subgraph of G.

The class of graphmonoids is a good basis for a classification of valence systemswith respect to

their algorithmic properties. On the one hand, graph-theoretic properties like connectedness

are related to the decidability of certain problems for the valence systems over the correspond-

ing graph monoids. On the other hand, valence systems over graph monoids generalize many

well-known models of computation. This means that various types of automata will fit into

the classification. We demonstrate this in the form of a few examples. We refer to Chapter 2.9

of [Zet15b] for more details.

19.1.4 Example

a) The empty graph induces the graph monoid with ε as the single element. Valence systems

over this graph are finite-state systems, and any finite state system can be seen a valence

system over this graph.
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• •a b

i) pushdown systems.

• •

• •

a1 b1

a2 b2

ii) multi-pushdown
systems.

• •

•

c1 c2

c3

iii) VASSes / Petri nets.

• •

•

c1 c2

c3

iv) integer VASSes / inte-
ger Petri nets.

Figure 19.1.a: Graphs for which valence systems over the corresponding graph monoids are …

b) Consider the graph with two nodes a and b and no edge, i.e. the empty independence re-

lation. It is depicted in Figure 19.1.a.i). As observed in Remark 19.1.2, neither a− nor b− are

right invertible. In fact, any right-invertible element of the monoid can be represented by a

sequence over {a+ , b+} that exclusively uses the positive operations, and any such sequence

represents a unique element of the graph monoid. Any sequence involving a negative op-

eration, e.g. a−, can only represent a right-invertible monoid element if it contains an earlier

occurrence of a+ such that the two cancel out.

The right-invertible elements of thegraphmonoidover are the configurationsof a LIFO stack

(last in, first out) over the stack alphabet {a, b}. The operation ⋅a+ pushes a onto the stack,

the operation ⋅a− removes a from the top of the stack. The latter can only be applied if the

current storage value can be representedby a sequencewhose last element is a+; otherwise,

we end up with a value that is not right invertible.

With this reasoning, a valence system over this graph is a pushdown system with a binary

stack alphabet as introduced in Section 5.1. A pushdown systemwith a k-letter stack alpha-

bet can be seen as a valence system over a graph with k unconnected nodes that have no

self-loops.

c) Consider the graph with nodes a1 , b1 , a2 , b2 and the edges a1 I a2, a1 I b2, b1 I a2, b1 I b2
(and their symmetric versions). It is depicted in Figure 19.1.a.ii). Note that the subgraphs in-

ducedbyboth {a1 , b1} and {a2 , b2} are thegraph thatwe considered in Part b). Furthermore,

each node x1 is connected to each node y2 for x , y ∈ {a, b}.
The right-invertible elements of the corresponding graph monoid can be represented by

sequences of the shape w1 .w2 where w1 exclusively contains the positive operations over{a1+ , b1+}, similar for w2 and {a2+ , b2+}. Given an arbitrary representative, we first use

Rule (G2) to reorder it into a prefix containing the operations corresponding to {a1 , b1} and
a suffix. Then, we proceed as in Part b) of the example and use Rule (G2) exhaustively to re-

move occurrences of negative operations. If a negative operation cannot be removed, the

sequence does not represent a right-invertible monoid element.

The right-invertible elements of the graph monoid represent configurations of two inde-

pendent LIFO stacks, each over a binary stack alphabet. Hence, the corresponding valence

systems are multi-pushdown systems that use such stacks as storage. It is well-known that

multi-pushdown systems with at least two stacks and at least two symbols on each stack
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are Turing-complete: Intuitively, each of the stacks can store one half of the tape content of

a Turing machine. Rice’s theorem [Ric53] applies and all non-trivial semantic properties of

valence systems over this graph monoid are undecidable.

d) Consider a 3-clique with no self-loops, i.e. a graph with the set of nodes {c1 , c2 , c3} in which

any two distinct nodes are connected by an edge. It is depicted in Figure 19.1.a.iii).

Every right-invertible element of the corresponding graph monoid can be represented by

a sequence of the shape (c1+)n1 (c2+)n2 (c2+)n3 . Hence, these elements represent tuples(n1 , n2 , n3) ∈ N
3 of counter values and the positive and negative operation for each ci in-

crement and decrement the corresponding counter value ni , respectively. The decrement

is blocking, it can only be applied if the corresponding component is non-zero; otherwise,

we end up with a value that is not right invertible. One also says that the nodes of the stor-

age graph are partially blind counters: Their value cannot be tested for being zero during

runtime, but non-zeroness can be asserted by using the blocking decrement.

Valence systems over this graph are 3-dimensional vector addition systems with states

(VASSes), a model that we have mentioned in Section 6.1 as being equivalent to Petri nets

with a corresponding number of unbounded places. VASSes of arbitrary dimension k can

be seen as valence systems over a k-clique with no self-loops.

e) We add a self-loops to every node of the graph from Part d). The result is depicted in Fig-

ure 19.1.a.iv).

The self-loops mean that e.g. c1
+ is now the right inverse of c1

− in the graph monoid: We

can first use Rule (G2) to swap them, then use Rule (G1) to cancel them out. More precisely,

every element of the graph monoid is right invertible. It represents a tuple of counters(n1 , n2 , n3) ∈ Z
3 that may attain negative values. Since we have no blocking decrement

at hand to assert non-zeroness during runtime, we call these counters blind.

Valence systems over such graph monoids are integer vector addition systems with states,

a model that corresponds to integer Petri nets or Petri nets that work on pseudo-markings,

see Section 8.1.

In addition to these well-known types of automata, valence systems can also model various

other interesting types of storage. This includes automata that use a stack of counters as stor-

age, and automata that have access to both a stack and a set of partially blind counters. The

latter model is sometimes called a pushdown Petri net (PPN); it is famous for the fact that the de-

cidability status of its reachability problem is a long-standing open question, see e.g. [Laz13].

One such PPNgraph is depicted in Figure 19.1.b.iii). It consists of a stack with two stack symbols

a, b and a partially blind counter c that is independent of both a and b.

Valence systems over graphmonoids cannotmodel all types of automatamodels. For example,

they canneithermodel higher-order systems asdefined in Section 5.3, nor FIFO (first in, first out)
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• • • •

i) The graph P4 .

• •

• •

ii) The graph C4 .

• •

•

a b

c

iii) A PPN graph.

Figure 19.1.b: Graphs for which reachability in valence systems is undecidable, or not known to
be decidable in the case of c).

queues. For a detailed explanation why modelling queues is impossible, we refer to Section 2

of our publication [MMZ18].

Georg Zetzsche has provided a classification of the decidability of the reachability problem for

valence systems over graph monoids [Zet15c]. For the sake of simplicity, we restrict ourselves

to graphs with no self-loops in the following. Let C4 denote a cycle of four nodes, and let P4
be a path of four nodes. These graphs are depicted in Figure 19.1.b.i) and Figure 19.1.b.ii), re-

spectively. Note that the graph C4 is equal to the graph from Part c) of Example 19.1.4 resp. Fig-

ure 19.1.a.ii) that corresponds tomulti-pushdown systems. Zetzschehas shown that if a graphG

contains C4 or P4 as an induced subgraph, then the reachability problem for valence systems

over G is undecidable.

The converse result is true if one excludes graphs that do correspond to the aforementioned

pushdown Petri nets: If a graph neither contains C4, nor P4, nor one of several so-called PPN-

graphs as an induced subgraph, then the reachability problem for valence systems over that

graph is decidable.

Other classification results for valence systems and automata over graph monoids have

been obtained in the literature, including classifications of the eliminability of silent transi-

tions [Zet13], the context-freeness and the semi-linearity of the Parikh image of their lan-

guages [BZ13], and the decidability of first-order logic with reachability [DMZ16].
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19.2 Valence games

19.2 Valence games

The goal of this chapter is to classify the decidability of several types of games on the configu-

ration graphs of valence systems over graphmonoids based on the underlying graph structure.

We will tackle this challenge in this section. We consider games with reachability and cover-

ability as the winning conditions. In both cases, we show that the only decidable cases are the

context-free games that we have studied extensively in Chapter 17 and closely related games

that can be reduced to context-free ones.

Reachability games on valence systems

We start by giving a formal definition of valence games. Consider a valence system inwhich the

set of control statesQ = Q ∪⋅ Q is partitioned into the setQ of states owned by the universal

player and the set Q of states owned by the existential player. We usually write such a system

as (MG , Q ∪⋅ Q , δ, qinit , qfinal) and call it a game valence system (over the graph monoid of G).

From this definition, we obtain a game arena on the induced transition system as described

in Chapter 15. The configurations owned by the existential player are all configurations (q,m)
where the control stated is owned by the existential player, q ∈ Q , independent of the storage

value, similar for theuniversal player. Moves in thegamearedefinedasbefore: (q,m) → (q′ ,m′′)
if there is a transition q

m′

−−→ q′ in δ so thatm′′ = m ⋅m′ andm′′ is right invertible.

A game valence system fixes a game arena. To obtain a game, it remains to equip this game

arena with a winning condition. For now, we focus on valence reachability games in which,

starting from (qinit , ε), the goal of the existential player is to reach (qfinal , ε). Here, ε denotes

its equivalence class, the neutral element of the monoid. This means we start in the initial con-

figuration consisting of the initial control state with empty storage and we want to reach the

final state with empty storage. Note that reachability here should be understood as configura-

tion reachability, i.e. we fix both the target control state and the target storage value, in contrast

to control-state reachability games which we will consider later.

All reachability games are known to be positionally determined by the Borel determinacy theo-

rem [Mar75]. Hence, we know that for our fixed initial position, exactly one of the players has a

winning strategy. The key problem is computing this winner. As with context-free games and

higher-order games, we are dealing with a situation in which we have to compute information

about a game on a potentially infinite game arena based on the finite syntax generating it.

Formally, the problem of solving valence reachability games is defined as follows.

Solving valence reachability games

Given: Game valence system (MG , Q ∪⋅ Q , δ, qinit , qfinal).
Question: Can the existential player enforce visiting (qfinal , ε) from (qinit , ε)?
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Remark
When defining the semantics of valence systems, we have introduced the right-invertibility re-

striction: We canonly apply a transition q
m′

−−→ q′ in configuration (q,m) ifm⋅m′ is right invertible.

The justification for this restriction was the fact that if m ⋅ m′ is not right invertible, then it will

be impossible to reach (qfinal , ε) from (q′ ,m ⋅ m′). However, for the answer to the reachability

problem, it is irrelevant whether we allow transitions to non-right-invertible storage values. We

are only considering existential nondeterminism in this case, so the existence of additional tran-

sitions that are not helpful does not matter. This is different in the case of valence games. If the

universal player would be allowed to take a transition leading to a non-right-invertible storage

value, the result is a configuration from which the existential player cannot win. Transitions

to non-right-invertible values typically correspond to illegal operations on the storage, e.g. a

pop-operation that pops a symbol that is not the current top-of-stack. Hence, it is important to

forbid these transitions to obtain the desired semantics for valence reachability games.

Valence reachability games can be seen as an extension of the reachability problem for valence

systems; the latter corresponds to games inwhich all control-states are ownedby the existential

player. If the graph G contains C4 from Figure 19.1.b.i) or P4 from Figure 19.1.b.ii) as an induced

subgraph, then reachability in a non-game setting is undecidable [Zet21]. Since reachability

games are a generalization of the reachability problem for valence systems, we immediately

obtain that valence reachability games are undecidable in this case. Hence, there is no hope

for valence reachability games being solvable in general. As typical for valence systems, we

study instead for which graphs G valence reachability games over that graph are decidable.

We formalize this in the form of the following version of the decidability problem in which the

underlying graph is fixed.

Solving valence reachability games over graph G

Given: Game valence system (MG , Q ∪⋅ Q , δ, qinit , qfinal)whereMG is induced by G.

Question: Can the existential player enforce visiting (qfinal , ε) from (qinit , ε)?
We already know some graphs G for which valence reachability games will be decidable. We

have arguedbefore that graphs that donot contain any edge correspond topushdown systems,

where the number of nodes in the graph corresponds to the number of stack symbols. The

graph from Figure 19.1.a.i) is one such example. Valence reachability games for such graphs

are essentially pushdown games, a type of context-free games. We have extensively discussed

the decidability of such games Chapter 17, see in particular Section 17.6 for algorithms that can

directly deal with pushdown games.

Ourmain result in this part of the section is that this is essentially the only case inwhich valence

reachability games aredecidable. Tomake this precise, we introduce somenotation. Wewill see

later that the existence of self-loops does not influence the decidability of reachability games.
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19.2 Valence games

We denote by G− the irreflexive version ofG, G with all self-loops removed. Formally, if G = (V , I),
then G− = (V , I \ {(o, o) ∣ o ∈ V}). Our classification will characterize decidability depending

on G− rather than on G itself.

We call a graph a pushdown graph if it contains no edges among distinct nodes. Graph G is a

pushdown graph iff G− contains no edge at all. Our main result states that pushdown graphs

are exactly the graphs for which valence reachability games are decidable.

19.2.1 Theorem
Valence reachability games over graph G are decidable if and only if G is a pushdown graph.

The proof of the result is split into two parts. We first use the decidability of context-free games

to show that valence reachability games over pushdown graphs are decidable. For the other

direction, we show that if G− contains an edge, then the class of valence reachability games

over G are not decidable.

Valence reachability games – The decidable case

Let us treat the decidable case first. We start with considering a simple case. If G contains no

edge at all, in particular if it contains no self-loops, then we have G = G−. It is straightforward

to see a valence reachability game over G as a context-free game defined by a pushdown au-

tomaton. We see transitions labeled by a+ as transitions labeled by push a, similar for a− and

pop a. The goal in the game is to go from the initial state with empty stack to the final state

with empty stack. The decidability of such games was first proven by Walukiewicz [Wal01]

To formally prove the result, it is more helpful to use the result by Cachat [Cac02]. We have

given a detailed description in Section 17.6. Given a regular representation for the target set

of a pushdown reachability game, Cachat’s algorithm computes a regular representation of the

winning region. In our case, the target set is the final state qfinal together with the empty stack.

We compute the winning region using the algorithm and then read offwhether the initial state

qinit together with the empty stack is contained in it. This proves the following result.

19.2.2 Lemma
If G contains no edge, then valence reachability games over graph G are decidable.

Toproveonedirectionof Theorem19.2.1, weneed toextend the above result tographs inwhich

some nodes may have self-loops. Recall that a node a of the graph that has a self-loop corre-

sponds to a blind counter, or a stack symbol that can be popped before it has been pushed. To

deal with such nodes, we use a well-known trick that can be used to translate one-counter au-

tomata overZ into pushdown automata. For each node a that has a self-loop in G, a I a, we in-

troduce two stacks symbols, a positive version +a and a negative version −a. The operation a+
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19 Valence games

of the valence system can be seen either as push+a or as pop−a. Similarly, a− is either push−a

or pop +a. Intuitively, we can decrement a below zero by pushing −a symbols, which later can

be removed by popping them on a+ transitions.

In the case of nondeterministic automata, it would be sufficient to replace each a+ transition by

two transitions of the pushdown automaton as outlined above, similar for a−. This is not true

in the game setting: Assume that the top of stack in the pushdown game is a −a symbol, cor-

responding to an earlier a− transition in the valence game. When the universal player takes an

a+ transition in the valence game, this should cancel out the a− symbol, i.e. she should pop −a

in the pushdown game. If we give her the free choice among popping −a and pushing +a, she

can decide to push +a instead. This leaves an infix −a.+a on the stack, which corresponds to

a+ .a− in the valence game. While a+ .a− cancels out in the graph monoid, it does not cancel

out on the stack of the pushdown. The desired correspondence between plays of the valence

game and plays of the pushdown game does not hold.

To overcome the problem, we modify the game so that the existential player can choose

whether to use +a or −a. We give the formal translation from valence reachability games to

pushdown games and then prove its correctness.

Assume that (MG , Q ∪⋅ Q , δ, qinit , qfinal) is a valence reachability game over a pushdown

graph G. Let V = P ∪⋅ S be a partitioning of the nodes of G into the nodes P that do not have

self-loops and the nodes S that do have self-loops. We design a pushdown game with stack

alphabet {o ∣ o ∈ P} ∪ {+a,−a ∣ a ∈ S}. The set of control states is Q ∪⋅ Q ∪⋅ Q̂, where Q and

Q are as given, and owned by the corresponding player. The control states in Q̂ are additional

states that are owned by the existential player. If q
ε
−→ p in the valence system, then q

ε
−→ p in

the pushdown system. If q
o+
−−→ p in the valence system for some node o ∈ P without self-loop,

then q
push o
−−−−−→ p in the pushdown system. Similarly, q

o−
−−→ p translates to q

pop o
−−−−−→ p. If q

a+
−−→ p

in the valence system where a ∈ S is a node with self-loop, then we take a fresh control state

q̂ ∈ Q̂ and add transitions q
ε
−→ q̂, q

push +a
−−−−−−−→ p, and q̂

pop −a
−−−−−−→ p. Similarly, q

a−
−−→ p translates

into the transitions q
ε
−→ q̂, q̂

pop +a
−−−−−−→ p, and q

push −a
−−−−−−−→ p. For each such transition, we use a

fresh control state q̂ ∈ Q̂ owned by the existential player. To improve readability, we do not

reflect this fact in the notation.

The mechanism that we have described works as follows: Instead of executing transition

q
a−
−−→ p, the owner of state q signals that she wants to take it by going to the intermediary state

q̂. In q̂, it is the existential player’s choice to either implement the transition by pushing +a or

by popping +a. We will show that by picking accordingly, she can enforce reaching the empty

stack content at the end.

We prove the correctness of the construction in the form of the following proposition.
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19.2 Valence games

19.2.3 Proposition
Valence reachability games over pushdown graphs are decidable.

Proof:
Consider a given valence reachability game and construct the corresponding pushdown game

as described above. The goal of the pushdown game is reaching control state qfinal with empty

stack from qinit with empty stack. We have argued before that such games are decidable, see

Lemma 19.2.2. It remains to show that the winner of the valence game and the winner of the

pushdown game coincide. Since both games are determined, it is sufficient to show that exis-

tential player wins the pushdown game if and only if she wins the valence game.

The key property that wewill need is a translation of a play in the pushdowngame into a play of

the valence game. We contract each sequence of transitions q
ε
−→ q̂

push +a
−−−−−−−→ p in the pushdown

game into a single transition q
a+
−−→ p of the valence game, similar for all transitions correspond-

ing to symbols a with a I a. All other transitions remain unchanged.

Assume the existential player wins the pushdown game, say with a winning strategy sPDS. We

construct a strategy svalence for the valence game that simply mimics sPDS by picking the same

moves on the states Q . For every transition q
ε
−→ q̂ of the pushdown, we pick the correspond-

ing transition q
a+
−−→ p resp. q

a−
−−→ p of the valence system. Consider a play pvalence of the valence

game that conforms to svalence. By considering the same moves of the universal player and fol-

lowing strategy sPDS, we obtain a corresponding play pPDS of the pushdown game. Play pPDS

will visit qfinal with the empty stack after finitely manymoves. Hence, pvalence will visit (qfinal ,m).
It remains to argue that m ≅ ε. Because the graph contains no edges among distinct nodes,

there is essentially no reordering inm. Any o+ operation inm for some node o with o ¬I o cor-

responds to a push o transition in pPDS. Because pPDS reaches qfinal with the empty stack, pPDS

contains a corresponding pop o transition, which means that m contains a corresponding o−

operationwithwhich o+ cancels out. Consider an a+ for some awith a I a. Either pPDS contains

a corresponding push +a and, because we reach the empty stack, a later pop +a, or it contains

pop −a and an earlier push −a. Both pop +a and push −a correspond to a a− transition in

pvalence with which a+ can cancel out. If a− occurs before a+, note that we can first swap them

using Rule (G2) and then cancel them since we assume a I a. We have identified a negative

operation for every positive operation in m such that the pair cancels out and conclude m ≅ ε
as desired. The existential player wins pvalence and svalence is a winning strategy.

Let us now assume that the existential player wins the valence game, say with strategy svalence.

We construct a corresponding strategy of the pushdown game. For moves originating in states

from Q , we can simply mimic svalence. Assume that the play contains a move q
ε
−→ q̂, corre-

sponding to a transition q
a+
−−→ p of the valence game. We now have to chose whether to use

q̂
push +a
−−−−−−−→ p or q̂

pop −a
−−−−−−→ p. We let the strategy minimize the height of the stack. If the cur-
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rent top-of-stack is −a, we use the pop transition; otherwise we push +a. Similarly, we prefer

q̂
pop +a
−−−−−−→ p in the pushdown game corresponding to q

a−
−−→ p over q̂

push −a
−−−−−−−→ p.

Assume a play that conforms to svalence reaches configuration (q,m) in the valence game. The

corresponding play that conforms to sPDS will reach (q, ∆). The stack content ∆ is a represen-

tative for m, assuming we replace every symbol o with o ¬I o by o+, every symbol +a by a+

and every −a by a−. Furthermore, our policy of minimizing the stack height will ensure that ∆

is a representative that is minimal in the sense that it cannot be reduced using Rule (G1), even

after potentially applying Rule (G2). Proving this property using induction is tedious but not

fundamentally difficult; we will forgo giving a formal proof.

Since svalence is winning, any play conforming to it will eventually reach (qfinal , ε). Hence, any

play that conforms to sPDS will eventually reach (qfinal , ∆) where ∆ is a minimal representative

for the monoid element ε. This minimal representative has to be ε itself, meaning that ∆ is the

empty stack as desired. ⬛

Valence reachability games – The undecidable case

Wehave shown one direction of Theorem 19.2.1. It remains to show that ifG− contains an edge,

whichmeans thatG contains an edge between distinct nodes, then valence reachability games

over G are undecidable. The idea is to use a well-known result that shows games on systems

with counters like Petri nets or VASSes to be undecidable [Jan95].

To be precise, we use that the reachability problem (in a non-game setting) for two-counter

machines are undecidable [Min67]. Recall fromSection 6.1 that a two-countermachine is an LTS

with finitely many control states and labels from the set {ε, x++, x−−, x=0, y++, y−−, y=0}. (Here,

we assume that we have replaced non-zero tests using blocking decrements.) Its semantics is

defined in terms of configurations from (q, n,m) ∈ Q ×N×N that consist of a control state and

of a value for each of the counters. The effect of the transitions is as expected.

Since two-counter machines are Turing-complete, in particular the following (configuration)

reachability problem is undecidable.

Reachability problem for two-counter machines

Given: Two-counter machine M with initial state qinit and final state qfinal.

Question: Is there a computation (qinit , 0, 0) →∗ (qfinal , 0, 0)?
19.2.4 Theorem (Minsky [Min67])
Reachability for two-counter machines is undecidable.
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q px=0

i) A zero-test transition in M.

q q̂ p

q̂ qfinal

ε ε
ε

y−
ε

ii) Its translation in the reachability game.

Figure 19.2.a: The translation of a zero-test transition.

To show theundecidability of valence reachability games, our goal is to reduce this undecidable

problem. Consider a graph with two distinct connected nodes. For now, we assume that these

nodes do not have self-loops.

19.2.5 Proposition
If graph G contains two distinct nodes x , y with x I y and neither has a self-loop, then valence

reachability games over G are undecidable.

Proof:
Let M be a given two-counter machine. We may assume wlog. that the final state qfinal of M

has no outgoing transitions. Else, we create a copy of the final state for which we delete all

outgoing transitions anddesignate this copy as the newfinal state. Every computation can now

nondeterministically choose whether to enter the non-final version of the state and continue

the computation or whether to use the final version in which the computation ends.

Our goal is to design a valence reachability game overG that exclusively uses the operations for

x and y. The existential player will win the game if and only if M is a yes-instance of the reach-

ability problem, i.e. if M has a computation from (qinit , 0, 0) to (qfinal , 0, 0). Since this property is

undecidable, valence reachability games over G have to be undecidable.

The valence system is defined to be S = (MG , Q̂ ∪⋅ Q , δ, qinit , qfinal). Here Q = Q ∪⋅ Q̂

consists of the setQ of control states ofM, including qinit and qfinal. Additionally, there are some

fresh control states Q̂ and Q̂ . We translate transitions of M into transitions of S as follows.

If q
ε
−→ p in M, then q

ε
−→ p in S. If q

x++
−−−−→ p or q

x−−
−−−−→ p in M, then q

x+
−−→ p or q

x−
−−→ p

in S, respectively, similar for y. We have argued before that the semantics of valence systems

over graphs in which the nodes have no self-loops but are connected by edges is equal to the

semantics of VASSes or Petri nets, see Part d) of Example 19.1.4. Our translation preserves the

semantics of the transitions; in particular, the decrement is blocking. Furthermore, a tuple of

counter values (n,m) for M will correspond to the monoid element (x+)n(y+)m and vice versa.

Note that the edge between x and y will allow us to bring any right-invertible monoid element

into this shape.
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It remains to translate the zero-test transitions q
x=0
−−−→ p thatmaybepresent inM but that arenot

available to us in the valence game. The translation is depicted in Figure 19.2.a. It uses a fresh

control state q̂ ∈ Q̂ owned by the universal player and a fresh control state q̂ ∈ Q̂ owned

by the existential player. If the existential player wants to take the transition q
x=0
−−−→ p of M, she

signals this by taking the transition q
ε
−→ q̂ . This state implements a challengemechanism. The

universal player can either trust that the current value of counter x is zero and use the transition

q̂
ε
−→ p leading to control state p. She can also challenge the existential player to prove that

the counter value is indeed zero by taking the transition q̂
ε
−→ q̂ . In q̂ , the existential player

can decrement counter y using a y−-labeled loop arbitrarily often and then go to qfinal.

We argue that the challenge mechanism enforces the desired behavior. If counter x is indeed

zero, the universal player will lose if she issues a challenge by going to q̂ . The existential player

can bring the other counter to zero by using the y− loop suitably often and then reach qfinal with

both counters being equal to zero (meaning that the monoid element for the current storage

is ε). If the counter value is non-zero, the existential player loses if the universal player issues

a challenge. She can manipulate the value of the other counter, but she will never be able to

reach qfinal with empty storage. The playwill get stuck in qfinal – recall that qfinal has no outgoing

transitions – with at least one counter that is not zero.

The valence reachability game is defined by translating all zero-tests transitions as explained

above. We use fresh control states q̂ and q̂ for each zero-test transition, but we do not reflect

this in our notation to improve readability. In transitions labeled by y=0, we use a version of the

gadget from Figure 19.2.a.ii) in which the roles of the counters are swapped.

We claim that the existential player wins the valence reachability game if and only if M has a

computation from (qinit , 0, 0) to (qfinal , 0, 0). If such a computation exists, we construct a strat-

egy that follows the transitions used in the computation. Because the computation is valid, we

only use zero-test transitions if the corresponding counter is indeed zero. If the universal player

ever decides to challenge such a transition, she will lose as explained above. If she does not

challenge any transition, the play enters qfinal eventually, and since the counters in the compu-

tation of M are zero, the storage will be empty as required. The play is won by the existential

player and her strategy is winning.

For the other direction, assume the existential player has a winning strategy for the reachability

game. Consider the play in which the universal player does not challenge any transitions corre-

sponding to zero tests. We claim that we can translate this play into a valid computation of M

that reaches qfinal with empty counters. To this end, we simply translate all transitions of S that

do not correspond to zero tests back to the original transitions of M. We translate sequences

of transitions q
ε
−→ q̂

ε
−→ p back to the zero-test transition q

x=0
−−−→ p or q

y=0
−−−→ p of M. Since the

play is won by the existential player as it conforms to a winning strategy, it eventually reaches

qfinal with the empty storage. It remains to argue that this computation is valid, meaning that

we only take zero-test transitions if the corresponding counter is indeed zero.
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q px−−

i) A decrement transition in M.

q q̂′ p

q̂′ qfinal

x− ε
ε

x−

y−

ε

ii) Its translation in the reachability game.

Figure 19.2.b: The translation of a decrement transition for a counter x with x I x in G.

Assume that the computations has a prefix that leads to a configuration in which we take a

zero-test transition q
x=0
−−−→ p. The corresponding prefix of the play ends with the move q

ε
−→ q̂ .

In q̂ , the universal player could decide to challenge the zero test. Consider the play in which

she does so, and note that this play also conforms to the winning strategy for the existential

player. Hence, the existential player wins the challenge and the counter value for x is indeed

zero. Applying this reasoning to all zero tests shows that the computation is valid, and M is a

yes-instance of the reachability problem. ⬛

To complete the proof of Theorem 19.2.1,we need to show how to deal with the case that node

x or y has a self-loop in the graph. Luckily, there is not much that we have to change in the

above proof.

19.2.6 Proposition
If graphG is not a pushdowngraph,meaning it contains distinct that are connected by an edge,

valence reachability games over G are undecidable.

Proof:
Assume that x , y are distinct nodes in G so that x I y. Consider a two-counter machine M

whose final state qfinal has no outgoing transitions. We translate it into a valence reachability

game, as in theproof of Proposition 19.2.5. Formost types of transitions, the translation remains

unchanged. Transitions q
ε
−→ p, q

x++
−−−−→ p, and q

y++
−−−→ p translate into q

ε
−→ p, q

x+
−−→ p, and

q
y+

−−→ p, respectively.

For zero-test transitions, we use the same gadget as in Proposition 19.2.5. The gadget still func-

tions under the presence of self-loops. The only difference is that a play may stay in the state

q̂ infinitely long. This does not harm the correctness of the construction.

It remains to encode decrements q
x−−
−−−−→ p of M. Note that we still assume that the config-

urations of M use non-negative counter values and the decrements are blocking. If x has no

self-loop, we translate such a decrement as q
x−
−−→ p as before. If x has a self-loop, we need to
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be careful. The decrement x−− of M is blocking, while the decrement x− of the valence system

is not. (Formally, x− is right invertible if x I x holds.)

We design a gadget that is similar to the gadget for zero tests from the proof of Proposi-

tion 19.2.5. The gadget is depicted in Figure 19.2.b. We replace a transition q
x−−
−−−−→ p by a

transition q
x−
−−→ q̂′ to a fresh state owned by the universal player. The universal player can then

either take the transition q̂′
ε
−→ p to the state p designated by the existential player. She can

also challenge the decrement by using q̂′
ε
−→ q̂′ . In the fresh state q̂′ , the existential player

can decrement both counters arbitrarily often before going to the final state.

We argue that the gadget enforces the desired behavior. If we take the transition q
x−−
−−−−→ p corre-

sponding to q
x−
−−→ q̂′ and the value of x waspositive, the universal player loses if she challenges

the decrement. If the value of x was positive, it is non-negative after using x−. Furthermore,

we assume that the rest of the game enforces that the value of counter y is also non-negative.

Hence, the existential player can use the loops in q̂′ to bring both counters to zero (meaning

that we obtain a monoid element equivalent to ε), then go to the final state with empty stor-

age and win the play. If the counter value of x was zero, the universal player wins the play by

challenging the decrement. If the value was zero before executing x−, the value is negative

after using x−. The x−-labeled loop in q̂′ will not allow the existential player to get back to a

non-negative counter value. Hence, she can either stay in q̂′ forever, or she can go to q̂′ with

a non-empty storage because the counter value for x is still negative and then get stuck there.

In both cases, she loses the play.

One can prove that a winning strategy for the existential player corresponds to a valid compu-

tation from (qinit , 0, 0) to (qfinal , 0, 0) of M. The formal proof is very similar to the one of Proposi-

tion 19.2.5. ⬛

Together, Proposition 19.2.6 and Proposition 19.2.3 prove our classification result for the decid-

ability of valence reachability games Theorem 19.2.1.

Coverability games

Our classification result for valence reachability games shows that they are decidable essentially

only in the case of context-free games. This result is frustrating: The single decidable case is a

model for which games have been known to be decidable for years. Furthermore, our result

implies that more involved winning conditions like parity admit the same characterization. On

the one hand, parity games can be seen as an extension of reachability games, so whenever

reachability games are undecidable, so are parity games. On the other hand, context-free par-

ity games are known to be decidable [Wal01]. Therefore, we will consider a weaker winning

condition in the following in the hope to get decidability for a larger class of graphs.

Inspired by the research on Petri nets, where coverability is known to be easier to decide than

reachability, we define coverability games in the following. Actually, we use the definition of
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coverability for vector addition systems with states (VASSes) because the sequential nature of

their computations means they are more closely related to valence systems. Petri nets and

VASSes are equivalent models; while Petri net reachability corresponds to configuration reach-

ability in VASSes, Petri net coverability corresponds to control-state reachability. In the control-

state reachability problem, the goal is to reach a final control statewith arbitrary counter values.

Correspondingly, wedefine valence coverability games as reachability games on the game arena

defined by a game valence system in which the goal is to reach the final control state qfinal with

arbitrary storage value. The formal definition of the decision problem is as follows.

Solving valence coverability games over graph G

Given: Game valence system (MG , Q ∪⋅ Q , δ, qinit , qfinal)whereMG is the graph of G.

Question: Can the existential player enforce visiting some (qfinal ,m) with arbitrary

m ∈ MG from (qinit , ε)?
Compared to valence reachability games, the game arena stays the same, only the winning

condition has changed. The target set is now {(qfinal ,m) ∣m ∈ MG} instead of the singleton set{(qfinal , ε)}. Note thatplays are still subject to the right-invertibility restriction: Wecanonly reach

configurations (q,m) for which m is right invertible. In fact, this restriction is what prevents us

from taking an arbitrary path to the final control state in the valence system.

Our goal is to provide a classification result for valence coverability games, similar to the one for

reachability games. Being able to state this result requires some notation. A group is a monoid

in which every element has a right inverse. The following lemma gives a characterization for

when the monoid associated to a graph is a group.

19.2.7 Lemma
The graph monoid associated to a graph G is a group if and only if the independence relation I

is reflexive, i.e. if every node has a self-loop.

Proof:
If some node o has no self-loop, o ¬I o, then o− has no right inverse, see Remark 19.1.2, andMG

is not a group.

If every node has a self-loop, consider a monoid element represented by some sequence

m ∈ O∗. We construct a right inverse by reversing m and swapping the polarity of all oper-

ations. The latter means replacing o+ by o− and vice versa. Let m−1 be the resulting sequence.

We claim that m.m−1 ≅ ε. Consider the last letter of m and the first letter of m−1. Either the

former is o+ and the latter is o−, in which case we can simply apply Rule (G1), or the former is o−

and the latter is o−. Since o I o, we can use Rule (G2) to obtain o+ .o− and then apply Rule (G1).

We iterate this process ∣m∣ times to obtain a reduction that showsm.m−1 ≅ ε. ⬛
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•

•

i) A pushdown graph.

•

•
•

ii) A group graph.

•

•

•

•
•

iii) Their product.

Figure 19.2.c: The product of a pushdown graph and a group graph.

The lemma justifies the following definition. We call a graph a group graph if every node has a

self-loop. For group graphs, coverability games are particularly simple.

19.2.8 Lemma
If G is a group graph, then valence coverability games over G are decidable.

Proof:
IfG is a groupgraph, anymonoid element is right invertible and the right-invertibility restriction

does not apply. We can solve the valence coverability game as follows. Discard all transition

labels and see the game valence system itself as a finite-state game inwhich the goal is to reach

qfinal from qinit. The valence coverability game and the finite-state game have the same winner,

as a winning strategy for one game can be seen as a winning strategy for the other. Finite-

state reachability games are decidable using the attractor construction as we have discussed in

Chapter 15. ⬛

The lemma shows that group graphs essentially do notmatter at all when it comes to coverabil-

ity games. Basically, the absence of both the right-invertibility restriction and the obligation to

reach a specific storage value means the storage operations can be ignored.

Our classification result will show thatwe can solve a coverability game if and only if the storage

consists of two parts. One part is a group graph, and the associated storage operations can be

ignored as in the proof of Lemma 19.2.8. The other part is a pushdown graph as defined in

the context of Theorem 19.2.1, and this part of the graph has to be treated as in the case of

reachability games.

Before finally stating the result, we need to make the notion of consisting of

two parts precise. To this end, we define a product operation as follows. Let

G1 = (V1 , I1),G2 = (V2 , I2) be graphs whose sets of nodes are disjoint. Their product is

the graph G1 ×G2 = (V1 ∪⋅ V2 , I1 ∪⋅ I2 ∪⋅ V1 × V2 ∪⋅ V2 × V1). Its set of nodes is the union of the nodes

of G1 and G2. Its edges are the edges of G1 among the nodes of G1, the edges of G2 among the

nodes of G2, and all edges that connect a node of G1 to a node of G2.

19.2.9 Example

a) Every graph can be seen as the product of itself and the empty graph.
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b) The graph from Figure 19.1.a.ii) is a product of two copies of the graph from Figure 19.1.a.i).

Indeed, the storage of amulti-pushdown systemconsists of several fully independent stacks.

c) The graph from Figure 19.1.a.iii) is a product of three copies of a graph consisting of a single

nodewith no self-loop. Similarly, the graph fromFigure 19.1.a.iv) is a product of three copies

of a single node with a self-loop. Indeed, the storage of an (integer) VASS consists of several

fully independent counters.

d) The graph fromFigure 19.2.c.iii) is a product of the pushdowngraph fromFigure 19.2.c.i) and

the group graph from Figure 19.2.c.ii).

Remark
One can also define the product operation on the level of monoids. The (direct) product of two

monoids is amonoidwhoseelements are tuples consistingof anelementof thefirstmonoid and

the second monoid. The operation on the product monoid is the component-wise application

of the two monoid operations and the neutral element is the tuple of neutral elements.

We argue that the graph monoid associated to the product of two graphs is the product of the

corresponding graphmonoids. LetG1, G2 be graphs and letG× = G1×G2 be their product. Any

element of MG× can be represented by a sequence m1 .m2 such that m1 exclusively contains

operations for the nodes of G1, similar for m2 and G2. To this end, we use that the parts of the

storage corresponding to G1 and G2 are fully independent, meaning o1 I o2 holds for any o

from G1 and o2 from G2. Hence, an element of MG× can be seen as a tuple consisting of an

element ofMG1 and an element ofMG2 .

We call a graph G the product of a pushdownand a group if it can be written as G1 ×G2 where G1

is a pushdown graph and G2 is a group graph. Correspondingly, the associated graph monoid

is the product of a graph monoid associated to a pushdown graph and a group. Unfolding the

definitions, a graph G being the product of a pushdown and a group means that the set of

nodes of G can be partitioned into V = V1 ∪⋅ V2 such that (1) there are no edges among distinct

nodes in V1, (2) all nodes in V2 have a self-loop, (3) for every pair o1 ∈ V1, o2 ∈ V2, there is an edge

o1 I o2. The graph from Figure 19.2.c.iii) satisfies this property. Our classification result states

that these graphs are exactly the ones for which valence coverability games are decidable.

19.2.10 Theorem
Valence coverability games over graph G are decidable if and only if G is the product of a push-

down and a group.

Before we prove the result, we discuss its implications. We have argued before that group

graphs do not really matter when considering valence coverability games. Hence, our classi-
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fication result essentially states that even with a much weaker winning condition, context-free

games are still the only decidable case.

The proof of decidability is an easy extension of the proof for the decidability of reachability

games, Proposition 19.2.3. The proof of undecidability, however, uses interesting techniques.

We show decidability by treating the pushdown part as before, while ignoring the part that be-

longs to the group. The latter is sound because elements of groups are always right invertible,

and the corresponding part is independent of the rest. To show that all other cases are unde-

cidable, we show that if the graph is not of the specified shape, we can reduce undecidable

reachability games to coverability games. The rest of this section is dedicated to making both

ideas precise.

Valence coverability games – The decidable case

Assume that graph G = (V , I) is the product of a pushdown and a group, where V = P ∪⋅ S is

the corresponding partitioning of the nodes. Let us denote by OP and OS the operations for

nodes in P and S, respectively. We have argued before that any monoid element m of MG can

be represented using a sequence mP .mS with m∈O
∗
P and mS ∈ O∗

S . We claim that m is right

invertible if and only if mP is. Indeed, the part mS that corresponds to an element of a group

always has a right inverse m−1
S as discussed in the proof of Lemma 19.2.7. If mP has a right

inverse m−1
P , then m−1

P .m−1
S ≅ m−1

S .m−1
P is a right inverse for mP .mS . Vice versa, a right inverse

formP .mS can bewritten asm−1
P .m−1

S wherem−1
P is a right inverse formP . Altogether, we obtain

that the part of the graph that corresponds to the group graph can be simply ignored, as in the

proof of Lemma 19.2.8. The formal construction is as follows.

19.2.11 Proposition
IfG is the product of a pushdown and a group, valence coverability games overG are decidable.

Proof:
In graphG, discard all nodes S that correspond to the group graph. In the game valence system,

replace all transitions labeled by o± with o ∈ S by ε-labeled transitions. The result is a valence

coverability game over a pushdown graph that is equivalent to the valence coverability game

over G, because the operations corresponding to the group part do not matter.

To solve this game, we proceed as in the proof of Proposition 19.2.3. We first apply preprocess-

ing to all nodes that have a self-loop. The result is a pushdown game in which the goal is to

reach the final state with arbitrary stack content. This target set is regular and can be solved

using Cachat’s algorithm [Cac02], as discussed in the proof of Lemma 19.2.2. ⬛

This proves one direction of Theorem 19.2.10.
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• •x y

Figure 19.2.d: The 1st illegal graph
.

Valence coverability games – The undecidable case

Showing that valence coverability gamesover graphG are undecidable ifG is not theproduct of

a pushdown and a group is more involved. We proceed as follows: We identify three particular

graphs for which we show undecidability. Then, we use the fact that decidability is monotonic

with respect to the induced subgraph order: If graph G contains a graph for which the problem

is undecidable as an induced subgraph, then the problem for G also has to be undecidable.

Finally, we show that any graph that contains none of the three graphs as an induces subgraph

is the product of a pushdown and a group.

We start by considering the first of the so-called illegal graphs for which we will show undecid-

ability. It is depicted in Figure 19.2.d. It consists of twodistinct nodes x , y that haveno self-loops

but are connected by an edge x I y.

19.2.12 Lemma
Valence coverability games over the 1st illegal graph are undecidable.

Theproof is similar to theproof of Proposition 19.2.5. However, we reduce from the control-state

reachability problem for two-countermachines. This problemconsists of checkingwhether there

is a computation that starts in (qinit , 0, 0) and reaches the final state qfinal with arbitrary counter

values. Formally, it is defined as follows.

Control-state reachability problem for two-counter machines

Given: Two-counter machine M with initial state qinit and final state qfinal.

Question: Is there a computation (qinit , 0, 0) →∗ (qfinal , n,m) for some n,m ∈ N?

Since two-counter machines are a Turing-complete model, control-state reachability is just as

undecidable as configuration reachability.

Proof of Lemma 19.2.12:
Assume we are given a two-counter machine M as an instance of the control-state reachability

problem. We construct an equivalent valence coverability game over the 1st illegal graph. The

construction is similar to the one in the proof of Proposition 19.2.5. We see all control states of

M as control states of the game valence system owned by the existential player. We translate a

transition q
ε
−→ p in M into a transition q

ε
−→ p in the valence game. We translate q

x++
−−−−→ p and
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q px=0

i) A zero-test transition in M.

q q̂ p

qdead

ε ε
x−

ii) Its translation in the coverability game.

Figure 19.2.e: The translation of a zero-test transition for coverability games.

q
x−−
−−−−→ p as q

x+
−−→ p and q

x−
−−→ p, respectively, similar for counter y. Note that x and y have no

self-loops in the 1st illegal graph. Hence, the decrements are blocking and the semantics of all

aforementioned operations in M and in valence coverability games coincide.

It remains to encode zero tests. We replace a zero-test transition q
x=0
−−−→ pby agadget consisting

of several transitions and fresh control states. The translation is depicted in Figure 19.2.e. We

first go to a fresh control state q̂ owned by the universal player using an ε-labeled transition.

In this state, the universal player can either accept that the counter value of x is zero and go

to state p. If the counter value is not zero, the universal player can prove this by taking an x−-

labeled transition to a deadlock state qdead.

We claim that this gadget works as intended: The existential player can only take zero-test tran-

sitions if the current counter value is indeed zero. If the counter value is zero, the x−-labeled

transition to qdead is not enabled as the decrement is blocking. The universal player has no

choice but to proceed to state p. If the counter value is non-zero, the universal player canmove

to qdead. In this deadlock state, the game gets stuck and the existential player loses.

Weuse one fresh state q̂ for every zero-test transition (butwedonot reflect this in the notation

to improve readability). We may use the same deadlock state qdead for all zero-test transitions.

For zero tests of the counter y, we use a version of the gadgets in which the transition to qdead

is labeled by y−.

The formal proof that the existential player wins the coverability game if and only if M is a yes-

instance of the control-state reachability problem is as in the proof of Proposition 19.2.5. ⬛

Our gadget from Figure 19.2.e encoding zero tests is much simpler than the one from Fig-

ure 19.2.a. However, the simple gadget relies on the nodes x , y not having self-loops and the

decrements being blocking. Unlike the simple gadget, the more complex gadget in the proof

of Proposition 19.2.5 generalizes to the case of the nodes having self-loops, so we were able to

reuse it in the proof of Proposition 19.2.6.

We can now consider the 2nd illegal graph for which we show undecidability. It is depicted in

Figure 19.2.f. Actually, we do not consider a single graph, but a set of graphs that are similar.

Each of the graphs consists of three nodes x , y, and a such that a has no self-loop, x and y are

connected by an edge, and a is connected to neither x nor y. Both x and y may or may not
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• •

•

x y

a

Figure 19.2.f: The 2nd illegal graph (or rather the set of such graphs).

have a self-loop; we obtain a set of four graphs in which none, one, or both of these nodes have

a self-loop. We have depicted these self-loops that may or may not be present as dotted edges

in Figure 19.2.f.

19.2.13 Lemma
Valence coverability games over (any of the) 2nd illegal graph(s) are undecidable.

This time, we will not need to give a reduction from two-counter machines, although it would

not be too difficult to do so. Instead, we will be able to reduce from valence reachability games

using the undecidability results that we have established in the first half of this section.

Proof:
Let G be one of the 2nd illegal graphs. Consider the subgraph G′ induced by the set of nodes{x , y}. It is not a pushdown graph since x I y. By Theorem 19.2.10, reachability games over G′

are undecidable. We show that if we could solve coverability games overG, thenwe could solve

reachability games over the subgraph, a contradiction.

Consider a reachability game over the subgraph, say defined by the game valence

system (MG′ , Q ∪⋅ Q , δ, qinit , qfinal). We construct a new game valence system(MG , {q̂init , q̂final , q̂ } ∪⋅ Q ∪⋅ Q , δ̂, q̂init , q̂final) over G as follows. We keep all states and

most of the transitions of the original game valence system. Furthermore, we add three new

control states, all owned by the existential player, and some transitions.

Firstly, we add a new initial state q̂init and a transition q̂init
a+
−−→ qinit to the old one. Secondly, we

replace every transition q
o
−→ qfinal going to the old final state by a transition q

o
−→ q̂ to q̂ with

the same label. The state q̂ has two transitions: q̂
ε
−→ qfinal, an ε-labeled transition to the old

final state, and q̂
a−
−−→ q̂final, an a

−-labeled transition to the new final state.

The effect of the first modification is obvious: It puts an a+ into the storage that will be present

for the rest of the play until it may be eventually canceled by the a−-labeled transition to q̂′final.

(Note that the transitions of the given reachability gamedonot use transitions labeledbyopera-

tions for a.) The secondmodification kicks inwhenever a playwould visit the old final state qfinal.

The existential player has the choice to either prove that the storage is empty but for the initial

a+ by going to q′final with a−. Alternatively, she can accept that this is currently not the case by

going to qfinal.
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a

Figure 19.2.g: The 3rd illegal graph.

Key to the correctness of the construction is that node a has no self-loop and that it is not con-

nected by an edge to both x and y. Assume that the play has entered configuration (q , a+ .m),
wherem exclusively consists of operations for the nodes x and y. We have that a+ .m.a− is right

invertible if and only ifm ≅ ε. Hence, the a−-labeled transition can only be taken if the storage

is empty but for a+.

With this observation, a winning strategy for the reachability can be turned into awinning strat-

egy for the coverability game and vice versa. Assume that the existential playerwins the reacha-

bility game. Weconstruct a strategy for the coverability game. We start by taking the a+-labeled

transition to the old initial state. Then, wemimic thewinning strategy for the reachability game.

Whenever the play of the reachability game would visit qfinal with non-empty storage, we take

the sequence of transitions q
o
−→ q̂

ε
−→ qfinal. When the play eventually visits qfinal with empty

storage, we take the sequence of transitions q
o
−→ q̂

a−
−−→ q̂final to the new final state.

Vice versa, awinning strategy for the coverability gamecanbe turned into awinning strategy for

the reachability game by essentially just removing the a+-labeled transition at the beginning

and the a−-labeled transition at the end.

We have reduced the undecidable problem of solving reachability games over a graph that is

not a pushdown graph to the problem of solving coverability games over the 2nd illegal graph.

⬛

Finally, we consider the 3rd illegal graph, depicted in Figure 19.2.g. It consists of three nodes x ,

y, and a. As in the 2nd illegal graph, x and y are connected by an edge. The nodes a and x have

self-loops while y does not.

19.2.14 Lemma
Valence coverability games over the 3rd illegal graph are undecidable.

The proof is similar to the proof for the 2nd illegal graph. However, we have to extend the con-

struction. In the proof of Lemma 19.2.13, we have used that a+ .m.a− is right invertible if and

only if m ≅ ε. This fact relies on node a not having a self-loop, which makes the a− operation

blocking. Since a has a self-loop in the 3rd illegal graph, using a+ at the beginning of the play

will not be sufficient. Instead, we will use y+ .a+ at the beginning and a− .y− at the end.
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Proof of Lemma 19.2.14:
Consider the subgraph of the 3rd illegal graph induced by the set of nodes {x , y}. Assume we

are given a valence reachability game for this subgraph. Note that solving such games is unde-

cidable by Theorem 19.2.1.

We construct a valence coverability game over the 3rd illegal graph as follows. We make sure

that every play starts with the transitions
y+

−−→
a+
−−→ before going to the initial state of the given

game To this end, we insert a new initial state and another fresh state as in the proof of

Lemma 19.2.13.

Whenever there is a transition q
o
−→ qfinal entering the final state in the given game, we give the

existential player the choice to either go to the old final state with operation o, or whether to

go to the new final state using a sequence of transitions
o
−−→

a−
−−→

y−

−−→.

We argue that this construction is correct. Every play of the coverability game that

reaches the new final state does so with a sequence of storage operations of the shape

y+ .a+ .m.a− .y−, where m exclusively consists of operations over x and y. We claim that

the final y− transition is enabled if and only if m ≅ ε. Obviously, m ≅ ε implies that

y+ .a+ .m.a− .y− ≅ y+ .a+ .a− .y− ≅ y+ .y− ≅ ε is right invertible.

For the other direction, assume thatm is not equivalent to ε. In this case, a+ .m.a− is not equiva-

lent to ε. Here, we use that a+ and a− cannot be swappedwith any of the operations inm since

a ¬I x and a ¬I y. If a+ .m.a− is not equivalent to ε, then y+a+ .m.a− is not equivalent to any

sequence of operations that ends with y+ Since a ¬I y we can neither swap the y+ from the

beginning to the end, nor can we swap any y+ that might be contained in m to the end. Con-

sequently, y+ .a+ .m.a− .y− is not right invertible. The final y− cannot be canceled using an y+

operation in the prefix y+ .a+ .m.a− as argued before. Furthermore, it can also not be canceled

by a hypothetical later occurrence of an y+ operation. Node y has no self-loop, so y+ is not the

right inverse of y−.

One can now prove that the new coverability game is equivalent to the reachability game. The

details are as in the proof of Lemma 19.2.13. ⬛

Before proving the final result, we formally observe that decidability is monotonic with respect

to the induced subgraph order.

19.2.15 Lemma
If graph G contains any of the three illegal graphs as an induced subgraph, valence coverability

games over G are undecidable.

Proof:
Using the Lemmas 19.2.12, 19.2.13 and 19.2.14, we know that valence coverability games over

the illegal graphs are undecidable. Assume G contains one of the illegal graphs as an induced
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subgraph. Valence coverability games for that subgraph can be seen as valence coverability

gamesover graphG that donot use theoperations for anynodesnot contained in the subgraph.

If we could decide coverability games over graph G, we could also solve coverability games for

the subgraph, a contradiction. ⬛

We can finally prove the remaining implication for Theorem 19.2.10.

19.2.16 Proposition
If graphG is not the product of a pushdown and a group, valence coverability games overG are

undecidable.

Using Lemma 19.2.15, it is sufficient to show that any graph that is not the product of a push-

down and a group contains one of the illegal graphs as induced subgraph. We use contraposi-

tion and show that if a graph does not contain one of the illegal graphs, then it has to be the

product of a pushdown and a group. We start with a general graph that may or may not con-

tain any edge that is not a self-loop. Then, we iteratively show the existence or non-existence

of some edges, until we obtain a graph that is the product of a pushdown and a group.

The most accessible version of this proof is via a sequence of pictures, Figure 19.2.h. For the

sake of completeness, we also provide a formal write-up below.

Proof:
Using Lemma 19.2.15 and contraposition, it is sufficient to show that any graph that does not

contain an illegal graph is the product of a pushdown and a group.

We proceed in several steps. The enumeration corresponds to the subfigures of Figure 19.2.h.

i) Consider an arbitrary graph (V , I). We may partition V = E ∪⋅ S so that each s j ∈ S has a

self-loop, s j I s j, and each ei ∈ E does not, ei ¬I ei . All edges among distinct nodes may or

may not exist.

If the set E is empty, the graph is a group graph. Hence, it is the product of itself and an

empty pushdown graph. It satisfies the requirements and we are done. In the following,

we assume that there is at least one ei ∈ E .

If there are two distinct ei , ei′ ∈ E , ei ≠ ei′ that are connected by an edge, ei I ei′ , the graph

contains the 1st illegal graph as induced subgraph. To see this, define x = ei and y = ei′ .

Hence, wemay restrict ourselves to graphs in which there is no edge among the nodes in E .

If the set S is empty, we have shown that the graph is a pushdown graph. Hence, it is the

product of itself and an empty group graph, and we are done. In the following, we will

assume that there is at least one s j ∈ S.
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i) A general graph inwhich some nodes (the s j)
have self-loops while others (the e i ) do not.
All dotted edges may or may not exist. If any
of the thick dashed edges among the e i ex-
ists, the graph contains the 1st illegal graph.
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ii) If any of the thick dashed edges from the e i
to s1 exists, all of them have to exist. Other-
wise, the graph would contain the 2nd illegal
graph. A similar reasoning holds for all s j .
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iii) Hence, some of the s j (Sg = {s1 , s2 , s3})
are adjacent to all e i while the others
(Sp = {s4 , s5 , s6}) are not adjacent to any e i .
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iv) If any of the thick dashed edges among the
nodes in Sp = {s4 , s5 , s6} exists, the graph
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v) If any of the thick dashed edges from
Sg = {s1 , s2 , s3} to Sp = {s4 , s5 , s6} is miss-
ing, the graph contains the 3rd illegal graph.
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vi) The resulting graph is the product of a push-
downwith nodes {e1 , e2 , e3 , s4 , s5 , s6} and a
group with nodes {s1 , s2 , s3}. Dotted edges
among {s1 , s2 , s3}may or may not exist.

Figure 19.2.h: The proof of Proposition 19.2.16 in pictures.
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ii) If some s j ∈ S is adjacent to at least one ei ∈ E , ei I s j, this s j needs to be adjacent to all ei .

This property is trivially satisfied if there is just a single E = {ei}. Otherwise, consider distinct

elements ei , ei′ ∈ E and assume ei′ ¬I s j. By defining x = ei , y = s j and a = ei′ , we see that

the graph would contain the 2nd illegal graph as induced subgraph.

iii) The previously stated property holds for all elements of S. Hence, we may partition

S = Sg ∪⋅ Sp such that the sg ∈ Sg are adjacent to all ei ∈ E while the sp ∈ Sp are not

adjacent to any ei ∈ E .

iv) If Sp contains distinct elements sp , sp′ that are connected by an edge, sp I sp′ , the graph

would contain the 2nd illegal graph as induced subgraph. To see this, consider ei ∈ E and

note that it is not adjacent to any element of Sp. We may set a = ei , x = sp and y = sp′ to

identify the 2nd illegal graph.

v) If the set Sg is empty, the graph is a pushdown graph and we are done. Indeed, there are

no edges among the nodes in E , see Step i), no edges among the nodes in Sp, see Step iv),

and no edges that connect an element of E to an element of Sp, see Step ii). Hence, assume

that Sg is non-empty.

If the set Sp is empty, the graph is a product of a group and a pushdown and we are done.

The pushdown graph consists of the set of nodes E , while the group graph consists of the

set of nodes Sg. Indeed, there are no edges among the elements of E , each node in Sg has a

self-loop, and every ei ∈ E is adjacent to every sg ∈ Sg. Hence, assume that Sp is non-empty.

We claim that every sp ∈ Sp needs to be adjacent to every sg ∈ Sg. Assume that sp ¬I sg
holds. Thenwe can identify the 3rd illegal graph as an induced subgraph by defining x = sg,
a = sp, and y = ei for some ei ∈ E . Indeed, sg is adjacent to ei but sp is not.

vi) We obtain a graph with set of nodes E ∪⋅ Sg ∪⋅ Sp. We claim this graph is the product of a

pushdown and a group. The set of nodes belonging to the pushdown graph is E ∪⋅ Sp while

the nodes in Sg belong to the group graph. Indeed, there are no edges among the nodes

in E ∪⋅ Sp, see Steps i), ii) and iv). Furthermore, each sg ∈ Sg is adjacent to any node is E ∪⋅ Sp,

see Steps iv) and v). The edges in Sg ⊆ S have self-loops. Edges among the Sg may or may

not exist. ⬛

Proposition 19.2.16 shows the missing direction for the proof of our classification result, Theo-

rem 19.2.10. This completes our study of valence reachability and coverability games.
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19.3 Bounded context switching for valence systems

19.3 Bounded context switching for valence systems

In the last section, we have seen that reachability games over valence systems over graph

monoids are decidable exclusively for graphs that correspond to pushdown systems. In this

section, we present a restricted version of these reachability games and conjecture that they

are decidable for any underlying graph. To justify the conjecture, we show that a similar restric-

tion applied to the reachability problem leads to decidability in all cases.

Bounded context switching

The restriction that we will consider is bounded context switching (BCS) [QR05]. Consider a con-

current system. A context is a part of a computation in which only one component or thread is

active. Bounding the number of context switches means that instead of each component be-

coming active arbitrarily often, there is a limit on how often the active component can change.

Wemay see a systemwith aBCS restriction inplace as anunderapproximationof the real system.

If the restricted system shows undesired behavior, e.g. an error location in the source code is

reachable, the same is true for theunrestricted system. TheBSC restriction is popular for two rea-

sons. Firstly, it has been empirically shown that bugs in concurrent systems often occur within

few context switches [MQ07; LPSZ08]. Secondly, the BCS restriction usually drastically improves

the decidability and computational complexity of decision problems.

For example, consider multi-pushdown systems, systems that use several stacks as storage. We

may think of such a system as a concurrent system consisting of one pushdown automaton per

component. It is well known that this type of system is Turing-complete if we have at least two

stacks with two stack symbols each. Hence, reachability is undecidable [Ram00]. In a context,

only a single component is active. Hence, also just a single stack is used in a context. Hence,

the BCS restrictions limits changing the active stack. Given a bound on the number of context

switches encoded in unary, the reachability problem for the resulting model is not just decid-

able, but in fact NP-complete [QR05].

In the following, we want to define a BCS restriction for valence systems. In the case of valence

systems, there is no natural notion of thread or component. Instead of introducing such a no-

tion (which would then also force us to specify how the components communicate), we will

base our notion of contexts exclusively on the storage. This is inspired by the definition of BCS

for multi-pushdown systems, where context switches occur when the stack that is currently

used changes.

In a valence system that consists of several components, we would expect each of the com-

ponents to have a storage that is independent of the part of the storage used by every other

component. Using the terminology introduced in the previous section, we would expect the

storage graph to be the product of several graphs. Each graph that is a factor of the product

corresponds to the storage used by one component.
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A context switch should separate parts of the computation that use independent parts of the

storage. For example, if a I b, then the monoid element a+b+ contains a context switch. A

drawback of the storage-based definition is that the notion of context switch is not invariant

under the congruence ≅. Hence, it is not well-defined on monoid elements, but rather on their

representatives. For example, if a I b, then a+b+b−a− ≅ a+a− ≅ ε, where a+b+b−a− contains

two context switches, but a+a− and ε contain none. To circumvent the problems that arise

from this, we redefine valence systems over graph monoids so that their configurations do not

storemonoid elements, but representatives. Formally, we consider configurations from Q ×O∗

that consist of a control state and the sequence of operations that has been executed. In a

configuration (q,m), we can use a transition q
m′

−−→ q′ and move to (q′ ,m.m′) ifm.m′ represents

a right-invertible monoid element. For the reachability problem, we consider the unique initial

configuration (qinit , ε). Solving the reachability problem is checking whether a configuration(qfinal ,m)withm ≅ ε is reachable. For a given finite syntactic representation of a valence system,

this version of the reachability problem is equivalent to our definition from Section 19.1. We

have just changed the representation of the (potentially infinite) transition system arising from

the finite syntax.

We come back to the definition of context switching. For our earlier example, it seems reason-

able to define a context switch to occur between two operations a±b± if a I b. However, it

turns out that this definition is not restrictive enough regarding distinct nodes a ≠ b and too

restrictive if a = b. On the one hand, consider the case of a single node a that has a self-loop,

a I a. Using operations for a successively would introduce one context switch per operation

and heavily limit the usability of this part of the storage. Luckily, our definition of a context

switch can avoid being so restrictive. On the other hand, consider the graph with three nodes

a, b, c such that a I b is the only edge. In the sequence a+c+b+, no two adjacent operations

are associated to nodes that are independent. However, the sequence contains a+ and b+ and

uses independent parts of the storage. For the theory that we will develop in the rest of this

section to work, we will need to see a+c+, b+ as a context switch.

The above discussion entails the following formal definition.

19.3.1 Definition
A set V ′ ⊆ V of nodes of the graph (V , I) is dependent if for any o1 , o2 ∈ V

′ with o1 ≠ o2, o1 ¬I o2
holds. A set of operations is dependent if the underlying set of nodes is. A sequencem ∈ O∗ is

dependent if the set of operations used in that sequence is.

The first context of a sequencem ∈ O∗ is itsmaximal dependent prefix. The decomposition into

contexts is obtained inductively: A dependent sequence is a single context, a non-dependent

sequences decomposes into its first context and thedecompositionof the remaining suffix. The

number of context switches of a sequence is the number of contexts minus one.
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• •

•

a b

c

Figure 19.3.a: A graph for which we consider the BCS restriction.

We demonstrate the definition on an example. Consider a graph with the nodes {a, b, c} and

the edges a I a and a I b. It is depicted in Figure 19.3.a. Note that this graph cannot

be seen as the product of several non-empty graphs. Consider the sequence of operations

m = a+a+a−c+b+b−c−b+a−b− andnote thatm ≅ ε. The sequencem has three context switches

and consists of four contexts. Itsmaximal dependent prefix is a+a+a−c+. The next operation b−

starts a new context because a I b are twodistinct nodes connected by an edge. The remaining

contexts are b+b−c−b+, a−, and b−.

For more examples, let us consider the graphs from Figure 19.1.a resp. Example 19.1.4. Graphs

that represent pushdown systems do not contain edges, so every computation consists of a

single context. Reachability and reachability under BCS coincide. For graphs that represent

multi-pushdown systems like the graph C4, our definition of BCS coincideswith thewell-known

definition of BCS from the literature: A context is an infix of the computation in which just one

stack is active. For graphs representing VASS or integer VASS, switching the context means

using a different counter.

Reachability under bounded context switching

With the notion of context switches at hand, we can formally define the BCS restriction for the

reachability problem.

Valence reachability under bounded context switching

Given: Valence system (MG , Q , δ, qinit , qfinal) over graph G,

bound k ∈ N encoded in unary.

Question: Is there a computation (qinit , ε) →∗ (qfinal ,m)
such thatm ≅ ε andm has at most k context switches?

We will discuss this problem in detail later. For now, we want to focus on an extended version:

valence reachability games under the BCS restriction.

Reachability games under bounded context switching

We can combine the definition of valence reachability games and valence reachability under

BCS into a single definition of valence reachability games under bounded context switching.

Assume we are given a game valence system over a graph monoid and a bound k ∈ N on

the number of context switches. The goal of the existential player is, starting from (qinit , ε) to
reach (qfinal ,m)wherem ≅ ε represents the empty storage and has at most k context switches.
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Here, we use themodified semantics from earlier in which we do not just keep track of monoid

elements, but instead track the sequence of operations.

When formally defining valence reachability games under BCS, we have a choice tomake. Both

players can influence the number of context switches in a play of the game. In one variant,

we give the obligation of ensuring that the bound on the number of context switches is not ex-

ceeded to the existential player. Shewill lose all plays that contain toomany context switches. If

a play already contains themaximumnumber of allowed context switches, the universal player

can enforce herwin by choosing another context switch. The secondoption is to block all transi-

tions that introducemore than the allowednumber of context switches, nomatterwhich player

is active. The first option has the advantage that a winning strategy for the existential player in

the restricted game is also a winning strategy in the game without the BCS restriction. This is

because the BCS restriction only limits the moves of the existential player, while the universal

player can still react using all moves in the unrestricted game.

In the following, we will consider the second variant. We claim that it is powerful enough to

simulate the first variant. To this end, wemodify the underlying valence system so that it keeps

track of the number of context switches that have already occurred and the set of dependent

nodes that have been used in the current context. The latter is needed to identify the next

context switch. For the simulation, we simply replace every transition that would introduce the(k + 1)st context switch by an ε-labeled transition that leads to a deadlock. If in the original

game, the existential player is forced to introduce a (k + 1)st context switch or if the universal

player is able to do so, the modified game will move to this deadlock state. The final state has

not been reached and the existential player loses. Note that the game is designed so that it is

impossible for a computation to have more than k context switches, so applying the second

restriction does not change the semantics.

We conjecture that for every graph monoid, valence reachability games over the associated

graph monoid with the bounded-context-switching restriction are decidable.

19.3.2 Conjecture
Reachability games on valence systems over graph monoids with BCS are decidable.

While we have no proof for this statement, we have two reasons justifying the conjecture. The

first one is the fact that decidability has been shown in the case of games overmulti-pushdown

systems. In fact, Seth [Set09] has a shown thatmulti-pushdown games are decidable both with

a bounded-context-switching and a bounded-phase-switching restriction. Bounded phase

switching is a weaker restriction than bounded-context switching (BCS) that allows more com-

putations: In each phase, pushes can be executed on all stacks, but pops can only occur on a

single stack. Our definition of BCS for valence systems over graph monoids is a generalization

of BCS for multi-pushdown systems. One can hope that this also means that the decidability of

reachability games generalizes from multi-pushdown games to valence games.
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Note that Seth’s algorithm is rather involved. It is a generalization of Walukiewicz’s decision

procedure [Wal01] for context-free games that we have discussed in Section 17.6. In fact, it

can be seen as a k-fold application of Walukiewicz’s procedure, where k is the bound on the

number of phases or contexts. Hence, the procedure is k-fold exponential. It has been shown

that the problem of solving such games is (k − 2)EXP-complete if k is fixed [MW20] and non-

ELEMENTARY [ABKS12; ABKS17] if k is part of the input.

The second justification for our conjecture is the following result that Meyer, Zetzsche, and the

author of this thesis have shown in [MMZ18]. It proves that the aforementioned non-game

version of reachability in valence systems over graphmonoids is always decidable if we assume

a bounded number of context switches. It even leads to an upper bound for the complexity.

19.3.3 Theorem
Valence reachability under bounded context switching is always decidable in NP.

The rest of this section is an outline of the proof of the above result. Wedonot give the technical

details, and refer the reader to the full version of the paper [MMZ18a]. Afterwards, we comment

on which techniques from the proof carry over to the game setting and which do not.

Proof sketch for Theorem 19.3.3

Consider a computation (qinit , ε) →
∗ (qfinal ,m), where m ∈ O∗ consists of exactly k context

switches, m = m(1) . . .m(k). While the number of context switches is bounded, the length of

each m(i) is not. To deal with this issue, our goal is to represent the part of the valence system

that contributes to each context as a separate finite automaton. However, this turns out to be

insufficient. There are two problems: Firstly, a single context may contain cancellations, i.e. a

context may contain a+a− ≅ ε. This cannot be captured by a finite automaton. Secondly, two

operations in the same context may be canceled out by operations in different contexts. For

example,wemighthavem as abovewithm ≅ ε, wherem(i) = a+b+ for some i. Theoperation a−

that cancels out a+ inm(i) may be contained in some context j, and the b− associated to b+ may

be contained in some other context j′ with j ≠ j′.

To overcome the first problem, we restrict ourselves to irreducible contexts. Normally, an irre-

ducible sequence of operations is one towhichwe cannot apply the cancellation rule, Rule (G1),

even after potentially applying the swapping rule, Rule (G2). If we only consider contexts, the

definition can be simplified. A context contains only operations that form a dependent set and

the swapping rule can never be applied to operations for distinct nodes. Formally, a context is

irreducible if it does not contain the infix a+ .a− for an arbitrary symbol or a− .a+ for a symbol a

with a I a.

To ensure that the restriction to irreducible contexts is valid, we apply a preprocessing step. We

saturate the given valence system so that if there is a computation (qinit , ε) →∗ (qfinal ,m) with

m ≅ ε and at most k context switches, then there is also a computation (qinit , ε) →∗ (qfinal ,m
′)
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wherem′ additionally satisfies that its contexts are irreducible. The saturation works by finding

states q, p, p′ , q′ such that q
a+
−−→ p, p′

a−
−−→ q′ and there is a sequence of ε-labeled transitions from

p to p′. We then introduce a new ε-labeled transition from q to q′. Intuitively, the new ε-labeled

transition allows the computation to skip the operations that would lead to a context being not

irreducible. For symbols a with a I a, we additionally add transitions that can be used to skip

a sequence of transitions of the shape
a−
−−→

ε
−→
∗ a+
−−→. This process is repeated exhaustively, until

no new transitions are added. Adding an ε-transition might lead to another transition being

added in the next iteration, but since we only add transitions but no control states, the process

terminates after at most a quadratic number of steps.

Wecomeback to thefirst problem. Thedifferent operations in somefixed contextsmight cancel

out (or get canceled out by) operations in different contexts. To this end, we consider block

decompositions and block-wise reductions. A block decomposition is decomposition of the

irreducible contexts into infixes, e.g. m(i) = m(i ,1) . . .m(i ,k). A block-wise reduction is a proof of

m ≅ ε that usesmodified reduction rules. The rules for cancellationand swapping, Rule (G1) and

Rule (G2), work on individual operations in a sequence. The block-wise reduction rules work on

blocks of operations. A block m(i , j) is canceled by m(s,t) if m(s,t) is a representative for the right

inverse of m(i , j). A block m(i , j) can be swapped with m(s,t) if for every operation o± in m(i , j) and
every operation u± inm(s,t), o I u holds.

Assume we are given a sequence m and a decomposition into blocks. Requiring that there is

a block-wise reduction showing m ≅ ε is a property that is strictly stronger than just requiring

m ≅ ε. Consider m = a+b+b−a− and the block decomposition a+b+, b−, a−. We have m ≅ ε,

but there is no block-wise reduction to ε since a+b+ is neither canceled by b− nor by a−. We

have that ifm ≅ ε, thenm admits a block-wise reduction to ε if we decompose it into blocks of

length one that consists of single operations. In this case, the block reduction rules are equal to

Rule (G1) and Rule (G2).

The crucial result that we need for our algorithm is the following. Consider a sequencem with

m ≅ ε consisting of k irreducible contexts. Each of the k contexts can be decomposed into at

most k blocks so that the resulting block decomposition of m admits a block-wise reduction

to ε. To prove the result, we observe that for each pair of contextsm(i) andm(s), there is at most

one infix of each block such that the two infixes cancel each other out using Rule (G1).

This result gives us a quadratic bound on the number of blocks in a block decomposition, but

it does not give us a bound on the length of each block. To deal with the latter, we repre-

sent blocks by finite automata that generate these blocks as elements of their language. As

a consequence, we will not execute a block-wise decomposition on concrete blocks¹, but on

automata representing such blocks. Imitating the swapping rule is easy. The automata use the

operations o± as the letters of their alphabet. Two automata can be swapped if for every oper-

¹ Pun intended.
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ation o± in the alphabet of the first automaton and every operation u± in the alphabet of the

second one, o I u holds.

The cancellation rule is a bit more complicated. Firstly, we note that if a block of an irreducible

context m(i , j) has a right inverse, then this right inverse can be constructed in a syntactic way,

namely by reversing the order of m(i , j) and by swapping the polarity of the operations. The

lattermeanswe replace o+ by o− and vice versa. Two automata cancel each other if the first one

generates a word m(i , j) and the second one generates the syntactic right inverse of that word.

To check this property, we apply the syntactic inverse operations to the second automaton,

i.e. we reverse its order and swap thepolarity of all transition labels. Then, we check intersection

emptiness.

The algorithm

We have gathered all prerequisites to outline the procedure that decides valence reachability

under bounded context switching in NP. Assume we are given a valence system and a bound

k − 1 on the number of context switches, i.e. we can assume that we have k contexts.

1. For each of the k contexts, guess a dependent set of nodes. We will assume that each

context will just use operations from that set. Construct for each context a version of the

valence system in which the transitions whose label is o+ or o− for a node o not in the

corresponding set are discarded.

2. Apply saturation to these valence systems.

3. For each j = 1, . . . , k2 − 1 (each index of a block in the decomposition), guess a control-

state q j of the valence systems. Intuitively, the operations in the jth block of the decom-

position leads from control state q j to q j+1, with q0 = qinit and qk2 = qfinal. Guess for each

block j a subset of the nodes of the context to which block j belongs. Construct a version

of the valence system in which the operations for other nodes are removed as in Step 1.

4. For each j = 0, . . . , k2 − 1: See the valence system for the jth block as a finite automaton

A j with q j as the initial and q j+1 as the final state.

5. Consider the sequence of the automata A0 , . . . , Ak2−1 resulting from the previous step.

Guess a block-wise reduction and verify that it reduces the sequence of automata to ε.

The first step is self-explanatory. The second stepensures that ifwe can reach thefinal statewith

empty storage, then we can do so with a sequence of operations with irreducible contexts.

It might seem weird that we first guess a subset of nodes for each context, and later guess

another subset for eachblock. This is neededbecausewhen verifying the usage of swap rules in

the block-wise decomposition, we need tomake sure that for two blocks that we want to swap,

all operations used in the first block commute with all operations in the second block. Hence,

we need to discard all operations thatmight appear in the context, but not in that specific block.
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In Step4., each automaton represents a language that contains ablockm(i , j) of theblockdecom-

position. When guessing the decomposition, we guess in each step which kind of rule should

be applied (cancel or swap), and to which two blocks m(i , j) and m(s,t) it should be applied. We

then verify that it is valid and that it indeed reduces the sequence to ε. It is not hard to see

that a single step of the block-wise reduction can be guessed and verified in polynomial time.

To conclude that the whole procedure is in NP, note that the number of cancellation steps is

exactly k2

2 , and that between two cancellation steps, the number of swapping steps is at most

the number of remaining blocks squared.

This completes our proof sketch for Theorem 19.3.3. We refer to the full version of the pa-

per [MMZ18a] for details.

In addition to the full proof, the paper [MMZ18; MMZ18a] also analyzes the computational com-

plexity of solving valence reachability in more detail. We briefly outline the results. Recall that

for a graph G, G− is a version of G without any self-loops. We have identified classes of graphs

for which the problem is solvable in P, i.e. deterministic polynomial time. IfG is the graph under

consideration and G− contains the graph C4 from Figure 19.1.b.i) as an induced subgraph, then

the problem is NP-complete. Recall that C4 is the graph corresponding to a multi-pushdown

system with two stacks with a binary stack alphabet each. Hence, this NP-completeness result

corresponds to the result that reachability inmulti-pushdown systems under bounded context

switching is NP-complete. In the case that G− contains the graph P4 from Figure 19.1.b.ii) as an

induced subgraph, we were not able to determine the precise complexity of valence reachabil-

ity under the BCS restriction. We could neither prove that the problem is NP-complete, which

would imply that our algorithm is optimal, nor provide a better algorithm that solves the prob-

lem in deterministic polynomial time.

Another open problem is a generalization of the aforementioned bounded phase switching re-

striction to valence systems. A phase of the computation of a multi-pushdown system is an

infix of the computation in which the system pushes only onto a single stack. However, the

system can pop from all stacks. Correspondingly, it seems sensible to define a phase of the

computation of a valence system as a sequence of operations in which only the positive opera-

tions have to be dependent. For multi-pushdown systems, reachability under bounded phase

switching is NP-complete like reachability under BCS [TMP07], and games with the bounded-

phase-switching restriction can be solved in (deterministic) k-EXP time for a fixed k [Set09]. We

would expect that these results can be generalized to valence systems under a bounded-phase-

switching restriction. However, it is not clear how the above proof, in particular the saturation

step and block decompositions, would generalize to bounded phase switching. We leave this

for future work.

In the time since the publication of our paper [MMZ18], Shetty, Krishna, and Zetzsche [SKZ21]

have generalized our result to reachability under scope boundedness. This notion was origi-

nally introduced for multi-pushdown systems by Torre, Napoli, and Parlato [TNP20]. For a fixed

470



19.3 Bounded context switching for valence systems

bound k, a computation of a multi-pushdown is k-scope-bounded if after pushing each sym-

bol onto some stack, there are at most k contexts that use this stack until the symbol is popped

again. This restriction is a generalization of bounded context switching: A computation that

contains at most k contexts is necessarily k-scope-bounded. In contrast to bounded context

switching, a computation of a multi-pushdown can be k-scope-bounded while still containing

infinitely many contexts. Scope boundedness seems to be incomparable in expressive power

to the aforementioned bounded-phase-switching restriction.

The first contribution of the paper [SKZ21] is to generalize the notion of scope boundedness

from multi-pushdown systems to arbitrary valence systems. Then, the authors prove that

reachability under scope boundedness can always be solved in PSPACE and they provide a

classification result, showing PSPACE-completeness in many cases. This matches the PSPACE-

completeness for multi-pushdown systems [TNP20]. The complexity-theoretic results show

that the increased expressiveness of scope boundedness over bounded context switching

comes with a penalty as the computational complexity rises from NP to PSPACE. The tech-

niques used in [SKZ21] to prove the results include generalization of some of the concepts

that we used in our study of bounded context switching, including block decompositions and

block-wise reductions.

From systems to games

In the rest of this section, we explain the difficulties that arise when trying to lift the proof of de-

cidability in valence systems under the BCS restriction to games. In the proof, we have implicitly

used several times that the nondeterminism in the system is under the control of a single entity:

Our algorithm guesses the set of operations that will be used in each block, and a witness of

reachability can only be found if the guesses are correct. This means the entity controlling the

nondeterminism in the system can be assumed to be the same entity that controls the nonde-

terminism in the algorithm for checking reachability. Additionally, when we saturate a valence

system, we insert transitions and hence introduce nondeterministic choices. The transitions

that are inserted by the saturation procedure do not hurt the correctness, since we can assume

that the entity resolving the nondeterminism has perfect foresight: When taking a transition la-

beled by a+, it already knows that it will then take a sequence of ε-labeled transitions followed

by a a− transition, and nobody else can interfere with that plan. Hence, it can directly take the

ε-labeled transition introduced by saturation that skips this part of the computation.

In a game setting, both tricks do not work anymore. A nondeterministic algorithm cannot sim-

ply guess a set of operations for each block, and restrict a part of the game to that set of op-

erations. Intuitively, the nondeterminism in the algorithm corresponds to one of the players.

If the other player wants to use an operation that is not in this set, we cannot simply deny her

this opportunitywithout affecting the semantics of the game. Similarly, the saturation does not

carry over if we consider a set of states that are not owned by a single player: After taking an

a+-labeled transition, the other player may become active, so it is not clear to the player who

chose a+ whether a a− transition will follow later. Allowing the player to take a transition that
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was inserted by the saturationmeans that she could skipmoves of the opponent, which affects

the semantics of the game.

Walukiewicz’s reduction [Wal01], originally designed for context-free games (see Section 17.6),

but also used by Seth [Set09] for multi-pushdown games with a BCS restriction, offers a way

to resolve these issues. For example, instead of letting the algorithm guess sets of nodes, this

mechanism could be incorporated into the game using a negotiation mechanism: The existen-

tial player proposes a prediction, then the other player can either accept it – which means she

loses if she violates the prediction – or she can challenge it, in which case she wins if and only if

she can enforce a violation of the prediction.

Evenwith this technique at hand, trying to obtain a decision procedure for valence reachability

games has turned out to be very involved. Firstly, our result that bounds the length of a block

decomposition requires all contexts of the computation to be irreducible. It is not clearwhether

the saturation procedure can be lifted to the game setting. If not, it might be possible to design

a negotiation mechanism à la Walukiewicz to ensure irreducible contexts, but this seems to be

quite intricate.

Assumewe could successfully overcome these problems. In Step 4. of the algorithm, instead of

a sequence of automata, we would now have to deal with a sequence of games. It is not clear

how a block-wise reduction could be conducted on the level of games. We leave solving these

problems for future work.
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20 Contributions

The purpose of this chapter is twofold. We will summarize the contributions to the field of au-

tomata theory that we have presented in the thesis. Additionally, we will also list for each of

the results the publications that it stems from. While doing the latter, we will highlight the con-

tributions of the author of this thesis to these publications. We proceed by considering each of

the parts of the thesis separately.

Part II. Models of computation

This part consists of the preliminaries, so we forgo recapitulating its content. We have almost

exclusively presented the work of others, for which we have given the appropriate references.

There are two exceptions: The first is a novel and elegant way of defining ω-context-free lan-

guages in Section 5.2. This definition and the accompanying results are taken from the non-

peer-reviewed publication [MMN17]. The second is a proof for the word problem of BPP lan-

guagesbeingNP-complete, Proposition6.4.8. Theupperboundhasbeenobtainedbyadapting

our proof that BPP-SREDC, the problem of checking whether the language of a simple regular

expression is contained in the downward closure of a BPP net language, is in NP. The latter re-

sult, presented as Theorem 9.4.2 in this thesis, is taken from the publication [AMMS17]. We will

discuss both of these publications in more detail later.

Part III. Closures of Petri net languages

In this part of the thesis, we have studied the computation of the upward and downward clo-

sures of Petri net languages. Both of these closures are regular overapproximations that are

useful in the context of verification. After providing some basic definition, we have turned to

considering the upward closure of Petri net languages in Chapter 8. We have established that

an automaton of doubly exponential size representing the upward closure can be computed

in doubly exponential time. Restricting the problem leads to lower complexities: The upward

closure of a BPP net language has exponential state complexity, and the problem of checking

whether a simple regular expression is contained in the upward closure is EXPSPACE- and NP-

complete for general Petri nets and BPP nets, respectively. We have obtained a similar collec-

tion of results for the downward closures in Chapter 9. For the downward closure of general

Petri net languages, the literature [HMW10] already provides a non-primitive recursive upper

bound. We have shown that the restricted versions share the complexities with their counter-

parts for the upward closure, e.g. the downward closure of a BPP net language has exponential

state-complexity. For all the aforementioned upper bounds on the state complexity of the clo-

sures, we have providedmatching lower bounds. We have concluded the part in Chapter 10 by

showing that the regular containment problem for Petri net coverability languages is decidable,

extending an earlier result for trace languages from the literature. From this, we have deduced

that it is decidable whether the language of a Petri net equals its upward or downward closure.
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The content of this part of the thesis is taken from the peer-reviewed conference publica-

tion [AMMS17] byMohamedFaouzi Atig, RolandMeyer, Prakash Saivasan, and the author of this

thesis. The full version [AMMS17a] including the proofs of all results is available on arXiv. The

author has majorly contributed to the proofs of the upper bounds for computing the upward

closure of both general Petri nets and BPP nets, the proof for the upper bound for computing

the downward closure of a BPP net, and the proof of regular containment being decidable. This

thesis extends the paper by also considering the case of Petri nets whose size is measured in

terms of their unary encoding, providing new bounds wherever they are needed.

Part IV. Separability

In this part of the thesis, we have considered the regular separability ofWSTS languages, a class

that includes the Petri net coverability languages. A separator is a certificate for the disjointness

of two languages – ingeneral, disjointness is necessary, but not sufficient for separability, i.e. the

existence of a separator. After giving an introduction in the first chapter of the part, we have

established some results on the relations between various classes of WSTS languages, defined

by restricting the WSTSes that generate them, in Chapter 12. In the big picture, these results

allow us to extend our results on separability, e.g. from deterministic WSTS languages to the

more generalω2-WSTS languages and finitely branchingWSTS languages. Themain result, pre-

sented in Chapter 13, shows that under mild conditions, any two disjoint WSTS languages are

regularly separable – disjointness is both necessary and sufficient to guarantee the existence of

a regular separator. In order to prove the result, wehave shownhow toobtain a separator under

the assumption that we start with a certain type of invariant in the state space of theWSTS. In a

second step, we have used ideals to prove that any two language-disjoint WSTSes can be trans-

formed to enforce the existence of such an invariant. We have completed our studies of regular

separability by giving an explicit construction for obtaining a separator in the case of disjoint

Petri net coverability languages. This has resulted in a triply exponential upper bound on the

state complexity of the separator, and we have shown a doubly exponential lower bound.

The content of this part of the thesis is taken from the peer-reviewed conference publica-

tion [CLMMKS18] by Wojciech Czerwiński, Sławomir Lasota, Roland Meyer, K. Narayan Kumar,

Prakash Saivasan, and the author of this thesis. The full version [CLMMKS18a] including the

proofs of all results is available on arXiv. The author has majorly contributed to the proofs of

various of the results in Chapter 12, to the proof that the ideal decomposition of an invariant is

again an invariant, Proposition 13.3.8, as well as to the bounds presented in Chapter 14.

Part V. Games

In the last of the three main parts of the thesis, we have discussed solving games with perfect

information. After giving some preliminary definitions, we have laid out the framework of ef-

fective denotational semantics that we use as a vehicle for solving games. Before turning to

games, we have demonstrated its usage by applying it to the (ω-)regular inclusion problem for

(ω-)context-free languages. Chapter 17 discusses an approach to context-free games that is
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also based on the framework. We have shown how a context-free grammar defining a game

can be turned into a system of equations that, after choosing a suitable domain, can be solved

via fixed-point iteration. The least solution to the system allows us to read off the winner of

the game. This leads to a procedure that solves context-free games within doubly exponential

time, which is optimal. We have extensively compared our result to otherworks on context-free

games from the literature, provided a prototype implementation, and extended the theory to-

wards games with an ω-regular winning condition.

In Chapter 18, we have considered higher-order games, a generalization of context-free games.

Our goal was to again apply effective denotational semantics by associating a system of equa-

tions to a higher-order recursion scheme. We have established a framework for the transfer of

properties of the fixed-point solution with respect to one domain to the fixed-point solution

with respect to another domain. We have instantiated this framework to prove the correctness

of our approach. It provides a (k + 1)-fold exponential procedure to solve higher-order games

of order k, which is optimal.

Finally, we have considered the boundaries of the decidability of games in Chapter 19. To this

end, we employ the model of valence systems over graph monoids, which subsumes various

popular automata models, including context-free systems and Petri nets. We obtain a com-

plete classificationof thedecidability of reachability and coverability gamesonvalence systems,

based on the structure of the underlying graph monoid. We essentially show that context-free

games and games that can be reduced to context-free games are the only decidable cases. For

games on valence systems over graphmonoids that are not representing context-free systems

or minor extensions thereof, undecidability holds. To mitigate this undecidability, we propose

employing a bounded-context-switching restriction. While we cannot prove that this restric-

tion makes games on valence systems decidable, we demonstrate that a similar result holds in

the less general case of valence reachability: Under a boundon the number of context switches,

reachability in valence systems is always solvable in NP (and NP-complete in many cases).

Let us now discuss the publications that are related to this part of the thesis. The contents of

Chapter 15 and Chapter 16 serve as preliminaries for the part. We have mostly presented the

work of others and given the appropriate references. In particular, this includes our extensive

discussion of the regular inclusion problem for context-free languages as an introductory ex-

ample, which is taken from the paper [HM15] by Meyer and Holík. The content of Section 16.3

contains work by the author and is taken from the paper [MMN17]. We will come back to this

publication in a moment.

The content of Chapter 17 is mostly taken from the peer-reviewed conference publica-

tion [HMM16] by Roland Meyer, Lukáš Holík, and the author of this thesis. The full ver-

sion [HMM16a] including the proofs of all results is available on arXiv. Except for the algorithmic

considerations that go beyondwhat is featured in our prototype implementation, presented in

Section 17.7 in this thesis, the author has majorly contributed to all parts of the paper and the
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implementation. The final two sections of the chapter, Sections 17.8 and 17.9, that are con-

cerned with extending our results to the case of games with an ω-regular winning condition,

are taken from the paper [MMN17] by RolandMeyer, Elisabeth Neumann, and the author of this

thesis. We havementioned this paper beforewhen talking about the Sections 5.2 and 16.3. The

paper has not been published in a peer-reviewed form, but it is available on arXiv.

The chapter on higher-order games, Chapter 18, is an extension of the peer-reviewed confer-

ence publication [HMM17] by Matthew Hague, Roland Meyer, and the author of this thesis.

The full version [HMM17a] including the proofs of all results is available on arXiv. The author

has majorly contributed to the parts of the publication that are concerned with modeling a

higher-order game as fixed-point system, proving the correctness of this approach, as well as

the complexity-theoretic considerations for the upper bound. The presentation of thematerial

in this thesis extends the paper by giving a version of the framework for fixed-point transfer in

Section 18.4 that is easier to apply as it requires fewer preconditions.

Our work on valence games in Chapter 19 stems from unpublished work by Roland Meyer,

Georg Zetzsche, and the author of this thesis. The author has contributed to some proofs of the

decidability resp. undecidability of various types of reachability and coverability games (pre-

sented in Section 19.2). The final section on reachability in valence systems under bounded

context switching presents the contents of the peer-reviewed conference publication [MMZ18]

by the three aforementioned authors. The full version [MMZ18a] including the proofs of all re-

sults is available on arXiv. The author of this thesis has majorly contributed to the proof that

reachability under BCS is in NP.
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We conclude by giving a brief overview of future directions for extending the research pre-

sented in this thesis.

Applications

In the main part of the thesis, we have almost exclusively considered the theoretical aspects

of the problems under consideration. Embedding our proposed solutions for these problems

into frameworks and tools that solve verification problems in practice is a challenge that we

have not tackled. This process would consist of at least three steps. The first is designing a tool

that translates an actual instance of a verification problem, e.g. the source code of a program (in

some fixed programming language) and a specification (in some fixed specification language)

into an instance of an automata model. We have briefly explained the challenges associated to

this step at the beginning of Chapter 1. Secondly, one needs to implement the algorithms pro-

posed in this thesis. We have presented a prototype implementation only for solving context-

free games in Section 17.7. Extending the implementation to also deal with ω-games or even

incorporating it into a general framework for effective denotation semantics (as explained at

the beginning of Chapter 16) would be desirable. Finally, one would need to optimize the im-

plementations so that they are well-behaved on the instances that are of practical interest. It is

well-known that a naive implementation of an algorithm often does not perform well in prac-

tice, even if its worst-case running time matches the complexity-theoretic lower bound. The

instances that are relevant in practice often exhibit a special structure that can be exploited

if the algorithm is designed and optimized accordingly, e.g. by using suitable data structures

and heuristics. For solving context-free games, we have reported on some early work in this

direction in Section 17.7.

In addition to these considerations on applying our results, there are a few open questions on

the theoretical side. We have discussedmost of them extensively in themain parts of the thesis.

Therefore, it should be sufficient to conclude the thesis by giving a brief summary.

Part III. Closures of Petri net languages

All the upper and lower bounds that we have presented for the sizes of closures of Petri net cov-

erability languages match. The same holds true for the variations of these problems, e.g. the

case of BPPnets and the containment of SREs in the closures. Wehavenot investigated the com-

plexity of regular containment and whether a given Petri net coverability language is upward

or downward closed in Chapter 10 for BPP nets.

In general, the class of languages of BPP nets is not widely studied yet. We have established

a few results in this thesis, e.g. the word problem being NP-complete, but there are algorith-

mic problems for which, to the best of the author’s knowledge, decidability and/or computa-
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tional complexity are open questions. For example, the proof that inclusion and equality of

Petri net coverability languages are undecidable [Jan95; Wim08] does not carry over to BPP net

languages. It is not clear whether these properties are decidable and if so, what the computa-

tional complexity is.

Part IV. Separability

Wehaveencounteredahandful of openproblems related to the separability ofWSTS languages.

Arguably, the most interesting one is the question on whether the inclusions among language

classes in Theorem 12.2.1 are strict. This boils down to the question of whether there is an in-

finitely branching non-ω2 WSTS whose language is not the language of a finitely branching

WSTS. As argued at the end of Section 12.2, this problem is of little practical interest, but solv-

ing it would provide insights on the expressive power of non-ω2 WSTSes and whether finite

words are sufficient todistinguish them fromω2-WSTSes. If it turns out that the aforementioned

classes are equal, we also obtain a generalization of our results in Section 13.1. For example, if

the classes are equal, we immediately obtain that any twodisjointWSTS languages are regularly

separable. If the two classes were proven to be different, separability would remain an open

question. Hopefully, the proof for classes not being equal would provide additional insight.

In Chapter 14 we have presented non-matching upper and lower bounds on the size of the

separator in the case of Petri net coverability languages. We have already conjectured that the

upper bound can be improved by a construction for determinization that is more clever.

Finally, it shouldbementioned that the regular separability of Petri net reachability languages is

at the timeof thiswriting themost importantopenproblem in theareaof separability. Note that

Petri net reachability languages are not WSTS languages (at least not with reaching an upward-

closed set of configurations as the acceptance condition). In contrast toWSTS languages, there

are pairs of Petri net reachability languages that are disjoint but not regularly separable. Hence,

the goal here is to understand whether regular separability is a decidable property.

Part V. Games

We have extensively studied context-free games producing finite words and compared our ap-

proach to otherworks. Wehave discussed that our approach avoids an upfront determinization

of the problem input which would be needed in order to apply various algorithms from the lit-

erature (e.g. the ones by Cachat [Cac02] and Walukiewicz [Wal01]). When it comes to games

that produce infinite words, however, we have employed a determinization in Section 17.9. It is

unclear whether this step in our construction can be avoided. We refer to the end of the afore-

mentioned section for a discussion of the topic and related work that hints at the construction

being potentially unavoidable. In the case of higher-order games, we have not yet attempted

at all to generalize our approach to the case of infinite words.

Finally, when considering valence games in the last chapter of the part, we have conjectured in

Section 19.3 that all reachability games become decidable once we restrict them by bounding
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the number of context switches. We have justified this conjecture by proving a weaker result

for valence reachability under bounded context switching and discussed the problems that

prevent us fromadapting that proof to the case of games in a straightforwardmanner. Wehope

that these problems can be overcome in the future in order to obtain a proof for the conjecture.
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