
Munchausen Iteration
Roland Meyer and Sebastian Muskalla

TU Kaiserslautern, {meyer, muskalla}@cs.uni-kl.de

Abstract
We present a method for solving polynomial equations over idempotent ω-continuous semirings.
The idea is to iterate over the semiring of functions rather than the semiring of interest, and
only evaluate when needed. The key operation is substitution. In the initial step, we compute
a linear completion of the system of equations that exhaustively inserts the equations into one
another. With functions as approximants, the following steps insert the current approximant
into itself. Since the iteration improves its precision by substitution rather than computation we
named it Munchausen, after the fictional baron that pulled himself out of a swamp by his own
hair. The first result shows that an evaluation of the nth Munchausen approximant coincides
with the 2nth Newton approximant. Second, we show how to compute linear completions with
standard techniques from automata theory. In particular, we are not bound to (but can use) the
notion of differentials prominent in Newton iteration.

1 Introduction

Verification problems pop up in a fascinating variety of applications. Despite this variety,
they are often formulated in a uniform way, as finding the least solution to a system of
polynomial equations that is interpreted over a semiring. The verification tasks that can
be captured this way range from language-theoretic problems underlying model checking [7]
to dataflow analyses [10] needed in compilers [16]. The programs that can be handled may
involve recursion [17, 14] and weak forms of parallelism [13, 8]. Technically, the system of
equations captures the flow of control in the program of interest. The semiring interpretation
models the aspects of the program semantics that influence the verification task. The least
solution is the most precise semantic information (of the form one has chosen to track) that
is invariant under the program commands.

Computing the least solution to a given system of equations is an algorithmic challenge,
commonly referred to as state space explosion. The least solution is the least fixed point
of the right-hand side functions. The predominant method for computing this fixed point
is Kleene iteration. In its plain form, Kleene iteration understands the right-hand side
functions as a single function over the product domain and applies it over and over again
until the least fixed point is reached. The practical importance of Kleene iteration stems from
the fact that it is amenable to algorithmic optimizations. In particular, rather than working
on the product domain, implementations use a worklist that only stores the functions whose
variables have received updates [1, 11].

Recently, Esparza et al. proposed Newton iteration [3], a new method for computing
least fixed points that combines Kleene iteration with an acceleration principle (see also [9, 6]
for precursors of the method). The idea is indeed inspired by the method for finding roots
of numerical functions. The current approximant is not only modified by an application of
the function, like in Kleene iteration, but in addition shifted towards the fixed point by an
acceleration that makes use of the function’s differential. Newton iteration is guaranteed to
converge to the least fixed point, and to do so faster than Kleene iteration (there are even
cases where Newton reaches the fixed point while Kleene does not). On the downside, the
Newton steps are computationally more expensive than Kleene steps. In particular, Newton

© Roland Meyer, and Sebastian Muskalla;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

60
5.

00
42

2v
1

 [
cs

.S
C

]
 2

 M
ay

 2
01

6

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Munchausen Iteration

iteration does not yet decompose into a worklist procedure. There has, however, been recent
interest in the algorithmics of the method [5, 15].

Our contribution is a new iteration scheme for solving systems of polynomial equations
x = f(x) + a over semirings. To be precise, we work with idempotent and ω-continuous
semirings, assumptions that are typically met in verification. Our iteration is exponentially
faster than Newton and (arguably) easier to compute. To explain the idea, note that both,
Kleene and Newton, compute in the semiring of interest. Our method works symbolically,
over the semiring of functions. The key idea is substitution. In the initial step, we compute
a so-called linear completion of the system of equations, β(0) = lc(f). The completion
exhaustively inserts the right-hand side functions into each other. This means an occurrence
of variable y in fx is replaced by fy. For the resulting function to remain representable, we
restrict ourselves to a completion process that is linear in the sense that the next replacement
will be done on a variable in fy. In the iteration step, we continue to insert the current
approximant into itself, β(n+1) = evalβ(n)(β(n)). We obtain semantic and algorithmic
results about Munchausen iteration.

Concerning the semantics, we show that the Munchausen sequence is faster than the
Newton sequence: When we evaluate the nth Munchausen approximant at the constant
vector a, we obtain the 2nth Newton approximant. This precise correspondence allows us to
transfer deep results from [3]: The Munchausen sequence converges to the least fixed point
and, in the commutative case, is guaranteed to reach the least fixed point in a number of
steps that is logarithmic in the number of variables. As second main result, we show that
there is some flexibility in where to evaluate the approximants. Any b chosen between a
and the least fixed point will guarantee convergence to the least fixed point. Munchausen
iteration thus combines well with further accelerations.

Concerning the algorithmics, we study the operations of linear completion β(0) = lc(f)
and evaluation β(n+1) = evalβ(n)(β(n)) We show that the linear completion of a function
is a linear context-free language. Moreover, this language can be represented symbolically
by a regular expression, provided the semiring has associated a suitable tensor operation.
The idea of using tensors was introduced recently in the context of Newton iteration [15].
Our contribution is to lift it to the semiring of functions. As a second result, we show how
to compute the evaluation on the symbolic representation of the linear completion (a linear
context-free grammar or even a regular expression). The main finding is that the iteration
steps are well-behaved to an extent that we can implement them by an indexed language.

Outline Section 2 introduces the basics on semirings. The Munchausen iteration scheme is
presented in Section 3, together with the study of its semantic properties. The algorithmics
of our iteration is the subject of Section 4. Section 5 concludes the paper with a discussion
on the implementation of the method.

Proofs missing in the paper can be found in the appendix.

2 Systems of Polynomial Equations over ω-Continuous Semirings

We study systems of polynomial equations over idempotent and ω-continuous semirings. A
semiring S is a tuple (S,⊕,�, 0, 1) with the following properties (for all a, b, c ∈ S):

(S,⊕, 0) is a commutative monoid (S,�, 1) is a monoid

a� (b⊕ c) = (a� b)⊕ (a� c) (b⊕ c)� a = (b� a)⊕ (c� a)
a� 0 = 0� a = 0 .

R. Meyer, and S. Muskalla 3

A semiring comes with the so-called natural ordering ≤ on its elements: a ≤ a⊕ b for
all a, b ∈ S. The semiring is called naturally ordered if ≤ is a partial order. In the following,
we will determine suprema over sets of semiring elements. These suprema will always be
taken wrt. the natural ordering.

A naturally ordered semiring is ω-continuous if it satisfies the following Properties (1)
to (4). Property (1) requires chains (ai)i∈N to have a supremum sup{ai | i ∈ N} in S. Recall
that a chain is a sequence with ai ≤ ai+1 for all i ∈ N. To state the Properties (2) to (4),
given a sequence (ai)i∈N in S we define the infinite sum⊕

i∈N
ai = sup{a0 ⊕ . . .⊕ ai | i ∈ N} .

Note that the sum exists by Property (1). The Properties (2) to (4) now require

c� (
⊕
i∈N

ai) =
⊕
i∈N

(c� ai) (
⊕
i∈N

ai)� c =
⊕
i∈N

(ai � c)
⊕
i∈N

ai =
⊕
i∈I

⊕
j∈Ji

aj .

The latter equality is supposed to hold for every partitioning of the natural numbers. The
requirement for ω-continuity allows us to define the Kleene-star operator ∗ : S → S by
a∗ =

⊕
i∈N a

i where we set a0 = 1.
Throughout, we will work with idempotent and ω-continuous semirings, io-semirings

for short. A semiring is idempotent if addition is idempotent, a ⊕ a = a for all a ∈ S.
We will also consider the special case of commutative io-semirings, where besides addition
also multiplication is commutative.

Given a finite set of variables X = {x1, . . . , xk}, a monomial is an expression of the
form m = a1�xi1� . . .�al�xil�al+1, where all ai ∈ S and xij ∈ X . A monomial without
variables is a constant. A polynomial is a finite sum of monomials, p =

⊕
i=1,...,kmi. We

use S[X] for the set of all polynomials. A power series is a countable sum of monomials.
The set of functions over S with arguments X , denoted by SX → S, forms a semiring

with element-wise addition and multiplication, i.e. for all a ∈ SX :

(f ⊕ g)(a) = f(a)⊕ g(a) (f � g)(a) = f(a)� g(a) .

The semiring of functions SX → S is ω-continuous (idempotent, commutative) if and
only if S is ω-continuous (idempotent, commutative). We will also consider X -dimensional
vectors of such functions, i.e. the set (SX → S)X . We can see such a vector as a single
function SX → SX . Together with the component-wise operations, the set of functions
SX → SX again forms a semiring, and the properties of S carry over. We are particularly
interested in functions defined by polynomials. Note that they are monotone.

Given a single function f : SX → S and a vector of functions v : SX → SX , we write
evalv(f) for the composition of f and v defined by

evalv(f) : SX → S evalv(f)(a) = f(vx1(a), ...,vxk(a)) .

We also use evaluation on vectors of functions, (evalv(f))x = evalv(fx). If a ∈ SX is a vector
of values, we moreover let evala(f) denote the value of f at a. Evaluation is monotone in
both, the function and the argument, and it is associative. Let a ≤ b be vectors of functions
or values and let f ≤ g be functions. Let v be a vector of functions. Then

evala(f) ≤ evalb(f) evala(f) ≤ evala(g) evala(evalv(f)) = evalevala(v)(f) .

Our contribution is a new method for solving systems of polynomial equations over S
in several unknowns X . A system of equations is a vector of polynomials p, which we

4 Munchausen Iteration

denote by x = p. A solution for it is a vector v ∈ SX such that v = evalv(p). We always
assume a vector of polynomials p to have components px.

We will often relate languages L ⊆ Σ∗ over the alphabet Σ = S ∪X of semiring elements
and variables with functions. If S is infinite, we only need the finitely many elements that
occur in the system of equations of interest. Given a word w ∈ Σ∗, we define sr(w) ∈ S[X]
to be the monomial obtained by replacing concatenation with multiplication in the semiring.
Moreover, we define the function sr(L) =

⊕
w∈L sr(w) summing up all monomials obtained

from words in the language. In turn, given a monomial g ∈ S[X], we write wd(g) ∈ Σ∗ for
the word obtained by understanding semiring multiplication as concatenation.

3 Munchausen Iteration

We define the iteration scheme, relate it to derivation trees of context-free grammars, and
with this relation derive our main theorem on convergence to the least fixed point, invoking
deep results about Newton iteration from [3].

3.1 Definition
Consider a system of polynomial equations x = p. Our method works over the semiring
of functions SX → SX . To highlight in p the functional aspect f and separate it from the
constant part a, we rewrite the system as x = f + a. The first step is to compute a linear
completion of the right-hand side polynomials f . The idea is borrowed from linear algebra,
namely repeatedly substituting variables y occurring in fx by their defining functions fy. To
be able to represent the resulting function in a closed form, we focus on linear substitutions
where the next substitution is applied to a variable in fy.

To render this formally, a substitution is defined to be a pair consisting of a variable
and a polynomial, denoted by {x 7→ g} from X × S[X]. The application of {x 7→ g} to a
polynomial f yields the set of polynomials f{x 7→ g} containing all variants of f where one
occurrence of x has been replaced by g. If x does not occur in f , f{x 7→ g} is empty. We
are interested in substitutions that are induced by the given system of equations and that
are applied repeatedly, in the aforementioned linear fashion.

I Definition 1. The set of linear polynomial substitutions σx for each variable x ∈ X
associated with f ∈ S[X]X is defined mutually inductive by

σx ::= {x 7→ x} p {x 7→ g} with g ∈ fxσy .

The set of linear monomial substitutions τx (for variable x) associated with f is defined
similarly but works on monomials mix rather than the full fx =

⊕
ix
mix .

Linear polynomial substitutions yield the intuitive notion of completion we are aiming at.

I Definition 2. Consider f ∈ S[X]X . Its linear completion lc(f) : SX → SX is defined
component-wise by lc(f)x = lc(fx) =

⊕
σx
xσx. Here, σx ranges over all linear polynomial

substitutions σx associated with f .

Linear monomial substitutions do not contain sums which makes them algorithmically easier
to handle than the more general linear polynomial substitutions. The following lemma shows
that wrt. completion the two can be used interchangeably. The proof is by distributivity.

I Lemma 3. Consider f ∈ S[X]X . Then lc(fx) =
⊕

τx
xτx.

R. Meyer, and S. Muskalla 5

Munchausen iteration starts with the linear completion. The iteration step then inserts the
current approximant into itself. Note that the method is applied only to the functional part
f of the system of equations, and the result is a sequence of functions β(n). To obtain a
value in S, we have to evaluate β(n) at some vector b ∈ SX . An obvious choice for b is
the given vector of constants a. We will show that we can evaluate at any vector that lies
between a and the least fixed point, and still converge to the least fixed point (Theorem 9).

I Definition 4. Consider f ∈ S[X]X . The Munchausen iteration is

β(0) = lc(f) β(n+1) = evalβ(n)(β(n)) .

The Munchausen sequence wrt. b ∈ SX is defined by β(b)(n) = evalb(β(n)) .

We aim to prove that the nth element of the Munchausen sequence wrt. a is equal to the
2nth Newton approximant. We make the link to Newton iteration using derivation trees.

3.2 Derivation Tree Analysis
Every system of polynomial equations relates naturally to a context-free grammar. We
show that the nth Munchausen approximant coincides with the yields of the derivation trees
of dimension at most 2n . For the development, consider the functional part f ∈ S[X]X
of the system of equations of interest. We associate with it the context-free grammar
Gf = (X , S,

⋃
x∈X Px). The variables form the non-terminals, the semiring elements give

the terminal symbols. There is a set of production rules Px for every non-terminal x. For
the definition, assume fx =

⊕kx
i=1 mi. The productions are

Px = {x→ wd(mi) | i = 1, . . . , kx} .

Since Gf is a context-free grammar, we can make use of the concept of derivation trees
(that may have variables at the leaves). Let T(x) denote the set of all derivation trees that
can be generated from the non-terminal x. We write Tn(x) for the set of derivation trees
in T(x) of dimension at most n ∈ N. The dimension dim(t) of a tree t is a well-known
concept [4] and defined inductively as follows. (i) If t has no children, then dim(t) = 0.
(ii) If t has precisely one child t1, then dim(t) = dim(t1). (iii) If t has at least two children,
consider the children t1 and t2 of highest dimension. More formally, let dim(t1) ≥ dim(t2)
and dim(t2) ≥ dim(t′) for all children t′ 6= t1. In this case, we set

dim(t) =
{

dim(t1) + 1 if dim(t1) = dim(t2) ,
dim(t1) if dim(t1) > dim(t2) .

The correspondence with derivation trees relies on the following lemma: A tree of dimension
2m can be decomposed into trees of dimension at most m. For the formal statement, if t′ is
a tree with leaves l1, . . . , ln (from left to right) and t1, . . . , tn are trees, we denote the tree
obtained by replacing each leaf li with ti by t′[t1, . . . , tn] .

I Lemma 5. Consider a tree t with dim(t) = 2m. Then there are trees t′, t1, . . . , tn with
dim(t′), dim(t1), . . . , dim(tn) ≤ m so that t = t′[t1, . . . , tn] .

Proof. We identify the maximal subtrees t1 to tn of t that satisfy dim(ti) ≤ m. Note that
they are unique. Removing them from t leaves us with a subtree t′. Tree t′ has the same
root as t. The leaves are labeled by root(t1) to root(tn). If we replace each leaf root(ti) by
the tree ti, we obtain a representation of t:

t = t′[t1, . . . , tn] .

6 Munchausen Iteration

To establish dim(t′) ≤ m, assume towards a contradiction that dim(t′) > m. Consider the
children ti that we removed from t to obtain t′. By the maximality requirement for ti, the
parent node of root(ti) in t has outdegree ≥ 2.

Assume for every child ti one of the following holds: (i) dim(ti) = m or (ii) ti has a
sibling of dimension > m or (iii) ti has two siblings of dimension = m. In each of the cases,
we can assume ti to contribute a dimension of m when we determine t′[t1, . . . , tn]. As a
result, we obtain

dim(t) = dim(t′) +m > m+m .

This contradicts the assumption that the dimension of t equals 2m.
As a consequence of this contradiction, there has to be a child ti that does not satisfy

any of (i) to (iii) above. This means dim(ti) < m, there is no sibling of dimension > m, and
there is at most one sibling of dimension m. Let x be the parent node of root(ti). Let tx be
the subtree with x as its root. The violation of (i) to (iii) allows us to conclude dim(tx) ≤ m.
This in turn contradicts the maximality of ti.

Since we derived a contradiction in both cases (all children satisfy (i), (ii), or (iii) and
there is a child that does not satisfy (i), (ii), and (iii)), we have to conclude that the
assumption dim(t′) > m has to be false. J

The correspondence is our first main result. Recall that the yield of a given tree, yield(t),
is the word formed by the leaves when the tree is traversed in left-first manner.

I Theorem 6. β(n)
x =

⊕
t∈T2n (x) sr(yield(t)) .

Proof. We proceed by induction on n.

Base case n = 0 In the base case, we have

β(0)
x = lc(fx) =

⊕
σx

xσx =
⊕
τx

xτx .

The first two equalities are by definition, the last is Lemma 3. We have to show that⊕
τx

xτx =
⊕

t∈T1(x)

sr(yield(t)) .

To see that each xτx can be obtained as the yield of a derivation tree rooted in x, note that
the substitution τx takes the form

{x 7→ mx{. . . {z 7→ mz}} . . .} .

Here, mx to mz are monomials and so x → mx up to z → mz are production rules in the
grammar Gf . Hence, the application of τx corresponds to a derivation sequence from x.

We show that the derivation tree has dimension at most one. Since the substitution is
linear, we can highlight in every rule the variable that will be replaced next. So in the initial
step, we have x → wd(mi) with mi = g1 � y � g2. In the derivation tree, the rule yields
several subtrees for root x. Since g1 and g2 are monomials, their subtrees consist of single
nodes labeled by an element from the semiring or a variable. The remaining subtree is for
y and the same reasoning applies. Since the subtrees labeled by a semiring element and the
subtrees of a variable have dimension zero, the overall derivation tree has dimension at most
one (zero, if no rule is applied).

For the reverse direction, we have to show that for every subtree t ∈ T(x) of dimension
at most one, we have a linear monomial substitution τx that we can apply to x to obtain

R. Meyer, and S. Muskalla 7

sr(yield(t)). The first observation is that in t, for every pair of siblings at least one has
to have dimension zero. Assume this was not the case and both siblings have dimension
at least one. In this case, their parent node has dimension at least two which contradicts
the assumption on the dimension of t. The only trees with dimension zero are linear paths.
Since there are no productions of the shape x → y in Gf (since we removed the constants
from f and all other monomials are at least of the shape a1� y� a2) the trees of dimension
zero have to be leaves. Combined with the fact that one sibling has to have dimension zero,
we obtain that t is a path with semiring elements and variables to the sides. Hence, it forms
a linear monomial substitution. Note that this covers the case where the path has dimension
zero. Then the tree is x itself, to which we apply {x 7→ x}.

Induction step Assume β(n)
x =

⊕
t∈T2n (x) sr(yield(t)) holds and consider n+ 1.

The following equations make use of the definition of β(n+1), the induction hypothesis, and
the definition of evaluation:

β(n+1)
x = evalβ(n)(β(n)

x)

= evalβ(n)(
⊕

t∈T2n (x)

sr(yield(t)))

=
⊕

t∈T2n (x)

evalβ(n)(sr(yield(t))) .

The evaluation evalβ(n)(sr(yield(t))) replaces every variable y in sr(yield(t)) by β(n)
y.

By the induction hypothesis, β(n)
y =

⊕
t∈T2n (y) sr(yield(t)). This means every variable y is

replaced by the sum of the yields of all derivation trees t′ with dim(t′) ≤ 2n. By ω-continuity,
we can equivalently sum up all monomials that result from sr(yield(t)) by replacing y by
the yield of a single derivation tree t′.

To establish the inequality β(n+1)
x ≤

⊕
t∈T2n+1 (x) sr(yield(t)), note that every monomial

of evalβ(n)(sr(yield(t))) is obtained from a derivation tree t′′ which equals t but appends
the trees t′ to the leaves. Since t as well as the t′ have dimension at most 2n, the resulting
tree t′′ has dimension at most 2n + 2n = 2n+1.

For the reverse direction, we show sr(yield(t)) ≤ β(n+1)
x. Consider a derivation tree

t ∈ T(x) of dimension 2n+1. The same argumentation holds for trees of smaller dimension.
By Lemma 5, the tree can be decomposed into t′ and t1, . . . tn, all of dimension at most 2n:

t = t′[x1 7→ t1, . . . , xn 7→ tn] .

By definition of the yield, we get that yield(t) results from yield(t′) by replacing x1 to xn
with yield(t1) to yield(tn), respectively. The above discussion concludes the case. J

3.3 Results

We prove that the Munchausen sequence converges to the least fixed point. Moreover, in
the commutative case it is guaranteed to reach the least fixed point in a number of steps
that is logarithmic in the number of variables. Both results rely on a precise correspondence
between Munchausen iteration and Newton iteration.

8 Munchausen Iteration

To define the Newton iteration, we recall the concept of differentials. The differential
of a polynomial p wrt. a variable x ∈ X at point v is the polynomial defined inductively by

Dxp|v =

⊕
i∈I Dxmi|v if p =

⊕
i∈I mi ,

(Dxg|v � evalv(h))⊕ (evalv(g)�Dxh|v) if p = g � h ,
0 if p ∈ S or p ∈ X \ {x} ,
x if p = x .

The differential of p at point v is the sum Dp|v =
⊕

x∈X Dxp|v . The differential of a
vector of polynomials is defined component-wise, (Dp|v)x = Dpx|v. The function Df |v∗ is
defined by summing up all i-fold applications of the differential, i.e. Df |v∗ =

⊕
i∈NDf |vi

with Df |v0 = id and Df |vi+1 = evalDf |vi(Df |v) .
With differentials at hand, the Newton iteration is

ν(0) = eval0(p) ν(n+1) = evalν(n)(Dp|ν(n)
∗) .

Actually, this is not the most general definition of Newton iteration but coincides with it
in the idempotent case that we consider. An explanation of why the sequence mimics the
classical method from numerics is beyond the scope of this paper. It can be found in [3].

The nth-Newton approximant is known to correspond to the derivation trees of dimension
at most n. To be precise, Esparza et al. consider complete derivation trees where the yields
do not contain variables.1 Let Gf (a) be the grammar that adds to Gf the rules x→ ax for
each variable. Let Cn(x) denote the set of complete derivation trees of dimension at most n
from non-terminal x in Gf (a).

I Theorem 7 (Esparza et al. [3]). ν(n)
x =

⊕
t∈Cn(x) sr(yield(t)) .

We argue that the complete trees of dimension n of Gf (a) are precisely the (incomplete)
trees of dimension n of Gf , extended by appending the constants. Appending the constants
means to every leaf labeled by x we append a child node ax. To see the correspondence,
note that removing or adding those appendices does not change the dimension. The semiring
element corresponding to the yield of the extended tree is precisely the semiring element for
the yield of the original tree evaluated at the vector a.

I Lemma 8. evala(
⊕

t∈T2n (x) sr(yield(t))) =
⊕

t∈C2n (x) sr(yield(t)) .

We can now show that the nth element of the Munchausen sequence wrt. a equals the
2nth Newton approximant. Since the Newton sequence converges to the least fixed point µp,
so does the Munchausen sequence. Evaluating at larger vectors b requires further arguments.

I Theorem 9. Let x = p = f + a be a system of polynomial equations.

(1) β(a)(n) = ν(2n) .
(2) Let a ≤ b ≤ µp. Then supn∈N β(b)(n) = µp .

Proof. We show (1). Using Theorem 6, Lemma 8, and Theorem 7 yields

β(a)(n)
x = evala(β(n)

x) = evala
(⊕
t∈T2n (x)

sr(yield(t))
)

=
⊕

t∈C2n (x)

sr(yield(t)) = ν(2n)
x .

J

1 To handle the non-idempotent case, the trees are also decorated. We elaborate on this in Section C.

R. Meyer, and S. Muskalla 9

In the commutative case, we can apply another deep result from [3]: The number of iterations
needed to reach the least fixed is at most the number of variables in X .

I Corollary 10. If S is commutative, we have µp = β(a)(dlog |X |e) .

3.4 Related Methods
We already elaborated on the relationship with Newton iteration and with Kleene iteration.
An improvement of Newton iteration to a hierarchy (in terms of convergence speed) of
iteration schemes appeared in [2]. The idea is to repeatedly apply the Newton operator to
itself. The main result shows that one application of the n-fold Newton operator and n steps
of Newton iteration coincide.

The hierarchy of Newton iterations is substantially different from the Munchausen iter-
ation we present here. It relies on a linear derivation process that adds one dimension with
each self application. In this (outer) derivation a result of dimension n is inserted, leading
to a result of dimension n+1. Munchausen iteration inserts a derivation result of dimension
n into a derivation of dimension n, thus doubling the analysis information in every step.

4 Algorithmic Considerations

We study the operations of linear completion and evaluation as they are needed for the
initial and for the iteration step of the Munchausen scheme.

4.1 Linear Completion
As indicated by the correspondence between the 0th Munchausen approximant and the 1st
Newton approximant, the differential Df should be a possibility to represent the linear
completion of f . To be precise, we need to sum up all i-fold applications of the differential
to obtain the linear completion. The proof shows that the i-fold application corresponds to
all monomial substitutions of length i+ 1.

I Theorem 11. For every vector v ∈ SX , we have evalv(lc(f)) = evalv(Df |v∗) .

We now show how to construct a linear context-free grammar that represents the linear
completion. The benefit over Theorem 11 is that we are not bound to using differentials but
have available the spectrum of language-theoretic techniques — even for regular languages
(Section 4.3). By Lemma 3, the linear completion is (for each variable) the sum

lc(fx) =
⊕
τx

xτx where τx has the form τx = {x 7→ mix{y 7→ miy{. . .}}} .

By the definition of linear substitutions, after x 7→ mix the next substitution y 7→ miy will
be applied to a single occurrence of y in mix . The idea of the grammar construction is
to highlight in each monomial the variable that will be replaced next. To be precise, we
even fix the occurrence of the variable that will be rewritten. Given a monomial m and an
occurrence z of a variable in m, there are unique monomials mz,l and mz,r so that

m = mz,l � z �mz,r . (1)

We define the grammar to be LG(0) = ({y(1) | y ∈ X},X ∪ S,
⋃
y∈X Py ∪ P). We create a

non-terminal (with index) for each variable. The terminals are the variables and the semiring
elements. The reason LG(0) has non-terminals y(1) is that we will see an exponential growth

10 Munchausen Iteration

in the number of non-terminals during evaluation when we make the grammars explicit
(Section 4.2). Every monomial m of fy and every occurrence z of a variable in m will induce
a rule that mimics the decomposition in Equation (1). Note that all variables in mz,l and
mz,r are terminals, which reflects the fact that they will not be replaced by further linear
substitutions. Moreover, note that a variable may have several occurrences in m, in which
case we obtain several rules:

Py = {y(1) → wd(miy
z,l) · z(1) · wd(miy

z,r) | fy =
⊕
iy

miy , z an occurrence in miy} .

The productions P = {y(1) → y | y ∈ X} mimic the identity substitution. We obtain a
one-to-one correspondence between the linear substitutions applied to x and the sentential
forms derivable from x(1), denoted by L(LG(0)

x).

I Proposition 12. lc(fx) = sr(L(LG(0)
x)) .

Computing information from L(LG(0)
x) is still non-trivial since we do not have a closed

expression for the language. There are two special cases when L(LG(0)
x) is easy to evaluate.

If S is finite, also the set of functions SX → S is finite. In this setting, a Kleene iteration
applied to LG(0)

x (more precisely, a system of linear equations obtained from the grammar)
is sufficient to determine a closed-form description of the linear completion.

If S is commutative, the grammar construction can be modified to ensure left-linearity.
Indeed, Equation (1) simplifies to the following unique representation of a monomial m wrt.
a variable z (we no longer have to work with variable occurrences):

m = z �mz . (2)

This in turn simplifies the transitions to y(1) → z(1) · wd(mz
iy

) .
The left-linear grammar yields a closed representation of the linear completion as a

regular expression over X ∪S, on which further evaluation steps can be performed. Actually,
we only need the Parikh image of the language [12], which is a semilinear set and potentially
more compact.

4.2 Evaluation
To capture β(n+1), we show how to reflect evalβ(n)(β(n)) on grammar level. Assume we have
a grammar LG(n) with language β(n). Our construction will maintain the invariant that
LG(n) has non-terminals of the form y(m) with 1 ≤ m ≤ 2n. The terminals will always be
X ∪ S. The grammar for β(n+1) will behave like LG(n) but invoke itself when it reaches a
terminal y. To invoke y, we have to turn the variable into a non-terminal. We create two
copies of LG(n) and modify the indices in one of the copies. This index shift in particular
turns a former terminal y into y(2n), which is a non-terminal in the other grammar:

LG(n+1) = LG(n) ∪ (LG(n) + 2n) .

Formally, the index shift by k ∈ N turns LG(n) into the grammar LG(n) + k, where
consistently all non-terminal indices are increased by k and all terminals y are turned into
non-terminals y(k). To give an example, the production y(i) → a · x · z(i) from LG(n) will
be turned into y(i+k) → a · x(k) · z(i+k) in LG(n) + k. The union of the grammars is taken
componentwise. Let the sentential forms derivable from x(2n) be denoted by L(LG(n)

x).

I Proposition 13. For each n ∈ N, we have β(n)
x = sr(L(LG(n)

x)) .

R. Meyer, and S. Muskalla 11

To get from the Munchausen iteration to the Munchausen sequence, we need to evaluate
the function β(n) at a vector of constants b. This operation can also be performed on the
grammar. We treat the occurrences of y as non-terminals instead of terminals and add the
rules y → by for every variable y ∈ X . Let the resulting grammar be LG(b)(n).

I Proposition 14. For each n ∈ N, we have β(b)(n)
x = sr(L(LG(b)(n)

x)) .

The grammars LG(n) have productions of the same shape that only differ in the index n.
We exploit this to give a more compact representation of the language by an indexed
grammar. Indexed grammars annotate the non-terminals in the productions with a stack.

The indexed grammars IG we define uses the same non-terminals and terminals as LG(0).
The stack s ∈ 1∗0 encodes the index in unary. The set of production rules is

⋃
y∈X Ry ∪R.

As in Py, the productions in Ry start in y(1) and single out one occurrence z(1) of a variable
in a monomial of fy. When using the rule, the stack [1.s] of y(1) is passed to z(1). Also the
other variables are treated as non-terminals. For them, the stack height is decreased by one.
Formally, for each occurrence z of a variable in a monomial miy of fy, the set Ry has a rule

y(1)[1.s]→ wd(miy
z,l)[s] · z(1)[1.s] · wd(miy

z,r)[s] .

The set R contains a rule for each variable that replaces the non-terminal version by the
terminal version if the stack is empty, R = {y(1)[0]→ y | y ∈ X} .

We define L(IG(n)
x) to be the set of sentential forms derivable in IG from x(1)[2n], i.e.

with the unary encoding of 2n as initial stack content. Obviously, L(IG(n)
x) = L(LG(n)

x), and
we can also perform the evaluation by adding rules as for LG(n). This allows us to phrase
the Propositions 13 and 14 in terms of the indexed grammar IG.

4.3 Tensor Semirings
Left-linear grammars are preferrable over linear context-free ones for the better algorithmics
they support (see below). We show that we can work with left-linear grammars also in
the case of non-commutative io-semirings. To this end, we adapt the recent work [15].
Reps et al. have shown that — provided the semiring of interest has an associated tensor-
product semiring — every system of linear equations over the semiring can be transformed
to a left-linear system over the tensor-product semiring. One important example where a
tensor-product semiring exists is predicate abstraction [15].

I Definition 15. We call an io-semiring S admissible, if there is a transpose operation, an
associated tensor-product semiring, and a readout operation.

The transpose ·t : S → S should satisfy

(a⊕ b)t = at ⊕ bt (a� b)t = bt � at (at)t = a .

A tensor-product semiring ST is an io-semiring (ST ,⊕T ,�T , 0T , 1T) together with a
map � : S × S → ST such that

0 � a = a� 0 = 0T (a� b)�T (c� d) = (a� c) � (b� d)
a� (b⊕ c) = (a� b)⊕T (a� c) (b⊕ c) � a = (b� a)⊕T (c� a) .

The readout operation R : ST → S should satisfy (with I finite or countable)

R(a� b) = at � b R(
⊕
i∈I

pi) =
⊕
i∈I
R(pi) .

12 Munchausen Iteration

The crucial requirement is the existence of a readout operation that distributes over sums
without producing cross terms. It is, for example, not met by the language semiring.

Consider a system of linear equations over an admissible semiring S of the form

xi = ci ⊕
⊕

j=1,...,k
ai,j � xj � bi,j for i = 1, . . . , k . (3)

Reps et al. define its regularization to be the left-linear system over the associated tensor-
product semiring ST :

yi = (1t � ci)⊕T
⊕
T

j=1,...,k

yj �T (ati,j � bi,j) for i = 1, . . . , k . (4)

Their main result shows that the least solution to (3) can be obtained from the least solution
to (4) by applying the readout operation.

I Theorem 16 (Reps et al. [15]). Let v be the least solution to (4). Then R(v) is the least
solution to (3).

The importance of the result stems from the fact that systems of left-linear equations (4)
enjoy efficient algorithmics. For example, Tarjan’s path-expression algorithm [18] can be
applied to (4) to obtain for every yi a regular expression (over the tensor-product semiring)
capturing the least solution. We discuss how to use this in our setting.

Consider the system of linear equations for the linear completion that is obtained from
LG(0). Let θ(0) denote its regularization. With Tarjan’s algorithm, we obtain for θ(0) a
regular expressions over the tensor semiring and X . As a consequence of Theorem 16 and
Proposition 12, we have lc(f) = R(θ(0)).

One would also like to carry out the evaluation process over the tensor-product semiring.
Unfortunately, θ(0) is a regular expression with variables denoting elements from S, namely
those occurrences that were treated as terminals by the grammar. Therefore, we cannot
evaluate θ(0) at θ(0), but only at R(θ(0)). We define θ(n+1) = evalR(θ(n))(θ(n)). Using
Theorem 16 and induction, we get β(n) = R(θ(n)) for all n ∈ N. For an implementation, the
idea would be to nevertheless insert the tensor element θ(0) and define a recursive readout.

5 Discussion

We gave a new iteration scheme for solving polynomial equations over ω-continuous and
idempotent semirings. The key idea is to solve the equations over the semiring of functions
rather than the semiring of interest and only evaluate the resulting function when needed.
We showed that the method is exponentially faster than the well-known Newton sequence [3],
and that we can obtain symbolic descriptions for the solutions. The descriptions can be
understood as identifying maximal sharing in the derivation trees of context-free grammars.

Unfortunately, we do not yet know how to handle these descriptions. If we give them
explicitly as linear context-free grammars, semilinear sets, or regular expressions over the
tensor semiring, the size of the description doubles in every step. Hence, we buy an expo-
nential improvement in time at the cost of an exponential blow up in space. This still means
we compute a description of size n in log n steps. Experiments will have to tell how this
compares to Newton iteration that, for the same result, needs n steps but where the objects
are semiring values rather than grammars.

The descriptions we obtain are structured to an extent that allows us to represent them
symbolically, by a restricted class of indexed grammars (over linear context-free grammars,

R. Meyer, and S. Muskalla 13

semilinear sets, or regular expressions). With restricted indexed grammars, the iteration
steps of Munchausen are easy to compute. The drawback is that, so far, we do not know
how to extract information from the restricted indexed grammars. As future work, we plan
to understand how to compute in such highly symbolic structures.

Acknowledgments

We thank Stefan Kiefer for helpful discussions.

References
1 P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions: Mathemat-

ical foundations. In Artificial Intelligence and Programming Languages, pages 1–12. ACM,
1977.

2 J. Esparza, S. Kiefer, and M. Luttenberger. On fixed point equations over commutative
semirings. In STACS, volume 4393 of LNCS, pages 296–307. Springer, 2007.

3 J. Esparza, S. Kiefer, and M. Luttenberger. Newtonian program analysis. JACM, 57(6),
2010.

4 J. Esparza, M. Luttenberger, and M. Schlund. A brief history of Strahler numbers. In
LATA, volume 8370 of LNCS, pages 1–13. Springer, 2014.

5 J. Esparza, M. Luttenberger, and M. Schlund. FPSOLVE: A generic solver for fixpoint
equations over semirings. In CIAA, volume 8587 of LNCS, pages 1–15. Springer, 2014.

6 K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and
monotone systems of nonlinear equations. JACM, 56(1), 2009.

7 M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In POPL, pages 471–482.
ACM, 2010.

8 L. Holik and R. Meyer. Antichains for the verification of recursive programs. In NETYS,
volume 9466 of LNCS, pages 322–336. Springer, 2015.

9 M. W. Hopkins and D. Kozen. Parikh’s theorem in commutative Kleene algebra. In LICS,
pages 394–401. IEEE, 1999.

10 U. Khedker, A. Sanyal, and B. Sathe. Data Flow Analysis: Theory and Practice. CRC
Press, 2009.

11 F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer, 1999.
12 R. Parikh. On context-free languages. JACM, 13(4), 1966.
13 S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In

TACAS, volume 3440 of LNCS, pages 93–107. Springer, 2005.
14 T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph

reachability. In POPL, pages 49–61. ACM, 1995.
15 T. Reps, E. Turetsky, and P. Prabhu. Newtonian program analysis via tensor product. In

POPL, pages 663–677. ACM, 2016.
16 H. Seidl, R. Wilhelm, and S. Hack. Compiler Design: Analysis and Transformation.

Springer, 2012.
17 M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. Technical

Report 2, New York University, 1978.
18 R. E. Tarjan. Fast algorithms for solving path problems. JACM, 28(3), 1981.

14 Munchausen Iteration

A Proofs of Section 3

Proof of Lemma 3. Inequality ≥ is immediate by the fact that for every linear monomial
substitution, there is a linear polynomial substitution that always inserts the full polynomial
rather than one of its monomials. To show ≤, assume that every substitution in σx applies
to precisely one position so that fσx is a single function and not a set. The general case
follows since we do not make an assumption of where the application occurs. Substitution
σx has the shape

{x 7→ fx{y 7→ fy{. . . {z 7→ fz} . . .}}} .

If we assume fx =
⊕

ix
mix and similarly for fy and fz, then xσx is of the form⊕

ix 6=i
mix ⊕

(
mi,1 �

(⊕
iy 6=j

miy ⊕
(
mj,1 � (. . .� (

⊕
iz

miz)� . . .)�mj,2
))
�mi,2

)
.

Distributivity yields⊕
ix 6=i

mix ⊕
⊕
iy 6=j

(mi,1 �miy �mi,2)⊕ . . .⊕
⊕
iz

(mi,1 �mj,1 � . . .�miz � . . .�mj,2 �mi,2) .

Each of these monomials is obtained by applying a linear monomial substitution to x, ranging
from the identity substitution {x 7→ x} (not shown) over inserting some mix from fx to a
long substitution that ends with a monomial miz . Since all these substitutions are covered
by the sum over τx, we obtain the desired inequality. J

Proof of Theorem 9(2). By monotonicity of eval in the evaluation point, we obtain the
inequality evalb(β(n)) ≥ evala(β(n)) for all n ∈ N. Together with Theorem 9(1), this yields

sup
n∈N

evalb(β(n)) ≥ sup
n∈N

evala(β(n)) = µp .

It remains to establish supn∈N evalb(β(n)) ≤ µp. We show that this inequality holds for
b = µp. The desired statement then follows by monotonicity. In fact, it is enough to show
that evalµp(β(n)) ≤ µp for all n ∈ N. We proceed by induction on n.

In the base case, we establish evalµp(lc(fx)) ≤ (µp)x simultaneously for all variables.
Using Lemma 3, it sufficient to prove evalµp(

⊕
τx
xτx) ≤ (µp)x, where τx ranges over all

linear monomial substitutions for x.
We first show that for all x, for all monomials mi of fx =

⊕
ix
mix , and for all τy where

y occurs in mi, we have that evalµp(g) ≤ (µp)x for every g ∈ miτy. We proceed by an
induction on the structure of τy. In the base case, τy = {y 7→ y}, g = mi, and thus

evalµp(g) = evalµp(mi)

≤ evalµp(mi)⊕ evalµp(
⊕
ix 6=i

mix)⊕ ax = evalµp(px) = (µp)x .

The last equality holds as µp is a fixed point of p. Assume τy = {y 7→ h} with h ∈ miyτz.
Let furthermore mi = m1 � y �m2 so that y is replaced to obtain g. We have

evalµp(g) = evalµp(m1 � h�m2)
= evalµp(m1)� evalµp(h)� evalµp(m2)
≤ evalµp(m1)� (µp)y � evalµp(m2)
= evalµp(m1)� evalµp(y)� evalµp(m2)
= evalµp(m1 � y �m2)
= evalµp(mi) ≤ (µp)x .

R. Meyer, and S. Muskalla 15

The first inequality is by the induction hypothesis combined with monotonicity, the second
inequality is proven in the base case.

We can now derive evalµp(
⊕

τx
xτx) ≤ (µp)x by showing evalµp(xτx) ≤ (µp)x for all τx

and by using idempotence. If τx = {x 7→ x}, we have evalµp(xτx) = evalµp(x) = (µp)x. If
the substitution is τx = {x 7→ g} with g ∈ mixτy, we use the statement proven above to
conclude evalµp(xτx) = evalµp(g) ≤ (µp)x.

Let us now assume that the statement holds for n. By definition and associativity, we
get evalµp(β(n+1)) = evalµp(evalβ(n)(β(n))) = evalevalµp(β(n))(β(n)). Using the induction
hypothesis together with monotonicity, this is at most evalµp(β(n)). Applying the induction
hypothesis again yields the desired inequality. J

B Proofs of Section 4

Proof of Theorem 11. We establish evalv(lc(fx)) = evalv((Df |v∗)x) simultaneously for all
components. Using Lemma 3, we have lc(fx) =

⊕
τx
xτx, where τx ranges over all linear

monomial substitutions for x. Recall the definitions

Dxp|v =

⊕
i∈I

Dxmi|v if p =
⊕

i∈I mi , (5)

(Dxg|v � evalv(h))⊕ (evalv(g)�Dxh|v) if p = g � h , (6)
0 if p ∈ S or p ∈ X \ {x} , (7)
x if p = x . (8)

and

Df |v∗ =
⊕
i∈N

Df |vi, where Df |v0 = id, Df |vi+1 = evalDf |vi(Df |v) .

We start by proving ≤. First note that for τx = {x 7→ x} with xτx = x we also have the
summand (Df |v0)x = idx = x in Df |v∗. In general, by summand we mean a part of the
sum that forms the differential. To complete this part of the proof, we show by induction
that for every mxτy, there is an i and a summand s of Dfx|vi such that they evaluate to
the same result under v. Let us write mx = m1 � y �m2, where y is the occurrence that
will be replaced by τy.

In the base case, let τy = {y 7→ y} and thus mxτy = mx. Recall that (Df |v1)x = Dfx|v
is defined by summing up the differentials with respect to the single variables. We con-
sider the differential with respect to variable y and the summand that we get by se-
lecting monomial mx (Part (5) of the Definition). This summand itself is a sum ob-
tained by the application of the product rule (Part (6)) to mx. Note that fully unfold-
ing the product rule means that the base case (Parts (7) and 8)) is applied to one sin-
gle symbol in mx, and all other symbols are evaluated at v. We consider the summand
s = evalv(m1)�Dyy|v � evalv(m2) that is obtained by evaluating all symbols but y. The
differential of y with respect to y is again y, so we get s = evalv(m1)� y � evalv(m2). This
shows that the summand is evaluated to

evalv(evalv(m1)� y � evalv(m2)) = evalv(m1)� evalv(y)� evalv(m2)
= evalv(m1 � y �m2)
= evalv(mx) .

Let us now consider τy = {y 7→ g}, with g ∈ myτz (where my is a monomial of fy). By
induction, there is an i and a summand s′ of (Df |vi)y such that evaluating s′ and g leads

16 Munchausen Iteration

to the same result. We look at (Df |vi+1)x = evalDf |vi(Dfx|v). We consider each summand
s = evalv(m1)� y � evalv(m2) of Dfx|v as in the base case. Evaluating this summand at
Df |vi will evaluate y to the sum (Df |vi)y containing s′. Using distributivity yields a new
sum containing the summand given by evaluating s at the summand s′ of Dfx|vi. Using the
assumption that s evaluates to g, this evaluates to

evalv(evalv(m1)� s′ � evalv(m2)) = evalv(m1)� evalv(s′)� evalv(m2)
= evalv(m1)� evalv(g)� evalv(m2)
= evalv(m1 � g �m2)
= evalv(mτy) .

To show ≥, we argue that summands of the polynomial defining (Df |vi)x correspond to
substitutions applied to x. For (Df |v0)x = idx, we can select the substitution {x→ x}.

We will show that for any i > 0 and any summand s of (Dfx|vi)x, there is a monomial
mx of fx, a substitution τy and g ∈ mxτx such that s and g evaluate to the same result.

In the base case, note that (Dfx|v1)x = Dfx|v is a sum of the Dyfx|v for all y ∈ X . Let
us fix some y, then Dyfx|v is a sum with the summands corresponding to the monomials of
fx (Part (5)). If some monomial mx does not contain y, all unfoldings of the product rule
will have 0 as a factor. Analogously, unfolding the product rule such that the differential
is applied to a symbol other than y will result in 0. Let us fix an unfolding of the product
rule not resulting in 0, and let mx = m1 � y � m2 be the corresponding decomposition
of mx. The corresponding summand of Dyfx|v is evalv(m1) � y � evalv(m2). With an
argumentation analogous to the one used in the first part of the proof, this evaluates just
as the element of mx{y → y} does, where the substitution is applied to the occurrence of y
as in the decomposition.

Now let us consider (Df |vi+1)x = evalDf |vi(Dfx|v). Every summand of (Df |vi+1)x
corresponds to evaluating a summand s of Dfx|v at Df |vi. As in the base case, we
can assume that s has shape evalv(m1) � y � evalv(m2). Evaluating s will result in
evalv(m1)� (Df |vi)y � evalv(m2). Using distributivity, we get a large sum in which one
single summand corresponds to evaluating s at a summand s′ of (Df |vi)y. By induction,
there is a monomial my of fy, a substitution τz and h ∈ myτz such that s′ and h evaluate
to the same result. We consider the substitution τy = {y 7→ h}, and g ∈ mxτy, where the
substitution applies to the same occurrence of y as in s. Using that s′ and h evaluate to the
same result, we get

evalv(evalv(m1)� s′ � evalv(m2)) = evalv(m1)� evalv(s′)� evalv(m2)
= evalv(m1)� evalv(h)� evalv(m2)
= evalv(m1 � h�m2)
= evalv(g) .

J

C Decorated Derivation Trees

The nodes in the derivation trees from [3] are decorated: They are not only labeled by a
symbol, but also by the rule that was used to derive the symbol. Let Dn(x) denote the set
of all decorated complete derivation trees of dimension at most n. One derivation tree as
defined in our setting might correspond to several derivation trees with different additional

R. Meyer, and S. Muskalla 17

labels. We obtain each tree in Cn(x) by projecting all labels of a tree in Dn(x) to the first
component, and every tree in Dn(x) can be projected to a tree in Cn(x). Since the yield
function ignores the additional labels and since we assume idempotence, we end up with the
same result if we sum up the yields of all undecorated trees:⊕

t∈Dn(x)

yield(t) =
⊕

t∈Cn(x)

⊕
t′∈Dn(x),

project(t′)=t

yield(t′)

=
⊕

t∈Cn(x)

⊕
t′∈Dn(x),

project(t′)=t

yield(t)

=
⊕

t∈Cn(x)

yield(t) .

D The Non-Idempotent Case

One may ask whether the Munchausen sequence also converges to the least fixed point in
the case when the underlying semiring is not idempotent. The proof of Theorem 6 does not
hold in the non-idempotent case: The trees of dimension lower than 2n+1 are summed up
several times. (For example, a tree of dimension 2n + 1 may occur in the sum as a list of
trees of dimension 1 plugged into a tree of dimension 2n and as a list of trees of dimension 2n
plugged into a tree of dimension 1). This problem cannot be solved by considering decorated
derivation trees as in [3]. Even if we distinguish derivation trees that have the same shape
but were created using different rules, the sum might contain multiple occurrences of one
decorated derivation tree. Therefore, in the non-idempotent case, the convergence results
for Newton iteration do not carry over to Munchausen iteration.

We demonstrate that indeed Munchausen iteration may compute values strictly larger
than the least fixed point in the following example.

I Example 17. Consider the following system of equations over the commutative but not
idempotent ω-continuous semiring of natural numbers with infinity (N ∪ {∞},+, ·, 0, 1):

x = y · y y = z z = 2 .

Applying the decomposition into the non-constant and the constant part, we may write it
as x = f + a = (y · y, z, 0) + (0, 0, 2). Its linear completion is

lc(fx) = x+ y · y + z · y + y · z lc(fy) = y + z lc(fz) = z .

Evaluating it at the vector of constants (0, 0, 2) yields evala(lc(f)) = (0, 2, 2). Plugging in
the linear completion into itself to obtain the 1st Munchausen approximant yields

β(1)
x = (x+ y · y + z · y + y · z) + (y + z) · (y + z) + z · (y + z) + (y + z) · z

β(1)
y = (y + z) + z

β(1)
z = z .

We get β(a)(1) = (12, 4, 2), which is already strictly larger than the least fixed point (4, 2, 2).

	1 Introduction
	2 Systems of Polynomial Equations over -Continuous Semirings
	3 Munchausen Iteration
	3.1 Definition
	3.2 Derivation Tree Analysis
	3.3 Results
	3.4 Related Methods

	4 Algorithmic Considerations
	4.1 Linear Completion
	4.2 Evaluation
	4.3 Tensor Semirings

	5 Discussion
	A Proofs of Section 3
	B Proofs of Section 4
	C Decorated Derivation Trees
	D The Non-Idempotent Case

