Summaries for Context-Free Games

Lukáš Holík¹, Roland Meyer², and **Sebastian Muskalla**² December 15, FSTTCS 2016, Chennai

1 Brno University of Technology, holik@fit.vutbr.cz 2 TU Braunschweig, {roland.meyer, s.muskalla}@tu-braunschweig.de

Motivation

Verification of context-free systems:

Verification of context-free systems:

Saturation

Compute state space of a pushdown

Stack content represented as a regular language

Verification of context-free systems:

Saturation

Compute state space of a pushdown Stack content represented as a regular language

Summarization

Compute effect of function calls as input-output-relation Stack content not represented Used more often in SVComp

Synthesis:

Synthesis:

Two types of non-determinism:

controllable non-determinism uncontrollable non-determinism

Synthesis:

Two types of non-determinism:

controllable non-determinism uncontrollable non-determinism

^L Model as a 2-player game

Synthesis:

Two types of non-determinism:

controllable non-determinism uncontrollable non-determinism

^L Model as a 2-player game

To solve it: Lift the techniques for verification

Synthesis:

Two types of non-determinism:

controllable non-determinism uncontrollable non-determinism

^L Model as a 2-player game

To solve it: Lift the techniques for verification

${\sf Problem} \ \backslash \ {\sf Algorithm}$	Saturation	Summarization
Verification		
Synthesis		

Synthesis:

Two types of non-determinism:

controllable non-determinism uncontrollable non-determinism

^L Model as a 2-player game

To solve it: Lift the techniques for verification

${\sf Problem} \setminus {\sf Algorithm}$	Saturation	Summarization
Verification		[SP78] [RHS95]
Synthesis		

Synthesis:

Two types of non-determinism:

controllable non-determinism uncontrollable non-determinism

^L Model as a 2-player game

To solve it: Lift the techniques for verification

$Problem \setminus Algorithm$	Saturation	Summarization
Verification	[BEM97] [FWW97]	[SP78] [RHS95]
Synthesis		

Synthesis:

Two types of non-determinism:

controllable non-determinism uncontrollable non-determinism

^L Model as a 2-player game

To solve it: Lift the techniques for verification

${\sf Problem} \setminus {\sf Algorithm}$	Saturation	Summarization
Verification	[BEM97] [FWW97]	[SP78] [RHS95]
Synthesis	[C02] [MSS05] [HO09]	

Synthesis:

Two types of non-determinism:

controllable non-determinism uncontrollable non-determinism

^L Model as a 2-player game

To solve it: Lift the techniques for verification

${\sf Problem} \setminus {\sf Algorithm}$	Saturation	Summarization
Verification	[BEM97] [FWW97]	[SP78] [RHS95]
Synthesis	[C02] [MSS05] [HO09]	???

Synthesis:

Two types of non-determinism:

controllable non-determinism uncontrollable non-determinism

^L Model as a 2-player game

To solve it: Lift the techniques for verification

${\sf Problem} \setminus {\sf Algorithm}$	Saturation	Summarization
Verification	[BEM97] [FWW97]	[SP78] [RHS95]
Synthesis	[C02] [MSS05] [HO09]	??? Next

Context-Free Games

Input:

Context-free grammar with ownership partitioning of the non-terminals

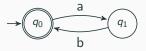
$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon \ Y_{\Box} o & bX \end{array}$$

Input:

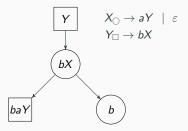
Context-free grammar with ownership partitioning of the non-terminals

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon \ Y_{\Box} o & bX \end{array}$$

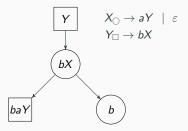
Finite automaton over terminals T_G



Game arena:

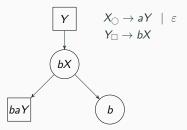


Game arena:



Vertices: Sentential forms $\vartheta = (N_G \cup T_G)^*$

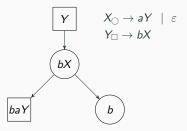
Game arena:



Vertices: Sentential forms $\vartheta = (N_G \cup T_G)^*$

Arcs: Left derivations $wX\gamma \Rightarrow_L w\eta\gamma$ if $X \rightarrow \eta \in P_G$

Game arena:



Vertices: Sentential forms $\vartheta = (N_G \cup T_G)^*$

Arcs: Left derivations $wX\gamma \Rightarrow_L w\eta\gamma$ if $X \rightarrow \eta \in P_G$

Ownership: Owner of $wX\gamma$ is the owner of X

Inclusion game:

Derive a terminal word $w \in \mathcal{L}(A)$

Inclusion game:

Derive a terminal word $w \in \mathcal{L}(A)$

Non-Inclusion game: Derive a terminal word $w \notin \mathcal{L}(A)$

Inclusion game:

Derive a terminal word $w \in \mathcal{L}(A)$ or infinite derivation

Non-Inclusion game:

Derive a terminal word $w \notin \mathcal{L}(A)$ after finitely many steps

Inclusion game:

Derive a terminal word $w \in \mathcal{L}(A)$ or infinite derivation

└→ Safety Game

Non-Inclusion game:

Derive a terminal word $w \notin \mathcal{L}(A)$ after finitely many steps

└→ Reachability game

Here:

Consider inclusion game for player prover \Box Consider non-inclusion game for player refuter \bigcirc How to decide which player wins the game?

Fixed-point iteration over a suitable summary domain

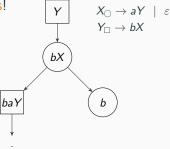
Now:

- 1. Explain & define domain
- 2. Explain fixed-point iteration

Formulas over the Transition Monoid

How to decide whether refuter can win from a given position?

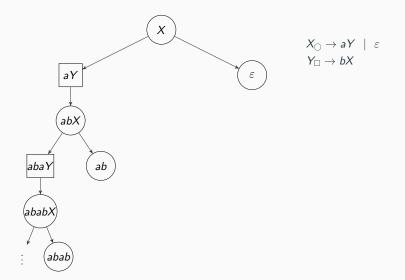
Consider the tree of plays!



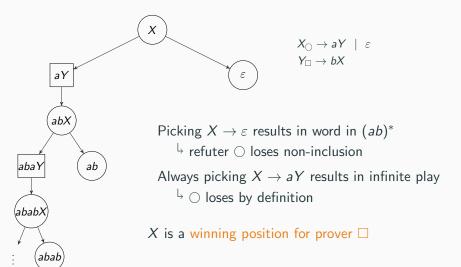
Refuter wins non-inclusion in $(ab)^*$ by picking $X \to \varepsilon$

Y is a winning position for refuter \bigcirc

The tree of plays - Example



The tree of plays - Example



Problem:

Tree is usually infinite

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion Only ownership is important

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion Only ownership is important \rightsquigarrow Replace inner nodes of refuter by \lor

Formulas

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion Only ownership is important

 \rightsquigarrow Replace inner nodes of refuter by \lor

 \rightsquigarrow Replace inner nodes of prover by \wedge

Formulas

Problem:

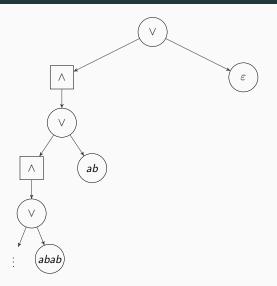
Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion Only ownership is important \rightsquigarrow Replace inner nodes of refuter by \lor \rightsquigarrow Replace inner nodes of prover by \land

Understand tree as (infinite) positive Boolean formula over words

Formulas - Example



Remaining problems:

- 1. Formulas are *still* infinite
- 2. Even the set of atomic propositions T_{G}^{*} is infinite
- L Tackle 2. first

The words are not important — only the state changes matter

The words are not important — only the state changes matter

Define equivalence relation \sim_A such that words are equivalent iff they induce the same state changes on A

The words are not important — only the state changes matter

Define equivalence relation \sim_A such that words are equivalent iff they induce the same state changes on A

 $w \sim_A v$ iff

The words are not important — only the state changes matter

Define equivalence relation \sim_A such that words are equivalent iff they induce the same state changes on A

> $w\sim_A v$ iff $orall q,q'\in Q$:

The words are not important — only the state changes matter

Define equivalence relation \sim_A such that words are equivalent iff they induce the same state changes on A

$$\begin{array}{ccc} & w \sim_{\mathcal{A}} v \\ \text{iff} & \forall q,q' \in Q: \quad q \xrightarrow{w} q' \quad \text{iff} \quad q \xrightarrow{v} q' \end{array}$$

The words are not important — only the state changes matter

Define equivalence relation \sim_A such that words are equivalent iff they induce the same state changes on A

$$w \sim_{\mathcal{A}} v$$
iff $\forall q, q' \in Q : q \xrightarrow{w} q'$ iff $q \xrightarrow{v} q'$

Transition monoid M_A is the set of all equivalence classes [w] of \sim_A T_G^* is partitioned into equivalence classes of \sim_A Represent equivalence classes by boxes:

$$\mathsf{box}(w) = \left\{ (q,q') \in Q \times Q \; \middle| \; q \stackrel{w}{\rightarrow} q'
ight\} \in \mathcal{P}(Q \times Q)$$

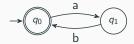
Represent equivalence classes by boxes:

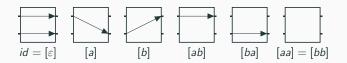
$$\mathsf{box}(w) = \left\{(q,q') \in Q imes Q \; \middle| \; q \stackrel{w}{
ightarrow} q'
ight\} \in \mathcal{P}(Q imes Q)$$

Boxes correspond to procedure summaries for programs (in a precise sense)

Transition monoid - Example

$$\mathsf{box}(w) = \left\{ (q,q') \in Q \times Q \mid q \stackrel{w}{\to} q' \right\}$$

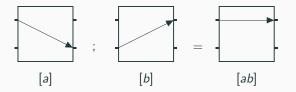




All other boxes represent empty equivalence classes

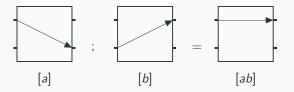
Relational composition of boxes

Boxes can be composed using relational composition ;



Relational composition of boxes

Boxes can be composed using relational composition ;

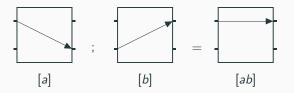


Monoids are isomorphic:

$$(M_A, ..., [\varepsilon]) \cong (\underbrace{box(T_G^*)}_{\subseteq \mathcal{P}(Q \times Q)}, ; , box(\varepsilon))$$

Relational composition of boxes

Boxes can be composed using relational composition ;



Monoids are isomorphic:

$$(M_A, ..., [\varepsilon]) \cong (\underbrace{box(T_G^*)}_{\subseteq \mathcal{P}(Q \times Q)}, ; box(\varepsilon))$$

 \downarrow Up to $|M_A| \le 2^{|Q|^2}$ equivalence classes

Previously: (Infinite) positive Boolean formulas over words

Previously: (Infinite) positive Boolean formulas over words Now: (Infinite) positive Boolean formulas over M_A Previously: (Infinite) positive Boolean formulas over words Now: (Infinite) positive Boolean formulas over M_A

Down to finitely many atomic propositions

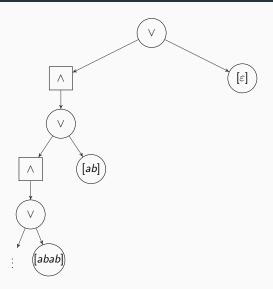
Previously: (Infinite) positive Boolean formulas over words Now: (Infinite) positive Boolean formulas over M_A

Down to finitely many atomic propositions

Remaining problem:

Formulas themselves are infinite

Formulas - Example



Every infinite formula over M_A is logically equivalent (under suitable evaluation semantics) to some finite formula

Every infinite formula over M_A is logically equivalent (under suitable evaluation semantics) to some finite formula

Infinite formulas define functions $F: 2^{M_A} \rightarrow \{0, 1\}$

Every infinite formula over M_A is logically equivalent (under suitable evaluation semantics) to some finite formula

Infinite formulas define functions $F : 2^{M_A} \rightarrow \{0, 1\}$ All such functions can be represented by finite formulas

Every infinite formula over M_A is logically equivalent (under suitable evaluation semantics) to some finite formula

Infinite formulas define functions $F : 2^{M_A} \rightarrow \{0, 1\}$ All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over M_A

Every infinite formula over M_A is logically equivalent (under suitable evaluation semantics) to some finite formula

Infinite formulas define functions $F : 2^{M_A} \rightarrow \{0, 1\}$ All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over M_A

In the example:

Infinite formula: $[\varepsilon] \lor ([ab] \lor ([abab] \lor ...))$ Note: [ab] = [abab] = [ababab] = ...Finite formula: $[\varepsilon] \lor [ab]$

Every infinite formula over M_A is logically equivalent (under suitable evaluation semantics) to some finite formula

Infinite formulas define functions $F : 2^{M_A} \rightarrow \{0, 1\}$ All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over M_A

In the example:

Infinite formula: $[\varepsilon] \lor ([ab] \lor ([abab] \lor ...))$ Note: [ab] = [abab] = [ababab] = ...Finite formula: $[\varepsilon] \lor [ab]$

How to compute these finite formulas in general?

Fixed-Point Iteration

Problem:

How to compute the formulas?

Fixed-point iteration:

Translate the grammar into a system of equations Solve using Kleene iteration Problem:

How to compute the formulas?

Fixed-point iteration:

Translate the grammar into a system of equations Solve using Kleene iteration

Domain:

Finite positive Boolean formulas over M_A (up to \Leftrightarrow) Partial order: Implication \Rightarrow Least element: *false*

Iteration:

Nr.
$$F_X$$
 F_Y

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & Y \ Y_{\Box} o & bX \end{array}$$

Iteration:

Nr.
$$F_X$$
 F_Y 0falsefalse

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & Y \ Y_{\Box} o & bX \end{array}$$

Iteration:

Nr.	F _X	F _Y
0	false	false
1	[ε]	false

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & Y \ Y_{\Box} o & bX \end{array}$$

Iteration:

	Nr.	F _X	F _Y
	0	false	false
$Y \varepsilon$	1	[ε]	false
$ \varepsilon \rangle$	2	[ε]	$[b] = [b]; [\varepsilon]$

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & Y \ Y_{\Box} o & bX \end{array}$$

Iteration:

Nr.	F _X	F _Y
0	false	false
1	[ε]	false
2	[ε]	$[b] = [b]; [\varepsilon]$
3	$[ab] \lor [\varepsilon]$	[b]

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & \ Y_{\Box} o & bX & \end{array}$$

Iteration:

Nr.	F _X	F _Y
0	false	false
1	[ε]	false
2	[ε]	$[b] = [b]; [\varepsilon]$
3	$[ab] \lor [arepsilon]$	[b]
4	$[ab] \lor [\varepsilon]$	$[b]; ([ab] \lor [arepsilon])$

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & Y \ Y_{\Box} o & bX \end{array}$$

System of equations $F_X = [a]; F_Y \lor [\varepsilon]$ $F_Y = [b]; F_X$

Iteration:

Nr.	F _X	F _Y
0	false	false
1	[ε]	false
2	[ε]	$[b] = [b]; [\varepsilon]$
3	$[ab] \lor [arepsilon]$	[b]
4	$[ab] \lor [arepsilon]$	$[b];([ab] \lor [arepsilon])$
		$=$ [bab] \vee [b]

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & Y \ Y_{\Box} o & bX \end{array}$$

System of equations $F_X = [a]; F_Y \lor [\varepsilon]$ $F_Y = [b]; F_X$

Iteration:

Nr.	F _X	F _Y	
0	false	false	
1	[ε]	false	
2	[ε]	[b] = [b]; [arepsilon]	
3	$[ab] \lor [arepsilon]$	[<i>b</i>]	
4	$[ab] \lor [arepsilon]$	$[b]; ([ab] \lor [\varepsilon])$ $= [bab] \lor [b]$ $\Leftrightarrow [b]$	

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & Y \ Y_{\Box} o & bX \end{array}$$

System of equations $F_X = [a]; F_Y \lor [\varepsilon]$ $F_Y = [b]; F_X$

For every sentential form: The (finite) formula obtained from LFP is logically equivalent to the (infinite) formula obtained from the tree of plays.

Winning Regions

Define the evaluation φ so that

Define the evaluation φ so that $\varphi([w]) = 1$ iff $w \notin \mathcal{L}(A)$

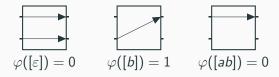
Define the evaluation φ so that

 $\varphi([w]) = 1$ iff $w \notin \mathcal{L}(A)$ iff $[w] \subseteq \overline{\mathcal{L}(A)}$

Define the evaluation φ so that $\varphi([w]) = 1$ iff $w \notin \mathcal{L}(A)$ iff $[w] \subseteq \overline{\mathcal{L}(A)}$ by

$$arphi: M_A
ightarrow \{0,1\}$$
 $[w]
ightarrow \left\{ egin{array}{ccc} 1 & (q_0,q_f)
ot\in \mathsf{box}(w) & ext{for all } q_f \in Q_f \\ 0 & ext{else} \end{array}
ight.$

Define the evaluation φ so that $\varphi([w]) = 1$ iff $w \notin \mathcal{L}(A)$ iff $[w] \subseteq \overline{\mathcal{L}(A)}$ by



Define the evaluation φ so that $\varphi([w]) = 1$ iff $w \notin \mathcal{L}(A)$ iff $[w] \subseteq \overline{\mathcal{L}(A)}$ by

$$\varphi: M_A \rightarrow \{0, 1\}$$

$$[w] \mapsto \begin{cases} 1 \quad (q_0, q_f) \notin box(w) \text{ for all } q_f \in Q_f \\ 0 \quad \text{else} \end{cases}$$

$$\varphi([\varepsilon]) = 0 \qquad \varphi([b]) = 1 \qquad \varphi([ab]) = 0$$

Sentential form $\alpha \in \vartheta$ is called rejecting if $\varphi(F_{\alpha}) = 1$

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

In the example, starting from X:

Both [*ab*], [ε] contain (q_0, q_0)

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

In the example, starting from X:

Both [*ab*], [ε] contain (q_0, q_0) $\downarrow \varphi([ab]) = 0, \varphi([\varepsilon]) = 0$

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

In the example, starting from X:

Both [*ab*], [ε] contain (q_0, q_0) $\downarrow \varphi([ab]) = 0, \varphi([\varepsilon]) = 0$ $\downarrow \varphi(F_X) = \varphi([ab] \lor [\varepsilon]) = 0$

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

In the example, starting from X:

Both [ab], $[\varepsilon]$ contain (q_0, q_0) $\downarrow \varphi([ab]) = 0, \varphi([\varepsilon]) = 0$ $\downarrow \varphi(F_X) = \varphi([ab] \lor [\varepsilon]) = 0$ $\downarrow X$ is non-rejecting

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

In the example, starting from X:

Both [ab], $[\varepsilon]$ contain (q_0, q_0) $\downarrow \varphi([ab]) = 0, \varphi([\varepsilon]) = 0$ $\downarrow \varphi(F_X) = \varphi([ab] \lor [\varepsilon]) = 0$ $\downarrow X$ is non-rejecting

Indeed, prover wins inclusion from X

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

In the example, starting from Y:

[b] does not contain (q_0, q_0)

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

In the example, starting from Y:

[b] does not contain (q_0, q_0) $\downarrow \varphi(F_Y) = \varphi([b]) = 1$

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

In the example, starting from Y:

[b] does not contain (q_0, q_0)

$$\stackrel{{\scriptstyle \ }}{\scriptstyle \downarrow} \varphi(F_{\mathsf{Y}}) = \varphi([b]) = 1$$

 \downarrow Y is rejecting

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

In the example, starting from Y:

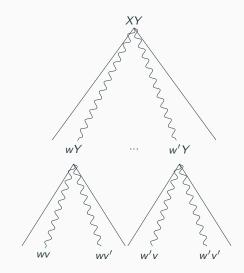
[b] does not contain (q_0, q_0)

 \downarrow Y is rejecting

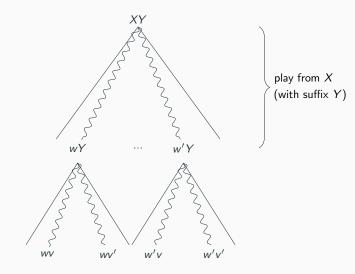
Indeed, refuter wins non-inclusion from Y

How to define the composition operator ; that replaces concatenation . in the system of equations?

Plays from XY decompose:

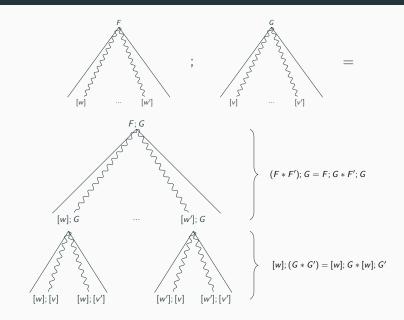


Plays from XY decompose:



Plays from XY decompose:





Complexity & Performance

(1) Set $F_X = false$ for all $X \in N$

(1) Set $F_X = false$ for all $X \in N$ (2) Do until $F_X^{old} \Leftrightarrow F_X^{new}$ for all $X \in N$:

F = rhs(F)

(1) Set
$$F_X = false$$
 for all $X \in N$
(2) Do until $F_X^{old} \Leftrightarrow F_X^{new}$ for all $X \in N$:

F = rhs(F)

(3) Compute F_{α} , and return *true* iff $\varphi(F_{\alpha}) = 1$

1. Deciding non-inclusion games is 2EXPTIME-complete.

- 1. Deciding non-inclusion games is 2EXPTIME-complete.
- 2. The algorithm solves non-inclusion games in

$$\mathcal{O}\left(|\mathbf{G}|^2 \cdot 2^{2^{|\mathcal{Q}|^{c_1}}} + |\boldsymbol{\alpha}| \cdot 2^{2^{|\mathcal{Q}|^{c_2}}}\right)$$

where $c_1, c_2 \in \mathbb{N}$ are constants.

- 1. Deciding non-inclusion games is 2EXPTIME-complete.
- 2. The algorithm solves non-inclusion games in

$$\mathcal{O}\left(|\mathbf{G}|^2 \cdot 2^{2^{|\mathcal{Q}|^{c_1}}} + |\boldsymbol{\alpha}| \cdot 2^{2^{|\mathcal{Q}|^{c_2}}}\right)$$

where $c_1, c_2 \in \mathbb{N}$ are constants.

3. Hardness by reduction from acceptance in alternating Turing machines with exponential space [MSS05].

Comparison of 2EXPTIME *algorithms:*

Input					
Our algorithm					
System of equations P Fixed-point iteration		2EXP			
Reduction to Cachat [C02]					
EXP	Saturation	EXP			
Idea of Walukiewicz [W96/01]					
2EXP	Saturation	Р			
	02] EXP 96/01]	D2] EXP Saturation 96/01]			

guaranteed blow-up

may be lucky

We have implemented and compared:

Our algorithm with naive Kleene iteration Our algorithm with worklist-based Kleene iteration Reduction to Cachat's pushdown games

Problems with Cachat's algorithm:

Automaton A needs to be determinized

└→ Guaranteed blow-up

Algorithmic tricks for Cachat (worklist, \dots) not suitable for the instances generated by the reduction

Performance

	naive Kleene		worklist Kleene		Cachat	
Q / N / T	avg. time	% timeout	avg. time	% timeout	avg. time	% timeout
5/5/5	65.2	2	0.8	0	94.7	0
5/ 5/10	5.4	4	7.4	0	701.7	0
5/10/ 5	13.9	0	0.3	0	375.7	0
5/ 5/15	6.0	0	1.1	0	1618.6	0
5/10/10	32.0	2	122.1	0	2214.4	0
5/15/ 5	44.5	0	0.2	0	620.7	0
5/ 5/20	3.4	0	1.4	0	3434.6	4
5/10/15	217.7	0	7.4	0	5263.0	16
10/ 5/ 5	8.8	2	0.6	0	2737.8	2
10/ 5/10	9.0	6	69.8	0	6484.9	66
15/ 5/ 5	30.7	0	0.2	0	5442.4	52
10/10/ 5	9.7	0	0.2	0	7702.1	92
10/15/15	252.3	0	1.9	0	n/a	100
10/15/20	12.9	0	1.8	0	n/a	100

Experiments executed on i7-6700K, 4GHz, times in milliseconds, timeout 10 seconds

Future work

Liveness synthesis (infinite words)

Synthesis for systems with branching behavior (trees)

Synthesis for higher-order systems

Liveness synthesis (infinite words)

Synthesis for systems with branching behavior (trees)

Synthesis for higher-order systems

Solver technology for systems of equations (Newton iteration)

Liveness synthesis (infinite words)

Synthesis for systems with branching behavior (trees)

Synthesis for higher-order systems

Solver technology for systems of equations (Newton iteration)

Applications, e.g. in hardware synthesis

Thank you!

Questions?