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Abstract
We consider the problems of liveness verification and liveness synthesis for recursive programs.
The liveness verification problem (LVP) is to decide whether a given ω-context-free language is
contained in a given ω-regular language. The liveness synthesis problem (LSP) is to compute a
strategy so that a given ω-context-free game, when played along the strategy, is guaranteed to
derive a word in a given ω-regular language. The problems are known to be EXPTIME-complete
and 2EXPTIME-complete, respectively. Our contributions are new algorithms with optimal time
complexity. For LVP, we generalize recent lasso-finding algorithms (also known as Ramsey-based
algorithms) from finite to recursive programs. For LSP, we generalize a recent summary-based
algorithm from finite to infinite words. Lasso finding and summaries have proven to be efficient
in a number of implementations for the finite state and finite word setting.

1 Introduction

A major difficulty in program analysis is the combination of control and data aspects that
naturally arises in programs but is not matched in the analysis: Control aspects are typically
checked using techniques from automata theory whereas the data handling is proven correct
using logical reasoning. A promising approach to overcome this separation of techniques
is a CEGAR loop recently proposed by Podelski et al. [15]. The loop iteratively checks
inclusions of the form L(G) ⊆ L(B). Here, G is a model of the program, in the recursive
setting a context-free grammar. The automaton B is a union consisting of (1) the property
of interest and (2) languages of computations that were found infeasible during the iteration
by logical reasoning. The approach has been generalized from recursive to parallel [12, 19]
and to parameterized programs [10], from safety to liveness [11], and from verification to
synthesis [16].

We focus on the algorithmic problem behind Podelski’s CEGAR loop: Inclusion checking.
To be precise, we consider the case of recursive programs and study the problems of liveness
verification and synthesis defined as follows. The liveness verification problem (LVP) takes
as input a context-free grammar G abstracting the recursive program of interest and a Büchi
automaton B specifying the liveness property. The task is to check whether the ω-context-free
language generated by the grammar is included in the ω-regular language of the automaton,
Lω(G) ⊆ Lω(B). The liveness synthesis problem (LSP) replaces the context-free grammar by
a context-free game between two players: Player prover tries to establish the inclusion in an
ω-regular language and player refuter tries to disprove it. The task is to synthesize a strategy
s such that prover is guaranteed to win all plays by following the strategy, Lω(G@s) ⊆ Lω(B).
The precise complexity of both problems is known (see below).

Our contribution is a generalization of two recent algorithms that have proven efficient in
the context of finite-state systems (for verification) and finite word languages (for synthesis)
to the setting of ω-languages of recursive programs. The study of new algorithms is motivated
by the characteristics of the inclusion checks invoked in Podelski’s approach: (1) The left-
hand side modeling the program is substantially large. (2) The right-hand side for the
specification is typically small but grows with the addition of counterexample languages. (3)
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These inclusion checks are invoked in an iterative fashion. Our algorithms take into account
these characteristics as follows. First, they avoid any computation on the grammar (like
intersections that would be executed in an iterative fashion). Second, they may terminate
early if the automaton bears redundancies that may occur when languages are added. This
early termination makes them particularly suitable for use in a refinement loop.

For the liveness verification problem LVP, we develop a lasso-finding algorithm. Lasso
algorithms have been proposed in [14] and further refined in [1, 2]. They rely on the fact that
ω-regular languages can be stratified into finite unions of languages L(τ)L(ρ)ω [6]. Here, τ
and ρ are relations over the states of the Büchi automaton. They denote the regular languages
of all words that yield the prescribed state changes. With this stratification, disproving
the inclusion amounts to finding a word derivable in the ω-context-free language whose
representation L(τ ′)L(ρ′)ω belongs to the complement of Lω(B). Checking membership in
the complement amounts to proving the absence of an accepting cycle, a lasso, in the relation
ρ′ (when seen as a graph).

Algorithmically, the challenge is to compute the languages L(τ ′)L(ρ′)ω induced by the
words derivable in the ω-context-free grammar. We view the grammar as a system of
inequalities and compute the least solution over (sets of) such relations. The problem is to
make sure that the words represented by L(ρ′) can be ω-iterated. The solution is to find
a lasso also in the ω-context-free grammar. To this end, we let the system of equations
not only represent the non-terminal from which a terminal word is generated, but also the
non-terminal from which the infinite computation will continue. With this idea, the system
is quadratic in the size of the grammar. The height of the lattice is exponential in the
number of states of the automaton. Indeed, LVP is known to be EXPTIME-complete [4].
The algorithm may terminate early if a language is found that disproves the inclusion.

For the liveness synthesis problem LSP, we develop a summary-based approach. Sum-
maries [27, 22] represent procedures in terms of their input-output relationship on the shared
memory.1. Recently, summary-based analyses have been generalized to safety games by
replacing relations by positive Boolean formulas of relations [16]. We build upon this general-
ization and tackle the case of infinite words as follows. In a first step, we determinize the given
Büchi automaton into a parity automaton. The second step computes formula summaries
for safety games that have the parity automaton as the right-hand side. Interestingly, it is
sufficient to only maintain the output effect of a procedure. In a third step, we connect the
formula summaries to a parity game. Overall, the algorithm runs in 2EXPTIME and indeed
the problem is 2EXPTIME-complete. The hardness is because finite games as considered
in [20, 16] can be seen as a special case of LSP. Membership in 2EXPTIME can be shown
using the techniques from [29].

It is well known that pushdown parity games can be reduced to finite state parity games,
even with a summary-like approach [29]. Our algorithm can therefore bee seen as a symbolic
implementation of Walukiewicz’s technique where formulas represent attractor information.
Besides the compact representation, it has the advantage of being able to make use of all
techniques and tools that are developed for solving fixed point equations.

Related Work. We already mentioned the related work on the LVP and lasso finding. Parity
games on the computation graphs of pushdown systems have been studied by Walukiewicz
in [29]. He reduces them to parity games on finite graphs; a technique that could also be
employed to solve the LSP in 2EXPTIME. Our algorithm which is based on solving a system

1 Summaries resemble the aforementioned relations τ and ρ, see Section 3.
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of equations has the same worst-case complexity but is amenable to recent algorithmic
improvements, as has been shown in [16].

Cachat [7] considers games defined by pushdown systems in which the winning condition
is reaching a configuration accepted by an alternating finite automaton once resp. infinitely
often. He solves them by saturating the finite automaton, in contrast to our method which
uses summarization. Although the LSP could be reduced to this type of game, the reduction
has been shown to be inefficient for the case of finite games in [16]. Extensions towards
higher-order systems exist [5].

The decidability and complexity of games defined by context-free grammars has been
studied by Muscholl et. al. in [20] and extended in [3, 25]. Their study considers finite games
and has an emphasis on lower bounds. We rely on their result for the 2EXPTIME-hardness
and focus on the algorithmic side.

Acknowledgements. We thank Prakash Saivasan and Igor Walukiewicz for discussions.

2 ω-Context-Free Languages

To formulate the problem of liveness verification for recursive programs, we recall the notion
of ω-context-free languages [18, 8, 13]. A language L ⊆ Tω of infinite words is ω-context-free
if it can be written as a finite union of the form

L =
⋃

i=1...n
ViU

ω
i with Vi, Ui ⊆ T ∗ context-free languages of finite words.

To accept or generate ω-context-free lanugages, Linna [18] as well as Cohen and Gold [8] define
ω-languages of pushdown automata and context-free grammars, respectively. We choose the
grammar-based formulation as it fits better the algebraic nature of our development. Actually,
we slightly modify the definition in [8] to get rid of the operational notion of repetition sets.
The correspondence will be re-established in a moment.

A context-free grammar (CFG) is a tuple G = (N,T, P, S), where N is a finite set of
non-terminals, T is a finite set of terminals with N ∩ T = ∅, P ⊆ N × ϑ is a finite set of
production rules and S ∈ N is an initial symbol. Here, ϑ = (N ∪ T )∗ denotes the set of
sentential forms. We write X → η if (X, η) ∈ P . We assume that every non-terminal is
the left-hand side of some rule. The derivation relation ⇒ replaces a non-terminal X in α
by the right-hand side of a corresponding rule. Formally, α ⇒ β if α = γXγ′, β = γηγ′,
and there is a rule X → η ∈ P . For a non-terminal X ∈ N , we define the language
L(X) = {w ∈ T ∗ | X ⇒ w} to be the set of terminal words derivable from X. The language
of the grammar L(G) = L(S) is the language of its initial symbol. For sentential forms, we
define L(αβ) = L(α)L(β), where L(a) = {a} for a ∈ T ∪ {ε}.

Given a CFG G, we define its ω-language Lω(G) to contain all infinite words obtainable
by right-infinite derivations. A right-infinite derivation process π of G is an infinite sequence
of rules π = X0 → α0X1, X1 → α1X2, . . . where the rightmost symbol of the right-hand
side of each rule is the symbol on the left-hand side of the next rule, and X0 = S is the
initial symbol of the grammar. The language of such a right-infinite derivation process is the
language of infinite words

Lω(π) = L(α0)L(α1) . . .

Note that Lω(π) is restricted to proper infinite words and thus does not contain w0 . . . wkε
ω.

The ω-language of G, denoted by Lω(G), is the union over the languages Lω(π) for all
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right-infinite derivation processes π of G. The ω-languages obtained in this way are precisely
the ω-context-free languages.

I Example 1. Consider the CFG Gex with the rules X → req Y ack | XX and Y → s Y t | ε
and the initial symbol X. One can show that the grammar generates the ω-language
Lω(Gex) =

{(
req(snitni)ack

)ω ∣∣ ni ≥ 0 ∀iN
}

I Proposition 2. L ⊆ Tω is ω-context-free if and only if L = Lω(G) for some CFG G.

The same correspondence with the ω-context-free languages has also been shown for the
models in [18, 8]. Hence, the three definitions capture the same class of languages. This not
only justifies our modification of [8], it also allows us to convert a grammar into a pushdown
system and vice versa in a way that is faithful wrt. ω-languages.

One might ask why we do not allow intermediary infiniteness. This would in fact decrease
the expressiveness of our model. We elaborate on this in section A.

The remainder of this section is dedicated to proving the proposition. The implica-
tion from left to right is immediate. For the reverse implication, we observe that the
right-infinite derivation processes of a CFG can be understood as infinite paths in the
ω-graph, a finite graph associated with the CFG. From this finiteness, we can derive the
structure required for an ω-context-free language. Technically, the ω-graph of G is a directed
graph with edges labeled by sentential forms. There is one vertex for each non-terminal.
Moreover, for each production rule X → αY there is an edge from X to Y labeled by α.
For the grammar Gex in our running example, the ω-graph is de-
picted to the right. The correspondence of the derivation processes
and the paths is immediate.

X YX

Since the ω-graph is finite, every infinite path from S visits some vertex X infinitely
often. We use this observation to decompose the infinite path into a finite path from S to
X and an infinite sequence of cycles in X. This proves the next lemma. In the statement,
P(Y, Z) is the set of words obtained as labels of paths from Y to Z in the ω-graph of G.

I Lemma 3. Let G be a CFG, then

Lω(G) =
⋃
X∈N

(⋃
p∈P(S,X) L(p)

)(⋃
c∈P(X,X) L(c) \ {ε}

)ω
.

The lemma does not yet give us the desired representation for Lω(G): The inner unions are
not finite in general, and therefore it is not clear that they define context-free languages.
The following lemma states that this is the case. It concludes the proof of Proposition 2.

I Lemma 4.
⋃
p∈P(X,Y ) L(p) is context free for all non-terminals X,Y .

3 Liveness Verification

The liveness verification problem takes as input a context-free grammar G and a Büchi
automaton A and checks whether Lω(G) ⊆ Lω(A) holds. In the setting where G is a Büchi
automaton, recent works [14, 1, 2] have proposed so-called lasso-finding algorithms as efficient
means for checking the inclusion. Our contribution is a generalization of lasso finding to the
ω-context-free case (modeling recursive rather than finite state programs).

A non-deterministic Büchi automaton (NBA) is a tuple A = (T,Q, qinit , QF ,→), where
T is a finite alphabet, Q is a finite set of states, qinit ∈ Q is the initial state, QF ⊆ Q is
the set of final states, and → ⊆ Q× T ×Q is the transition relation. We write q a→ q′ for
(q, a, q′) ∈ → and extend the relation to words: q w→ q′ means there is a sequence of states
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starting in q and ending in q′ labeled by w. Furthermore, we write q w→f q
′ if q w→ q′ and at

least one of the states in the sequence is final. The language of infinite words Lω(A) consists
of all words w ∈ Tω such that there is an infinite sequence of states labeled by w in which
infinitely many final states occur. From now on, we use A = (T,Q, qinit, QF ,→) for Büchi
automata and G = (N,T, P, S) for grammars. Note that both use the terminal symbols T .

Key to our generalization are procedure summaries. A procedure summary captures the
changes that a procedure call may induce on the global state. In our setting, procedures
correspond to non-terminals X, evaluated procedure calls to terminal words derivable from
X, and the global state is reflected by the states of A. Hence, for every terminal word w
derivable from X we should summarize the effect of w on A. This effect are the state changes
that the word may induce on the automaton. For the set of all terminal words derivable
from X, we thus compute the corresponding set of state changes.

We formalize procedure summaries as elements of the transition monoid [24]. The
transition monoid of A is the monoid M(A) := (B(A) ·∪{id}, ; , id). The state changes on A
are captured by so-called boxes, labeled relations over the states. The label is a flag that will
be used to indicate whether the words giving rise to the relation may pass through a final
state when being processed:

B(A) := {ρ ∈ P(Q×Q× B) | ∀q, q′ ∈ Q : (q, q′, 1), (q, q′, 0) not both in ρ} .

The additional element id is the neutral element of the monoid and will play a particular role
when assigning languages to boxes. The composition of boxes ; is a relational composition
that remembers visits to final states. Formally, given ρ, τ ∈ B(A), we define:

ρ; τ := {(q, q′, 1) | ∃q′′ : (q, q′′, x) ∈ ρ, (q′′, q′, y) ∈ τ, max(x, y) = 1}
∪ {(q, q′, 0) | ∃q′′ : (q, q′′, 0) ∈ ρ, (q′′, q′, 0) ∈ τ,

@q∗ : (q, q∗, x) ∈ ρ, (q∗, q′, y) ∈ τ, max(x, y) = 1} .

Since id is the neutral element, we have id; ρ = ρ; id = ρ for all ρ ∈ M(A).
To use boxes for checking inclusion, we have to retrieve the words represented by a box.

A box represents the set of all words that yield the prescribed effect. We assign to ρ ∈ B(A)
the language L(ρ) of all words u ∈ T+ that satisfy q u→ q′ for all (q, q′, ∗) ∈ ρ and q u→f q

′ for
all (q, q′, 1) ∈ ρ. There is a u-labeled path from q to q′ iff the box contains a corresponding
triple (where the label is not important). Moreover, one of the u-labeled paths can visit a
final state iff this is required.

L(ρ) =
{
u ∈ T+

∣∣∣ for all (q, q′, ∗) ∈ ρ : q u→ q′ and for all (q, q′, 1) ∈ ρ : q u→f q
′
}

To the element id we assign the singleton language L(id) := {ε}. The empty word cannot be
lifted to an infinite word through ω-iteration, and therefore has to be handled with care. We
use function ρ : T ∗ → M(A) to abstract a word w ∈ T ∗ to the unique box ρw representing
it in the sense that w ∈ L(ρw). Note that ρuv = ρu; ρv. This means the boxes with a
non-empty language can be computed from the boxes of the letters ρa, where ρa contains
(q, q′, i) iff there is an a-labeled edge from q to q′. We have i = 1 iff q or q′ is final. In
particular, the image ρT∗ is precisely the set of boxes ρ with L(ρ) 6= ∅. Figure 1 illustrates
the representation of words of Büchi automaton Aex by boxes.
The representation of finite words by boxes can be lifted to infinite words. We recall two
results that date back to [28]. The first result states that every infinite word is contained
in a composition L(τ).L(ρ)ω of the languages of only two boxes. The proof uses Ramsey’s
theorem in a way similar to Theorem 10, and indeed inspired our result. The second result
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q0 q1

req

ack

ack, s, t req, s, t ε
id = ρε

ρreq ρack ρack.req ρs = ρt

Figure 1 The automaton Aex and its boxes. The upper dash on each side of a box represents
state q0, the lower dash represents q1. A dot on the dash marks that a final state has been visited.

states that a language L(τ).L(ρ)ω is either contained in Lω(A) or it is disjoint from Lω(A).
It follows from the definition of box languages. Together, one can understand the set of
languages L(τ).L(ρ)ω as a finite abstraction of Tω that is precise enough wrt. inclusion in
L(A). We refer to the languages L(τ).L(ρ)ω included in L(A) as the cover of L(A).

I Lemma 5. (1) For every w ∈ Tω there are τ, ρ ∈ B(A) with w ∈ L(τ).L(ρ)ω.
(2) Let ρ, τ ∈ B(A). We have L(τ).L(ρ)ω ⊆ Lω(A) or L(τ).L(ρ)ω ⊆ Lω(A) .

We compute the set of boxes summarizing the effect of the words derivable from a non-
terminal as the least solution to a system of inequalities. The system is interpreted over
the complete lattice (P(M(A)),⊆). For two sets of boxes S,R ⊆ M(A), we define their
composition S;R = {τ ; ρ | τ ∈ S, ρ ∈ R} to be the set of all pairwise compositions.

There are two types of variables, ΛX and ∆X,Y for all non-terminals X and Y . The
solution to a variable ΛX will contain the boxes for the words derivable from X. The task of
∆X,Y is to additionally remember the rightmost non-terminal. This means we compute the
boxes of all words w with X ⇒∗ wY . The point is that the lasso-finding test has to match
successive non-terminals Y in the right-infinite derivation.

The inequalities for the variables ΛX are as follows. For every rule X → α, we require
ΛX ≥ Λα. Here, we generalize the notation Λ from non-terminals to sentential forms by
setting Λε := {id}, Λa := {ρa}, and Λαβ := Λα; Λβ . For the second set of variables, there
is a base case. For every non-terminal Y , we require ∆Y,Y ≥ {id}. The empty word takes
Y to Y and is represented by id. For every pair of non-terminals X,Y and for every edge
(X,α,Z) in the ω-graph, we have the inequality

∆X,Y ≥ Λα; ∆Z,Y .

To understand the requirement, assume Z = Y and thus ∆Y,Y ≥ {id}. Then the solution
to ∆X,Y indeed contains the boxes of the words w with X ⇒ αY ⇒∗ wY . If Z 6= Y , we
compose the solution to Λα with further boxes found on the way from Z to Y .

The least solution to the above system of inequalities is computed as the least fixed point
of the function on the product domain induced by the right-hand sides. A standard Kleene
iteration [9] and more efficient methods like chaotic iteration [26] apply. We use σX and
σX,Y to denote the least solution to ΛX and ∆X,Y , respectively. Again, we generalize the
notation to sentential forms, σα.

I Example 6. In our running example, the system of inequalities (for Gex and Aex) is

ΛX ≥ {ρreq}; ΛY ; {ρack} ΛY ≥ {ρs}; ΛY ; {ρt} ∆X,X ≥ ΛX ; ∆X,X ∆X,X ≥ {id}
ΛX ≥ ΛX ; ΛX ΛY ≥ {id} ∆X,Y ≥ ΛX ; ∆X,Y ∆Y,Y ≥ {id}

The least solution is σX = {ρack}, σY = {id, ρs}, σX,X = {id, ρack}, σY,Y = {id}, σX,Y = ∅,
and σY,X = ∅.

The following lemma states the indicated correspondence between the solution and the words
in the language.
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I Lemma 7. σX = ρL(X) and σX,Y = ρL(P(X,Y )) = {ρw | w ∈ L(p), p ∈ P(X,Y )}. In
particular, all occurring boxes have a non-empty equivalence class.

With the semantical results at hand, we can develop our lasso-finding algorithm. Lassos, a
notion proposed in [14], denote elements L(τ).L(ρ)ω in the cover of L(A) (see the discussion
before Lemma 5). Intuitively, a pair of boxes (τ, ρ) forms a lasso if box ρ, when seen as a
graph with the set of states as its vertex set, contains a strongly connected component that
is accepting (contains a final state) and that is reachable from the first box.

I Definition 8. A pair (τ , ρ) ∈ M(A)×M(A) is a lasso, if either ρ = id holds or there are
states q, q′ ∈ Q, a transition (q0, q, x) ∈ τ , a path from q to q′ in ρ, and an accepting path
from q′ to q′ (a loop) in ρ.

The definition is illustrated to the right. With the aforementioned
graph-theoretic interpretation of lassos, it can be checked in linear
time whether a pair of boxes actually forms a lasso.

q0 q q′
τ ρ∗

ρ∗

Lassos characterize the cover in the following sense.

I Lemma 9. Let ρ, τ ∈ M(A) with L(τ)L(ρ)ω 6= ∅. Then L(τ)L(ρ)ω ⊆ Lω(A) holds if and
only if (τ, ρ) is a lasso.

Note that if ρ = id then L(τ)L(ρ)ω = ∅. Hence, we can assume that the first case in the
definition of lassos does not apply. It is routine to check the correspondence.

Let us consider Aex again and choose τ = ρreq = {(q0, q1, 1), (q1, q1, 0)} and ρ = ρs =
{(q0, q0, 1), (q1, q1, 0)}. The only transition in τ starting from initial state q0 is (q0, q1, 1) and
the only accepting loop in ρ is (q0, q0, 1). However, there is no path from q1 to q0 in ρ. Thus,
(τ, ρ) is not a lasso and L(τ)L(ρ)ω 6⊆ Lω(Aex).

I Theorem 10. The inclusion Lω(G) ⊆ Lω(A) holds if and only if for every non-terminal
X ∈ N , for every box τ in σS,X and for every box ρ in σX,X , the pair (τ, ρ) is a lasso.

One may check that using the grammar Gex from our running example and the automaton
Aex from Figure 1, the condition is fulfilled and inclusion holds, i.e. Lω(Gex) ⊆ Lω(Aex).

4 Liveness Synthesis

Two player games with perfect information form the theory behind synthesis problems. In
this section, we generalize a recent algorithm for solving context-free games with regular
inclusion as the winning condition [16] to ω-context-free games with ω-regular winning
conditions. An ω-context-free game is given as a context-free grammar G = (N,T, P, S)
where the non-terminals N = N� ·∪N© are partitioned into the non-terminals owned by
player prover � and the ones owned by player refuter ©. The winning condition is defined
by a Büchi automaton A. Player © will win the game if she enforces the derivation of an
infinite word not in the language of A. Player � will win the remaining plays.

Formally, the game induces a game arena, a directed graph defined as follows. (1) The set
of vertices is the set of all sentential forms ϑ = (N ·∪T )∗. (2) A vertex is owned by the player
owning the leftmost non-terminal. Terminal words are owned by refuter. (3) The edges are
defined by the left-derivation relation: If α = wXβ with β 6= ε, then α → γ in the game
arena if α⇒ γ by replacing X. If α = wX, i.e. X is the leftmost and only non-terminal, then
α→ γ if α⇒ γ by a left-derivation using a rule X → ηY having a rightmost non-terminal.
A (maximal) play of the game is a path in the game arena that is either infinite or ends in
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a deadlock, i.e. in a vertex that has no successor. We think of the moves originating from
vertices owned by � resp. © as chosen by prover resp. refuter.

The goal of refuter is to derive an infinite word outside Lω(A), we also say that refuter
plays a non-inclusion game. We define the infinite word derived by a play as the limit of the
sequence of terminal prefixes. Given a sentential form α = wXβ ∈ ϑ, we define its terminal
prefix to be w ∈ T ∗. An infinite play p = α0, α1, . . . of the game induces an infinite sequence
of such prefixes w0 = prefix(α0), w1 = prefix(α1), . . ., where each wj itself is a prefix of wj+1.
Assume the words in the sequence of prefixes grow unboundedly, i.e. for any i ∈ N, there is j
such that |wj | > i. The limit of the prefixes of p is the infinite word lim prefix(p) defined by(

lim prefix(p)
)
i

= (wj)i, where wj with |wj | > i is an arbitrary terminal prefix.
An infinite play p is winning with respect to the non-inclusion winning condition if

(1) the prefixes of the positions in p grow unboundedly, and (2) lim prefix(p) 6∈ Lω(A), and
(3) positions of shape wX occur infinitely often in p. Otherwise p is winning with respect
to the inclusion winning condition. This is in particular the case if p is finite but maximal.
Condition (1) enforces that lim prefix(p) is a well-defined infinite word. Condition (3)
guarantees that it stems from a right-infinite derivation process.

Our goal is to develop an algorithm that, given a grammar and a Büchi automaton,
decides whether refuter can win non-inclusion from the initial position S. Our overall strategy,
following [29], is to reduce the problem to a finite parity game. The observation behind
our reduction is the following. Each play that wins non-inclusion contains infinitely many
positions of shape wX. We can therefore split the play into infinitely many parts of finite
length, each starting with a position of shape wX. In a first step, we compute for every X a
description of all plays from X to sentential forms of the shape uY . In a second step, we
combine the information on the finite parts into a finite parity game.

Lifting the characterization of finite plays computed in the first step to the infinite plays
under study is non-trivial. Our approach is to determinize the given non-deterministic Büchi
automaton into a deterministic parity automaton. A deterministic parity automaton (DPA)
is a tuple (Q,T, qinit ,→,Ω), where Q is a finite set of states, qinit ∈ Q is the initial state,
and → : Q× T → Q is the transition function. Rather than final states, Ω : Q→ N assigns a
priority i ∈ N to each state. We extend the transition function to words and augment it by
the highest occurring priority: We write q w→i q

′ if processing w starting in q leads to state
q′ and the highest priority of q, q′, and any intermediary state is i. The language Lω(AP)
consists of all words w ∈ Tω such that the highest priority occurring infinitely often on the
states in the run of AP on w is even.

Non-deterministic Büchi automata can be converted to deterministic Rabin automata [23],
which in turn can be transformed to deterministic parity automata, see e.g. [21].

I Theorem 11 ([23, 21]). For an NBA A with n states, one can construct a DPA AP with
at most 2O(n logn) states and maximal priority ≤ 2n+ 2 so that Lω(A) = Lω(AP).

From now on, we will work with the computed DPA AP = (Q,T, qinit ,→,Ω).

4.1 From Context-Free Games to Formulas
Our goal is to employ the characterization of inclusion games over finite words developed
in [16]. Semantically, the characterization is given as a positive Boolean formula over a finite
set of atomic propositions. The formula captures the tree of all plays starting in a non-
terminal by interpreting refuter positions as disjunctions, prover positions as conjunctions,
and terminal words as atomic propositions. Algorithmically, the formulas for all non-terminals
are computed as the least solution to a system of equations.
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In the current setting, (1) we have to track the priorities obtained when processing a
terminal word and (2) we are given a deterministic rather than a non-deterministic automaton.
To reflect (1), we will consider as atomic propositions pairs (p, i) consisting of a state p ∈ Q
and a priority i ∈ Ω(Q). Using (2), we define a system of equations with variables ∆qX

for each state q ∈ Q and each non-terminal X ∈ N . Intuitively, in the formula for ∆qX

atomic propositions (p, i) represent terminal words w such that X ⇒∗ w and q w→i p. In the
following, we define the domain and then set up the system of equations.

Let pBF(Q × Ω(Q)) be the set of positive Boolean formulas over atomic propositions
consisting of a state and a priority. We will assume that the unsatisfiable formula false is
also contained in pBF(Q×Ω(Q)). Conjunction ∧ and disjunction ∨ are defined as usual. To
simplify the technical development, we evaluate operations involving false on a syntactical
level by using the rules F ∨ false = false ∨ F = F and F ∧ false = false ∧ F = false.

Assume F represents the plays from state q and non-terminal X, and for each state q′
the formula Gq′ represents the plays from q′ and Y . To obtain the formula representing the
plays from q and the sentential form XY , we can combine F and the family (Gq′)q′∈Q: A
play from XY to a terminal word can be decomposed into a play from XY to wY , and a
play from wY to wv. The first part has the same structure as a play from X to w, and the
second part is essentially a play from Y to v with w prepended. We think of each atomic
proposition (p, i) in F as describing the behavior of a word w, i.e. q w→i p. We obtain the
formula imitating this behavior for XY by replacing each atomic proposition (p, i) in F by
the formula Gp that describes the effect of Y from p on. To reflect that the highest priority
seen while processing wv is the maximum of the priorities seen while processing w and v, we
will have to modify the priorities occurring in Gp.

We formalize the above discussion in the definitions of the composition operator ; on
formulas and the operator : that composes one formula with a family of formulas. Here and
in the rest of the paper, we assume that F, F ′, G,G′ ∈ pBF(Q × Ω(Q)) are formulas, and
(Gq)q∈Q and (Hq)q∈Q are families of formulas. Furthermore, (p, i), (p′, i′) ∈ Q × Ω(Q) are
atomic propositions and ∗ ∈ {∧,∨}:

(F ∗ F ′) : (Gq)q∈Q = F : (Gq)q∈Q ∗ F ′ : (Gq)q∈Q (p, i) : (Gq)q∈Q = (p, i);Gp
(p, i); (G ∗G′) = (p, i);G ∗ (p, i);G′ (p, i); (p′, i′) = (p′,max{i, i′}) .

Also here, we handle false on a syntactic level by defining F ; false = false;G = false and
false : (Gq)q∈Q = false. The case (F ∗ F ′); (p, i) does not occur.

We will also need to represent the terminal symbols and ε. Given a state q and a ∈ T , qa
is the formula formed by the atomic proposition (p, i), where q a→i p and i = max{Ω(q),Ω(p)}.
To handle ε, we define qε to be (q, 0). One might expect the second component to be Ω(q),
but setting it to 0 makes the case εω (which is not an infinite word) simpler.

To guarantee that a system of equations interpreted over pBF(Q× Ω(Q)) has a unique
least solution, we need a partial order on the domain. It has to have a least element and the
operations have to be monotonic. Since we deal with Boolean formulas, implication ⇒ is the
obvious choice for the order. Unfortunately, it is not antisymmetric, which we will tackle in
a moment. The least element is false. Monotonicity is the following lemma.

I Lemma 12. The compositions ; and : are monotonic: If F ⇒ F ′, G⇒ G′, and for each
q ∈ Q, Gq ⇒ G′q, then F ;G⇒ F ′;G′ and F : (Gq)q∈Q ⇒ F ′ : (G′q)q∈Q.

For the solution to be computable, we have to operate on a finite domain. Since we deal with
formulas ordered by implication, we can factor them by logical equivalence. This yields a
finite domain and takes care of the missing antisymmetry. The order and all operations will be
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adapted to the domain pBF(QAP ×P )/⇔ by applying them to arbitrary representatives. This
makes ⇒ a partial order on the equivalence classes, and all other operations are well-defined
since they were monotonic with respect to implication.

We are now ready to define the system of equations induced by G and AP . To simplify
the notation, we will define ∆qa = qa for a ∈ T ·∪{ε}. We extend this to sentential forms
by using composition: ∆qαβ = ∆qα : (∆pβ)p∈Q. The following lemma states that this is
well-defined and not dependent on the splitting of αβ.

I Lemma 13. The composition of families is associative in the following sense:(
F : (Gq)q∈Q

)
: (Hp)p∈Q = F :

(
Gq : (Hp)p∈Q

)
q∈Q

.

For each non-terminal X ∈ and each state q ∈ Q, we have one defining equation

∆qX =
{∧

X→η ∆qη , X ∈ N� ,∨
X→η ∆qη , X ∈ N© .

The resulting system of equations is solved by a standard fixed-point iteration, starting
with the equivalence class of false for each component. We define σqX to be the value of
∆qX in the least solution, and we extend this to sentential forms as above: σqa = qa for
a ∈ T ·∪{ε}, σqαβ = σqα : (σpβ)p∈Q. To show that the formula σqα indeed describes the
behavior of all finite plays from α, we construct strategies that are guided by the formula.

Strategies. We fix for each equivalence class of formulas σqα a representative in conjunctive
normal form (CNF). (We prove that the development is independent from the choice of the
representative.) The conjunctions correspond to the choices of prover during the play. The
choices of refuter correspond to selecting one atomic proposition per clause. We formalize
the selection process using the notion of choice functions. A choice function on a formula F
is a function c : F → Q× Ω(Q) selecting an atomic proposition from each clause, c(K) ∈ K
for all K ∈ F . We show that there is a strategy for refuter to derive at least one terminal
word having one of the chosen effects on the automaton. In particular, the strategy will only
generate finite plays.

I Proposition 14. (1) Let K be a clause of σqα. There is a strategy sK for prover such that
all maximal plays starting in α that conform to sK are either infinite or end in a terminal
word w such that q w→i q

′ and (q′, i) ∈ K. (2) Let c be a choice function on σqα. There is a
strategy sc for refuter such that all maximal plays starting in α that conform to sc end in a
terminal word w with q w→i q

′ and (q, i) ∈ c(σqα).

The proof of Part (2) is a deterministic version of the analogue result in [16]. Since we do
not have to guarantee termination of the play, Part (1) it is simpler.

Towards Infinite Games. The solution of the system of equations characterizes for each
non-terminal X the terminal words w that can be derived from X. For the infinite game, we
have to characterize the sentential forms wY that can be derived from X. Since there may
be several different non-terminals Y such that a sentential form wY is reachable from X, we
store the target non-terminal in the atomic propositions. For F ∈ pBF(Q × Ω(Q)) and a
non-terminal Y , we define F.Y to be the formula in pBF(Q×Ω(Q)×N) that is obtained by
adding Y as a third component in every atomic proposition. With ∗ ∈ {∨,∧}, we set

(F ∗ F ′).Y = F.Y ∗ F ′.Y , (q, i).Y = (q, i, Y ) .
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For each non-terminal X, we collect all rules X → ηY with a non-terminal Y as their
rightmost symbol. We represent the behavior of η by the previously computed formulas σqη
and attach Y as described above. The resulting formulas are combined using disjunction or
conjunction, depending on the owner of X. Given a non-terminal X and a state q ∈ Q, we
define the extended solution for qX to be

σeqX =
{∧

X→ηY σqη.Y, X ∈ N�,∨
X→ηY σqη.Y, X ∈ N©,

If no rule of the shape X → ηY exists, the formula is false. The latter is to model that
prover wins in this case, independently of who owns X.

I Proposition 15. (1) Let K be a clause of σeqX . There is a strategy seK for prover such
that all maximal plays starting in X that conform to seK are either infinite without visiting a
sentential form of shape wY , or they visit a sentential form of shape wY such that q w→i q

′

and (q′, i, Y ) ∈ K. (2) Let c be a choice function on σeqX . There is a strategy sec for refuter
such that all maximal plays starting in X that conform to sec visit a sentential form of shape
wY such that q w→i q

′ and (q, i, Y ) ∈ c(σeqX).

4.2 From Formulas to a Parity Game

It remains to combine the formulas for finite plays to obtain a characterization of the infinite
plays. We model the infinite plays as an infinite sequence of alternations: First, prover
chooses a clause from the formula for X, which fixes her strategy for the following finite
part. Second, refuter chooses an atomic proposition from the selected clause, which fixes
the derived sentential form wY . Instead of storing the (unboundedly growing) prefixes w
explicitly, we only store the target non-terminal, the state transition of AP while processing
w, and the highest priority occurring during the transition. Modeling the game like this
leads to a parity game on a finite graph.

A parity game P = (V = V� ·∪V©, E,Ω) is a directed graph with an ownership partitioning
of the vertices and a function Ω : V → N that assigns to each vertex a priority. We will
assume that the parity game is deadlock-free. A maximal play is an infinite path in the
graph. It is won by player � if the highest priority occurring infinitely often on the vertices
in the play is even; won by player © otherwise.

I Theorem 16 (Positional Determinacy of Parity Games, [30]). Given a parity game P,
there is a decomposition of the vertices V = W� ·∪W© and there are positional strategies
s� : V� → V , s© : V© → V such that s� is winning from all positions in W� and s© is
winning from all positions in W©.

IDefinition 17. The parity game PG,AP induced by the context-free grammarG and the DPA
AP is (V = V� ·∪V©, E,Ω). The vertices V� = {qX | q ∈ Q,X ∈ N} represent the formulas.
They are owned by prover because prover is allowed to pick a clause. The vertices of refuter
V© = V clause

© ·∪V helper
© are of two types. Since refuter should select an atomic proposition,

she owns the vertices V clause
© =

{
qXK

∣∣ q ∈ Q,X ∈ N,K ∈ σeqX} representing the clauses.
The helper vertices V helper

© =
{

(qXK, i, pY )
∣∣ q ∈ Q,X ∈ N,K ∈ σeqX , (p, i, Y ) ∈ K

}
will be

used to keep track of the priority that is seen while processing the terminal prefix w that is
created by going from X to wY . The edges connect non-terminals to clauses, and clauses to
the next formula via the helper vertices:
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E =
{

(qX, qXK)
∣∣ q ∈ Q,X ∈ N,K ∈ σeqX}

·∪
{

(qXK, (qXK, i, pY )), ((qXK, i, pY ), pY )
∣∣ q ∈ Q,X ∈ N,K ∈ σeqX , (p, i, Y ) ∈ K

}
·∪
{

(qXK, qXK)
∣∣ q ∈ Q,X ∈ N,K ∈ σeqX ,K = ∅

}
.

The last part takes care of the empty clause which occurs iff the formula is equivalent to
false. The priority function is zero but on the helper vertices, where it returns the priority
given by the selected atomic proposition: Ω(qX) = Ω(qXK) = 0, Ω((qXK, i, pY )) = i.

We are now able to state the correspondence between the ω-context-free game of interest
and the constructed parity game.

I Theorem 18 (Determinacy of ω-Context-Free Games). Prover resp. refuter has a winning
strategy for the ω-regular inclusion game from S iff she wins the parity game from q0S.

Proof Sketch. Using Theorem 16 on the positional determinacy of parity games, exactly
one of the players wins the parity game from q0S, and she has a positional winning strategy.
We use this positional winning strategy to construct a winning strategy for the ω-context-free
game. To this end, we establish a correspondence between the play of the parity game and
the run of AP on an infinite word derived in the ω-context-free grammar by following the
play. The key idea is that a winning strategy for the parity game for prover resp. refuter
fixes clauses resp. choice functions. Using these clauses resp. choice functions, we can apply
Proposition 15 to obtain a strategy for the finite part of the ω-context-free game that is
played until the next sentential form represented in the parity game (by a vertex) is found.
We make this precise in Section C.2. J

4.3 Complexity
We show that deciding whether refuter has a winning strategy for ω-regular non-inclusion
from position S is a 2EXPTIME-complete problem. Moreover, the algorithm presented in
this section achieves this optimal time complexity.

Our proof of the lower bound works by showing that the case of finite inclusion games can
be seen a special case of the problem under consideration here. Solving finite context-free
games has been shown to be a 2EXPTIME-complete problem in [20].

I Theorem 19. Solving ω-context-free games is 2EXPTIME-hard.

We summarize the algorithm outlined in this section: (1) Construct the deterministic parity
automaton AP . (2) Construct and solve the system of equations. (3) Extend the solution
σ to obtain σe. (4) Construct the finite parity game PG. (5) Check which player wins PG
from q0S.

I Theorem 20. Given an ω-context-free game and an initial position, the algorithm outlined
above decides which player wins in time O

(
22|Q|

c1
· 2|G|c2

)
for some constants c1, c2 ∈ N.
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A Details on Section 2

One direction of the proof of Proposition 2 is immediate. We prove it in the form of the
following proposition.

I Proposition 21. Let L ⊆ Tω be a ω-context-free language. Then there is a CFG G such
that L = Lω(G).

Proof. We may assume

L =
⋃

i=1,...,n
ViU

ω
i

and there are CFGs

GVi = (NVi , T, PVi , SVi), GUi = (NUi , T, PUi , SUi),

with Vi = L(GVi) and Ui = L(GUi) for all i such that all sets of non-terminals are
pairwise disjoint. We construct a new grammar G = (N,Σ, P, S) with N = {S} ∪·
{Ri | i = 1, ...,m} ∪·

⋃
· i=1,...,nNUi ∪·

⋃
· i=1,...,nNVi and P = {S → SViRi | i = 1, ...,m} ∪·

{Ri → SUiRi | i = 1, ...,m} ∪·
⋃
· i=1,...,nPUi ∪·

⋃
· i=1,...,nPVi . L = Lω(G) is easy to see. J

Intermediary Infiniteness. A grammar is supposed to generate the infinite computations
of a recursive program, and a rule X → aY Z should be understood as procedure X executing
action a, calling procedure Y , and after Y has returned continuing with procedure Z. Our
restriction to the right-infinite derivations allows procedure Z to run forever, but for Y we
only consider finite executions. The reader may argue that we should also consider the infinite
executions of Y . Interestingly, our restriction to the right-infinite derivations increases the
expressiveness of the language class compared to a definition that closes the ω-language under
intermediary infiniteness. The alternative definition yields a subclass of the ω-context-free
languages as one can always add shortened rules to a given grammar that reflect intermediary
infiniteness. In the example, one would just have to add the rule X → aY to also reflect the
fact that the program may do its infinite computation without returning from procedure Y .
To see that the inclusion is strict, consider the language L = (anibni)ω with ni ∈ N for all i.
The language containing L would also contain aω 6∈ L.

Proof of Lemma 4. For non-terminals A,B ∈ N and a set M ⊆ N of non-terminals, we
define P(A,B)M to be the set of all finite paths from A to B in the ω-graph such that all
occurring intermediary vertices are in M . We show that the corresponding language

L
(
P(A,B)M

)
=

⋃
P∈P(A,B)M

L(p)

is context-free by induction on the size of M . This proves that
⋃
p∈P(X,Y ) L(p) is context-free

since P(X,Y ) = P(X,Y )N .
Case M = ∅: All paths in P(A,B)∅ have length at most one. If A = B, the corresponding
language contains ε and all elements of the context-free languages L(α) for all self-loops
(A,α,A). If A 6= B, the corresponding language contains all elements of the context-free
languages L(α) for all edges (A,α,B). Since there are only finitely many of those edges,
and context-free languages are closed under finite unions, the language corresponding to
P(A,B)∅ is context-free.
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Case M 6= ∅: Let us first consider the special case of cycles (i.e. A = B) and A ∈M . Any
cycle in which A occurs as intermediary vertex can be decomposed into several cycles, such
that A does not occur as intermediary vertex in any of those. We can use this to obtain the
representation

L
(
P(A,A)M

)
=
(
∪c∈P(A,A)M\{A}L(c)

)∗
= L

(
P(A,A)M\{A}

)∗
which is context-free by induction and since context-free languages are closed under Kleene-
iteration.

In the general case, any path p from A to B has either no repeating intermediary vertex,
i.e. it is simple, or there is an intermediary vertex C occurring several times. In the latter
case, it can be decomposed,

p = pAC cC pCB

where pAC is a path from A to C, pC a cycle in C, and a pCB a path from C to B. We can
assume that C does not occur as intermediary vertex in pAC and pCB , and as before, we can
decompose cC = c1c2 . . . ck into finitely many cycles such that C does not occur in any of
them as intermediary vertex.

Altogether, we retrieve the representation( ⋃
p∈P(A,B)M
p simple

L(p)
)
∪

( ⋃
C∈N

L
(
P(A,C)M

′)
L
(
P(C,C)M

′)∗
L
(
P(C,B)M

′))

where M ′ = M \ {C}.
The first part is context-free since there are only finitely many simple paths. The second

part is a finite union of concatenations of context-free languages (by induction and closure
under Kleene-iteration). Altogether, this shows that L

(
P(A,B)M

)
is context-free. J

B Details on Section 3

Proof of Lemma 7. For the proof of σX = ρL(X), we refer to the proof of Lemma 3 in [17].
It remains to prove σX,Y = ρL(P(X,Y )) = {ρw | w ∈ L(p), p ∈ P(X,Y )}. Assume there is

a word in w ∈ L(p), p ∈ P(X,Y ). Let p = α0 . . . αk be a decomposition of the path into its
edges. By plugging in the inequalities into each other along the path, one can see that

σX,Y ≥ σα0 ; ...;σαk ; {id} = σα0 ; ...;σαk .

We can write w = w0...wm such that for each i, wi ∈ L(αi). By the first part of the Lemma,
we have σαi = {ρw | w ∈ L(αi)} for each i, in particular ρwi in σαi . By the definition of the
composition of sets of boxes and the above inequality, we then also have ρw ∈ σX,Y .

Assume there is a box ρ in σX,Y . We prove using induction that all boxes in σX,Y j have
corresponding words in L(P(X,Y )), where σj is the intermediary solution after the jth-step
of Kleene iteration. Since σX,Y = σX,Y

j0 for some j0, this proves the claim. If the ρ entered
the solution in the first iteration we have ρ = id and we are done.

If it entered the solution in step j > 0, then there is some edge (X,α,Z) in the ω-graph
such that ρ ∈ σα;σZ,Y j−1, where σj−1 is the solution after the (j − 1)th iteration. There
are boxes τ1 ∈ σα, τ2 ∈ σZ,Y

j−1 such that ρ = τ1; τ2. By the first part of the theorem,
there is a word w1 such that w1 ∈ L(α) with ρw1 = τ1. By induction, there is a word w2
such that w2 ∈ L(P(Z, Y )) with ρw2 = τ2. Then w = w1w2 is a word in L(P(X,Y )) with
ρw = ρw1 ; ρw2 = τ1; τ2 = ρ. J
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Proof of Lemma 9. Note that if ρ = id, then τρω = ∅.
Assume (τ, ρ) is a lasso, then there is an edge (q0, q, x) ∈ τ , a path p from q to some q′ in

ρ and a loop c from q′ to q′ in ρ such that at least one edge on the loop is labeled by one.
Let k be the length of p and let m be the length of c.

Assume w ∈ L(τ)L(ρ)ω, then there is a decomposition w = w(0)w(1) . . . with τ = ρw(0)

and ρ = ρw(1) = ρw(i) for all i > 0. Then the following sequence can be refined to a run by
inserting intermediary states:

q0
w(0)

→ q
w(1)...w(1+k)

−−−−−−−−→ q′
w(1+k+1)...w(1+k+c)

−−−−−−−−−−−−−→ q′
w(1+k+c+1)...w(1+k+2·c)

−−−−−−−−−−−−−−−→ . . .

Since at least one edge occurring in the loop is labeled by 1, one can refine the sequence to
an accepting run that visits infinitely many final states. This shows w ∈ Lω(A).

Let us now assume w ∈ L(τ)L(ρ)ω, w ∈ Lω(A), i.e. there is an accepting run of w on A.
Let w = w(0)w(1)... with τ = ρw(0) and ρ = ρw(1) = ρw(i) for all i > 0. We fix an arbitrary
accepting run of A on w. Let q(i) be the state of A in this run after processing w(i) for each i.
We define q = q(0) and q′ to be the first state which occurs infinitely often in the sequence of
the q(i). Let p be the path from q(0) to q′ in ρ. There has to be an occurrence of q′, say q(j),
such that there is a final state between the first occurrence of q′ and q(j). This proves that ρ
contains a loop c from and to q′ in which at least one edge is labeled by 1. The membership
of the words in the languages of the boxes guarantees the existence of p and c. The transition
(q0, q

(0), ∗) ∈ τ , the path p and the loop c prove that (τ, ρ) is a lasso. J

Proof of Theorem 10. For the implication from right to left, we show that whenever the
inclusion fails, there is a non-terminal X, a box τ ∈ σS,X , and a box ρ ∈ σX,X such that
(τ, ρ) is no lasso. Consider the word w ∈ Lω(G) \ Lω(A). By definition of Lω(G), there is a
decomposition

w = w(0)w(1)w(2)...

and an infinite sequence of rules

S → α0X1, X1 → α1X2, . . .

so that w(j) ∈ L(αj) for all j. Let X be a non-terminal which occurs infinitely often in the
sequence of the Xi. Such an X exists as there are only finitely many non-terminals. We
create a new decomposition

w = v(0)v(1)v(2)...

such that in the sequence of rules above, v(0) takes us from S to X for the first time, and
each v(j) for j > 0 takes us from X to X.

To this decomposition, we apply Ramsey’s theorem which states the following. Every
(undirected) infinite complete graph that has a finite edge coloring contains an infinite
complete monochromatic subgraph. For the application, define the labeled complete graph
to have vertex set N and coloring (for all edges {i, j} with i < j):

c({i, j}) = ρvi ; ρvi+1 ; ...; ρvj−1

Ramsey’s theorem yields an infinite complete subgraph such that all edges have the same
color. Let S = {s0, s1, ...} be the vertex set of this subgraph, with s0 < s1 < . . . This vertex
set yields a new decomposition of the word:

w = u(0)u(1)u(2)...
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with

u(0) = v(0)v(1)...v(s0−1) and u(i) = v(si)v(si+1)...v(si+1−1) for all i > 0 .

Word u(0) takes us from S to X and all other u(i) take us from X to X. We define τ = ρu(0)

and ρ = ρu(1) . Note that since all edges have the same color, we have ρ = ρu(i) for all i > 0.
By construction, τ ∈ σS,X and ρ ∈ σX,X . Since w 6∈ Lω(A), we know that (τ, ρ) is no

lasso by Lemma 9.

For the implication from left to right, assume the inclusion holds, but there are τ ∈ σS,X
and ρ ∈ σX,X that do not form a lasso. By Lemma 7, all boxes in σX,Y have non-empty
equivalence classes. We also know that ρ 6= id, since otherwise we would have considered the
pair a lasso by definition. Hence, there is an infinite word w ∈ L(τ)L(ρ)ω. By Lemma 7 and
3, this word is also in Lω(G). But by Lemma 9 and Lemma 5, w 6∈ Lω(A), which contradicts
the assumption that the inclusion holds. J

C Details on Section 4

C.1 Details on Subsection 4.1

Proof of Lemma 12. We prove the part about : . The proof for the monotonicity of ; is
analogous. The proof proceeds in phases (1) to (3) so that the claim in each phase is proven
under the assumption of the claim proven in the previous phase. Let {∗, ∗̄} = {∧,∨}. In the
following, we will use ∗ and ∗̄ as syntactic parts of formulas as well as to connect statements
in the proof.

(1) First, we prove the lemma for the case when F, F ′ ∈ Q×P . In this case, F = F ′ = (p, i)
and thus F : (Gq)q∈Q = (p, i);Gp = F ′ : (G′q)q∈Q.

(2) Next, we assume that F ′ ∈ Q × Ω(Q) and F is an arbitrary formula. We prove the
statement by induction on F .
Base case: F ∈ Q× Ω(Q), hence (1) proves the statement.
Induction step: Let F = F1 ∗ F2. Note that the Boolean formulas (a ∗ b) ⇒ c

and (a ⇒ c) ∗̄ (b ⇒ c) are equivalent, called Equivalence (i) in the following. By
the Equivalence (i), we get (F1 ⇒ F ′) ∗̄ (F2 ⇒ F ′). Therefore, by the induction
hypothesis, (F1 : (Gq)q∈Q ⇒ F ′ : (G′q)q∈Q) ∗̄ (F2 : (Gq)q∈Q ⇒ F ′ : (G′q)q∈Q). This is by
(i) equivalent to (F1 : (Gq)q∈Q ∗ F2 : (Gq)q∈Q)⇒ F ′ : (G′q)q∈Q . By the definition of :,
this shows F : (Gq)q∈Q ⇒ F ′ : (G′q)q∈Q.

(3) We assume that both F, F ′ are arbitrary formulas. We prove the statement using
induction on the structure of F ′.
Base case: F ′ ∈ Q× Ω(Q), hence the statement is proven by (2).
Induction step: Let F ′ = F ′1 ∗ F ′2. By the general equivalence of the Boolean formulas
a ⇒ (b ∗ c) and (a ⇒ b) ∗ (a ⇒ c), called Equivalence (ii) in the following, we get
(F ⇒ F ′1) ∗ (F ⇒ F ′2). Therefore, by the induction hypothesis, (F : (Gq)q∈Q ⇒ F ′1 :
(G′q)q∈Q) ∗ (F : (Gq)q∈Q ⇒ F ′2 : (G′q)q∈Q) holds. Again by (ii), we get F : (Gq)q∈Q ⇒
(F ′1 : (G′q)q∈Q ∗ F ′2 : (G′q)q∈Q). This is F : (Gq)q∈Q ⇒ F ′ : (G′q)q∈Q by definition. J

Proof of Lemma 13. The proof proceeds in phases (1) to (3) so that the claim in each phase
is proven under the assumption of the claim proven in the previous phase.
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(1) We first show that ((q′, i); (q, j)) : (Hp)p∈Q = (q′, i); ((q, j) : (Hp)p∈Q).
To this end, note that:

((q′, i); (q, j)) : (Hp)p∈Q = (q,max(i, j));Hq ,

(q′, i); ((q, j) : (Hp)p∈Q) = (q′, i); ((q, j);Hq) .

We use structural induction on Hq to prove this equality.
Base case: Let Hq = (p, k). Then we have

(q,max(i, j));Hq

= (q,max(i, j)); (p, k)
= (p,max(i, j, k))
= (q′, i); (p,max(j, k))
= (q′, i); ((q, j); (p, k))
= (q′, i); ((q, j);Hq) .

Induction step: Let Hq = H1 ∗H2, with ∗ ∈ {∨,∧}. Thus,

(q,max(i, j)); (H1 ∗H2)
= (q,max(i, j));H1 ∗ (q,max(i, j));H2
IH= (q′, i); ((q, j);H1) ∗ (q′, i); ((q, j);H2)
= (q′, i); ((q, j);H1 ∗ (q, j);H2)
= (q′, i); (q, j)(H1 ∗H2) .

(2) We show that ((q′, i) : (Gq)q∈Q) : (Hp)p∈Q = (q′, i) : (Gq : (Hp)p∈Q)q∈Q. Note that

((q′, i) : (Gq)q∈Q) : (Hp)p∈Q = ((q′, i);Gq′) : (Hp)p∈Q ,

(q′, i) : ((Gq)q∈Q : (Hp)p∈Q) = (q′, i); (Gq′ : (Hp)p∈Q) .

We proceed by structural induction on Gq′ .
Base case: Gq′ = (q, j) holds and thus (1) proves the claim.
Induction step: Assume Gq = G1 ∗G2 for ∗ ∈ {∨,∧}. Then we can derive that

((q′, i); (G1 ∗G2)) : (Hp)p∈Q
= ((q′, i);G1 ∗ (q′, i);G2)) : (Hp)p∈Q
= ((q′, i);G1) : (Hp)p∈Q ∗ ((q′, i);G2)) : (Hp)p∈Q
IH= (q′, i); (G1 : (Hp)p∈Q) ∗ (q′, i); (G2 : (Hp)p∈Q)
= (q′, i); (G1 : (Hp)p∈Q ∗G2 : (Hp)p∈Q)
= (q′, i); ((G1 ∗G2) : (Hp)p∈Q) .

(3) Let now (Gq)q∈Q and (Hq)q∈Q be arbitrary families. We prove the statement by induction
on the structure of F .
Base case: F = (q′, i) ∈ Q× Ω(Q) and (2) proves the statement.
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Induction step: Assume F = F1 ∗ F2 for ∗ ∈ {∨,∧}. Then, we have

(F : (Gq)q∈Q) : (Hp)p∈Q
= ((F1 ∗ F2) : (Gq)q∈Q) : (Hp)p∈Q
= (F1 : (Gq)q∈Q ∗ F2 : (Gq)q∈Q) : (Hp)p∈Q
= (F1 : (Gq)q∈Q) : (Hp)p∈Q ∗ (F2 : (Gq)q∈Q) : (Hp)p∈Q
IH=F1 : ((Gq)q∈Q : (Hp)p∈Q) ∗ F2 : ((Gq)q∈Q : (Hp)p∈Q)
= (F1 ∗ F2) : ((Gq)q∈Q : (Hp)p∈Q)
= F : ((Gq)q∈Q : (Hp)p∈Q), which proves the claim.

J

Conjunctive Normal Form. A formula in CNF is a conjunction of clauses, each clause being
a disjunction of atomic propositions. We use set notation and write clauses as sets of atomic
propositions and formulas as sets of clauses. Identify true = {} and false = {{}}.

Since our formulas are negation-free, implication has a simple characterization.

I Lemma 22. F ⇒ G if and only if there is j : G→ F so that j(H) ⊆ H for all H ∈ G.

Proof. The implication from right to left is immediate. Assume F ⇒ G but there is no
map j as required. Then there is some clause H ∈ G so that for every clause C ∈ F we
find a variable xC ∈ C with xC /∈ H. Consider the assignment ν(xC) = true for all xC and
ν(y) = false for the remaining variables. Then ν(F ) = true. At the same time, ν(G) = false
as ν(H) = false. This contradicts the assumption F ⇒ G, which means ν(F ) = true implies
ν(G) = true for every assignment ν. J

Disjunctions and compositions can be transformed to CNF by applying distributivity.

I Lemma 23.

(1) F ∨G⇔ {K ∪H | K ∈ F,H ∈ G}, (2) F ∧G⇔ F ∪G ,

(3) F : (Gq)q∈Q ⇔
⋃
K∈F

⋃
z:K→∪q∈QGq
(q,i) 7→H∈Gq

{ ⋃
(p,j)∈K

(p, j); z((p, j))
}

Proof. (1) is immediate, (2) follows from applying distributivity. We show (3) by structural
induction on F .
Base case: Let F = (q, i). Then

(q, i) : (Gq)q∈Q
= (q, i);Gq
= {(q, i);K|K ∈ Gq}

=
⋃

z:{(q,i)}→Gq
(q,i)7→H∈Gq

{(q, i); z(q, i)} .
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Induction step:
We need to distinguish two cases. First assume F = F1 ∧ F2. Then we have

(F1 ∧ F2) : (Gq)q∈Q
= (F1 : (Gq)q∈Q) ∧ (F2 : (Gq)q∈Q)

(∗)=
( ⋃
K1∈F1

⋃
z1:K1→∪q∈QGq

(q,i) 7→H∈Gq

 ⋃
(p,j)∈K1

(p, j); z1((p, j))


)

∪
( ⋃
K2∈F2

⋃
z2:K2→∪q∈QGq

(q,i)7→H∈Gq

 ⋃
(p,j)∈K2

(p, j); z2((p, j))


)
.

In step (∗), we used the induction hypothesis and part (2) of the Lemma. We define a
function

z : K → ∪q∈QGq, (q, i) 7→
{
z1(q, i), if K ∈ F1

z2(q, i), else.

Using this definition, we can rewrite the last line of the equation to

⋃
K∈F1∪F2

⋃
z:K→∪q∈QGq
(q,i)7→H∈Gq

 ⋃
(p,j)∈K

(p, j); z((p, j))

 ,

which proves the claim.
Assume now F = F1 ∨ F2. Then,

(F1 ∨ F2) : (Gq)q∈Q
= (F1 : (Gq)q∈Q) ∨ (F2 : (Gq)q∈Q)
(∗)= {K ∪K ′|K ∈ S1,K

′ ∈ S2}, with

S1 =
⋃

K1∈F1

⋃
z1:K1→∪q∈QGq

(q,i)7→H∈Gq

 ⋃
(p,j)∈K1

(p, j); z1((p, j))


S2 =

⋃
K2∈F2

⋃
z2:K2→∪q∈QGq

(q,i)7→H∈Gq

 ⋃
(p,j)∈K2

(p, j); z2((p, j))

 .

Therefore,

{K ∪K ′|K ∈ S1,K
′ ∈ S2}

=
⋃

K1∈F1

⋃
K2∈F2

⋃
z1:K1→∪q∈QGq

(q,i)7→H∈Gq

⋃
z2:K2→∪q∈QGq

(q,i) 7→H∈Gq ⋃
(p,j)∈K1

(p, j); z1((p, j))

 ∪
 ⋃

(p,j)∈K2

(p, j); z2((p, j))
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Using z as defined above, we can rewrite this as

⋃
K1∪K2

K1∈F1,K2∈F2

⋃
z:K1∪K2→∪q∈QGq

(q,i) 7→H∈Gq

 ⋃
(p,j)∈K1∪K2

(p, j); z((p, j))

 ,

which proves the claim. J

Towards a proof of the first part of Proposition 14, we prove the following Lemma.

I Lemma 24. Let K be a clause of σqα for α = wXβ.
(1) If X ∈ N�, there is X → η and a clause K ′ of σqwηβ such that K ′ ⊆ K.
(2) If X ∈ N©, for all X → η there is a clause K ′ of σqwηβ such that K ′ ⊆ K.

Proof. Let q w→i p, i.e. p is the unique state in which AP is after processing w from q. Let
F = σqwXβ . We assume that X → η1, . . . , X → ηk are rules with X as their left-hand side,
and let Fηi = σqwηiβ .

(1) By Lemma 23 (3) and associativity (Lemma 13), clause K of F is given by a clause
(p, i); K̂ of σqwX and a function z mapping this clause to

⋃
q′∈Q σq′β . Since X ∈ N�, we

have σpX =
∧
X→ηj σpηj . In particular, the clause K̂ is already a clause in σpηj for some

ηj , and (p, i); K̂ is a clause of σqwηj . Consequently, K is also a clause of Fqηj = σqwηjβ .
We may choose the rule X → ηj and K ′ = K.

(2) By Lemma 23 (3) and associativity (Lemma 13), clause K of F is given by a clause
(p, i); K̂ of σqwX and a function z mapping this clause to

⋃
q′∈Q σq′β . Since X ∈ N©, we

have σpX =
∨
X→ηj σpηj . In particular, K̂ = K1 ∪ . . .∪Kk, where Kj is a clause of σpηj .

Let X → ηj be some arbitrary move. Note that (p, i);Kj is a clause of σqwηj , and
(p, i);Kj ⊆ (p, i); K̂. Consider the clause K ′ of Fηj = σqwηjβ defined by (p, i);Kj and
the map z restricted to (p, i);Kj . Note that K =

⋃
(q′,i′)∈(p,i);K̂(q′, i′); z(q′, i′) and

K ′ =
⋃

(q′,i′)∈(p,i);Kj (q
′, i′); z�(p,i);Kj

(q′, i′) =
⋃

(q′,i′)∈(p,i);Kj (q
′, i′); z(q′, i′), so K ′ ⊆ K

holds. J

Proof of Proposition 14 (1). We consider the strategy sK that keeps track of a clause K
of the current formula. Initially, this clause is K ∈ σqα. Whenever refuter makes a move
X → η, we track the clause K ′ of the formula of the new position as in Lemma 24 (2).
Whenever it is our turn, we choose a rule X → η and the clause K ′ of the formula of the
new position as in Lemma 24 (1). Note that since K ′ ⊆ K in the Lemma, along a play
α, α(1), α(2), . . . that is conform to the strategy, we obtain a chain of clauses

K ⊇ K(1) ⊇ K(2) ⊇ . . . .

In case the play is infinite, it has the desired property anyway. If it ends in a terminal word
w, note that the formula σqw is the singleton formula σqw = {{(p, i)}}, where q w→i p. Since
we keep track of a clause of each occurring formula, the clause has to be {(p, i)}. The clauses
of the chain form a descending chain, so we have {(p, i)} ⊆ K, and therefore (p, i) ∈ K. J

The following development aims to prove the second part of Proposition 14. It is mostly
analogous to the development in [16], but some modifications have to be made since we
consider the states of a deterministic parity automaton (plus priorities) instead of boxes for
a non-deterministic automaton as atomic propositions.

The strategy sc for a choice-function c is more involved, since we have to guarantee
termination. To describe how far a sentential form is away from being a terminal word, we
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use Kleene approximants. Define a sequence of levels lvl associated to a sentential form α to
be a sequence of natural numbers of the same length. The formula σlvl

qα corresponding to α
and lvl is defined by σiqa = {{qa}} for all a ∈ T ∪ {ε}, σiqX the solution to qX from the ith

Kleene iteration, and σlvl.lvl′
α.β = σlvl

qα : (σlvl′
qβ )q∈Q.

A choice function for q, α and lvl is a choice function on σlvl
qα. Note that σiqa is independent

of i for terminals qa. Moreover, there is an i0 so that σi0qX = σqX for all non-terminals X.
This means a choice function on σqα can be understood as a choice function on σi0qα. Here,
we use a single number i0 to represent a sequence lvl = i0 . . . i0 of the appropriate length.

By definition, σ0
qX is false for all non-terminals, and false propagates through composition

by definition. We combine this observation with the fact that choice functions do not exist
on formulas that are equivalent to false, because they contain an empty clause.

I Lemma 25. If there is a choice function for q, α and lvl, then lvl does not assign zero to
any non-terminal X in α.

The Lemma has an important consequence. Consider a sentential form α with an associated
sequence lvl ∈ 0∗ and a choice function c for q, α and lvl. Then α has to be a terminal word,
α = w ∈ T ∗, σlvl

qα = {{(p, i)}}, where q w→i p, and the choice function has to select (p, i). In
particular, w itself forms a maximal play from w on, and indeed the play ends in a word
whose effect is contained in the image of the choice function.

Consider now α = wXβ and lvl an associated sequence of levels. Assume lvl assigns a
positive value to all non-terminals. Let j be the position of X in α and let i = lvlj be the
corresponding entry of lvl. We split lvl = lvl ′.`.lvl ′′ into the prefix for w, the entry ` for X,
and the suffix for β. For each rule X → η, we define lvlη = lvl ′.(`− 1) . . . (`− 1).lvl ′′ to be
the sequence associated to wηβ. It coincides with lvl on w and β and has entry `− 1 for all
symbols in η. Note that for a terminal word, the formula is independent of the associated
level, so we have σlvl′.`

qwX = σ`qwX and σlvl′.(`−1)...(`−1)
qwη = σ`−1

qwη.
Given a choice function c on a CNF-formula F , a choice function c′ on G refines c if

{c′(H) | H ∈ G} ⊆ {c(K) | K ∈ F}, denoted by c′(G) ⊆ c(F ). Given equivalent formulas, a
choice function on the one can be refined to a choice function on the other formula. Hence,
we can deal with representative formulas in the following proofs.

I Lemma 26. Consider F ⇒ G. For any choice function c on F , there is a choice function
c′ on G that refines it.

Proof. By Lemma 22, any clause H of G embeds a clause j(H) of F . We can define c′(H)
as c(j(H)) to get a choice function with c′(G) ⊆ c(F ). J

We show that we can (1) always refine a choice function c on σlvl
qα along the moves of prover

and (2) whenever it is refuter’s turn, pick a specific move to refine c.

I Lemma 27. Let c be a choice function for q, α = wXβ and lvl.
(1) If X ∈ N�, for all X → η there is a choice function cη for q, wηβ and lvlη that refines c.
(2) If X ∈ N©, there is X → η and a choice function cη for q, wηβ and lvlη that refines c.

Proof. Let q w→i p, i.e. p is the unique state in which AP is after processing w from q. Let
F = σlvl

qwXβ , and for each rule X → η, let Fη = σ
lvlη
qηβ .

(1) By Lemma 23 (3) and associativity (Lemma 13), the clauses of F are given by a clause
(p, i);K of σlvl′.`

qwX = σ`qwX and a function mapping the atomic propositions in this clause
to
⋃
q′∈Q σ

lvl′′
q′β . Similarly, the clauses of Fη are given by a clause of σ`−1

qwη and a mapping
from the atomic propositions to

⋃
q′∈Q σ

lvl′′
q′β . We have σ`pX =

∧
X→η σ

`−1
pη . Since the
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conjunction corresponds to a union of the clause sets, Lemma 23 (1), every clause of
σ`−1
qwη is already a clause of σ`qwX . Hence, the clauses of Fη form a subset of the clauses

of F . Since c selects an atomic proposition from every clause of F , we can define the
refinement cη on Fη by restricting c.

(2) We show that there is a rule X → η and a choice function cη on σlvlη
qwηβ refining c. Towards

a contradiction, assume this is not the case. Then for each rule X → η, there is at least
one clause K ′′η of σlvlη

qwηβ that does not contain an atomic proposition in the image of c.
By Lemma 23 (3) and associativity (Lemma 13), K ′′η is defined by a clause (p, i);K ′η of
σ`−1
wη and a function zη mapping the atomic propositions from this clause to

⋃
q′∈Q σ

lvl′′
q′β .

We have σ`pX =
∨
X→η σ

`−1
pη . A clause of σ`qwX is thus, Lemma 23 (2), of the form

K = (p, i); (
⋃
X→η

Kη) =
⋃
X→η

(p, i);Kη ,

where each Kη is a clause of σ`−1
pη . We construct the clause K ′ = (p, i); (

⋃
X→ηK

′
η) of

σ`qwX using the K ′η from above. On this clause, we define the map z′ =
⋃
X→η zη that

takes an atomic proposition (p, i); (q′, i) ∈ (p, i);K ′η and returns zη
(
(p, i); (q′, i)

)
. (If an

atomic proposition (p, i); (q′, i) is contained in (p, i);K ′η for several η, pick an arbitrary η
among those.) By Lemma 23 (3), K ′ and z′ define a clause of σlvl

qα. The choice function
c selects an atomic proposition (p, i); (q′, i′); (q′′, i′′) out of this clause, where there is
a rule X → η such that (q′, i′) ∈ K ′η and (q′′, i′′) ∈ z′

(
(p, i); (q′, i′)

)
= zη

(
(p, i); (q′, i′)

)
.

This atomic proposition is also contained in K ′′η , a contradiction to the assumption that
no atomic proposition from K ′′η is in the image of c. J

Notice that the sequence lvlη is smaller than lvl in the following ordering ≺ on N∗. Given
v, w ∈ N∗, we define v ≺ w if there are decompositions v = xyz and w = xiz so that i > 0 is
a positive number and y ∈ N∗ is a sequence of numbers that are all strictly smaller than i.
Note that requiring i to be positive will prevent the sequence xz from being smaller than
x0z, since we are not allowed to replace zeros by ε.

The next lemma states that ≺ is well founded. Consequently, the number of derivations
wXβ ⇒ wηβ following the strategy that refines an initial choice function will be finite.

I Lemma 28. ≺ on N∗ is well founded with minimal elements 0∗.

Proof. Note that any element of N∗ containing a non-zero entry is certainly not minimal,
since we can obtain a smaller element by replacing any non-zero entry by ε. Any element of
the form 0∗ is minimal, since there is no i as required by the definition of ≺.

Assume v0 � v1 � . . . is an infinite descending chain. Let b be the maximal entry of v0,
i.e. b = maxj=1,...,|v0| v0, and note that no vl with l ∈ N can contain an entry larger than b
by the definition of ≺. Therefore, we may map each vl to its Parikh image ψ(vl) ∈ Nb+1, the
vector such that ψ(vl)j (for j ∈ {0, . . . , b}) is the number of entries equal to j in vl.

Now note that we have ψ(vi) > ψ(vi+1) with respect to the lexicographic ordering on
Nb+1. Hence, the chain ψ(v0) > ψ(v1) > . . . is an infinite descending chain, which cannot
exist since the lexicographic ordering is known to be well-founded. J

We have now gathered the ingredients to prove the second part of the Proposition.

Proof of Proposition 14 (2). We show the following stronger claim: Given any triple con-
sisting of a sentential form α, an associated sequence of levels lvl, and a choice function c for
α and lvl, there is a strategy sc such that all maximal plays conform to it and starting in
α end in a terminal word w with (p, i) ∈ {c(K) | K ∈ σqα}, where q

w→i p. This proves the
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proposition by choosing α and c as given and lvl = i0...i0, where i0 ∈ N is a number such
that σ = σi0 .

To show the claim, note that ≺ on N∗ is well founded and the minimal elements are exactly
0∗ by Lemma 28, and lvlη ≺ lvl. This means we can combine Lemma 25 and Lemma 27 (for
the step case) into a Noetherian induction. The latter lemma does not state that lvlη assigns
a positive value to each non-terminal, which was a requirement on lvl. This follows from
Lemma 25 and the fact that cη is a choice function. The strategy sc for refuter always selects
the rule that affords a refinement of the initial choice function c. J

Proof of Proposition 15. We prove both parts of the Proposition by handling the first step
X → ηY , and then using Proposition 14.

To simplify the notation in this proof, we assume that for each η that occurs in a rule
X → ηY , the corresponding non-terminal Y is unique.

(1) We need to distinguish two cases.
Case X ∈ N�: Note that σeqX =

∧
X→ηY σqη.Y . A clause of σeqX is of the shape K ′.Y ,

where K ′ is a clause of some σqη with X → ηY . If we play according to sK′ , the strategy
constructed for η and K ′ in Proposition 14 (1), from ηY on, we either end up in an
infinite play that does not visit a sentential form of shape wY , or we end up in wY , with
(p, i) ∈ K ′, where q w→i p. Consequently, we have (p, i, Y ) ∈ K ′.Y .
This means we can define seK by picking the rule X → ηY , and then playing according
to sK′ .
Case X ∈ N©: Note that σeqX =

∨
X→ηY σqη.Y . A clause of σeqX is of the shape

(p, i);K ′.Y , where K ′ =
⋃
X→ηY Kη and Kη is a clause of σqη for each rule X → ηY .

Assume prover picks a rule X → ηY . Then we play according to the strategy sKη , the
strategy constructed for η and Kη in Proposition 14 (1), from ηY on. We either end up
in an infinite play that does not visit a sentential form of shape wY , or we end up in
wvY , with (pη, iη) ∈ Kη, where q

w→iη pη. Consequently, we have (pη, iη, Y ) ∈ Kη.Y .
(2) We again distinguish two cases, depending on who owns X.

Case X ∈ N�: Note that σeqX =
∧
X→ηY σqη.Y . A clause of σeqX is of the shape

Kη.Y , where Kη is a clause of some ση. If prover picks a rule X → η, we can re-
strict the choice function c to σqη.Y . The restricted choice function on σqη.Y in turn
induces a choice function cη on σqη by ignoring the Y -component. Then we play ac-
cording to scη , the strategy constructed for η and cη in Proposition 14 (2), from ηY .
We end up in wY , with (pη, iη) ∈ cη(σqη), where q w→iη pη. Consequently, we have
(pη, iη, Y ) ∈ c(σqwη.Y ) ⊆ c(σqwX .Y ).
Case X ∈ N©: We claim that there is a move X → ηY such that the given choice
function induces a choice function cη on σqη that is refining c, i.e. for each (p, i) ∈ cη(σqη),
there is (p, i, Y ) ∈ c(σeX). Assume this is not the case, then for each move X → ηY

for every clause Kη of σqη, there is no (pη, iη) ∈ Kη such that that (pη, iη, Y ) ∈ c(σeqX).
Consider K =

⋃
X→ηY Kη. Note that since σeqX =

∨
X→ηY σqη.Y , K.Y is a clause of

σeqX . Therefore, the choice function c selects an atomic proposition (pη, iη, Y ) from it.
By the definition of K, there is a rule X → ηY such that (pη, iη) ∈ Kη, a contradiction
to the assumption.
Altogether, there is a move X → ηY such that c induces a refinement cη on σqη. If we
play according to scη , the strategy constructed for η and cη in Proposition 14 (2), from
ηY , we end up in wY , with (pη, iη) ∈ cη(σqη), where q w→iη pη. Consequently, we have
(pη, iη, Y ) ∈ c(σeqX). J



26 Liveness Verification and Synthesis: New Algorithms for Recursive Programs

C.2 Details on Subsection 4.2

I Lemma 29. Let w be an infinite word, w = w(0)w(1) . . . a decomposition into finite words,
i(0), i(1), . . . a sequence of priorities and q0 = q(0), q(1), . . . a sequence of states such that
q(0) w(0)

→ i(0) q(1) w(1)

→ i(1) . . .. Word w is accepted by AP if and only if the highest priority
occurring infinitely often among the i(j) is even.

Proof. Since AP is deterministic, there is a unique run of AP on w, and it can be seen as a
refinement of the sequence q(0) w

(0)

→ i(0) q(1) w
(1)

→ i(1) . . .. In particular, the highest priority i
occurring infinitely often in the run is the highest priority occurring infinitely often among
the i(j). Assume this would not be the case. Let j0 such that after q(j0), no state of priority
> i occurs any more. No larger priority can occur while processing each w(j) for j > j0,
so i occurs infinitely often among the i(j) for j > j0, and no larger priority occurs at all.
Together with the definition of the parity acceptance condition, this proves the claim. J

I Lemma 30. If © has a winning strategy for the parity game from q0S, then she has a
winning strategy for the grammar game from S.

Proof. Let s© be the positional winning strategy for the parity game from q0S. Since q0S is
owned by �, each successor of q0S has to be in the winning region, i.e. each vertex q0SK

corresponding to a clause K of σeq0S
. Since those vertices are owned by © and in her winning

region, the strategy s© selects a two-step successor pX (we ignore the intermediary helper
vertex) that is also in her winning region. Let us consider the choice function c that selects
the corresponding element (p,X, i) in each clause K. By Proposition 15 (2), there is a
strategy for the grammar game that leads to a position wX after finitely many steps, where
q0

w→i p.
This position in the grammar game corresponds to the position pX in the parity game,

which is in refuter’s winning region. We iterate this process to obtain both, an infinite play
of the grammar game that visits positions of the shape w′Y infinitely often, and a play of
the parity game. Note that the play of the parity game is conforming to a winning strategy,
and is therefore winning.

We need to argue that the word generated by the infinite play of the grammar game is
infinite and not in Lω(A). The only case where the word is not infinite is that ε is the only
word generated infinitely often as v when going from a position w′Y to w′vY ′. Note that by
the definition of the functions qε in the system of equations, the intermediary helper vertex
(qY K, i, pY ′) corresponding to the generation of ε has priority i = 0. All vertices of type qY
and qY K have priority 0 as well, so 0 would be the highest priority occurring infinitely often
in the parity game, which means that the play of the parity game is not winning for ©. This
is a contradiction, since the play was conform to a winning strategy for ©.

This establishes that the word generated by the play is indeed infinite. Note that
the word is wplay = w(0)w(1) . . ., where each w(j) is the finite word generated when going
from wY to ww(j)Y ′. To argue wplay 6∈ Lω(A), we show that the unique run of AP on
wplay is not accepting. The run of the parity game visits infinitely many positions of type
(qXK, i, pY ), since the self-loops that handle empty clauses do not occur in a play won by
refuter. Actually, the positions of this shape occurring in the play form an infinite sequence
(q(j)X(j)K(j), i(j), q(j+1)X(j+1)). Note that q0 = q(0) w

(0)

→ i(0) q(1) w
(1)

→ i(1) . . . forms a sequence
as in Lemma 29, and since the play was won by refuter, the largest i(j) occurring infinitely
often has to be odd, so wplay 6∈ Lω(A). J
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I Lemma 31. If � has a winning strategy for the parity game form q0S, then she has a
winning strategy for the grammar game from S.

Proof. Let s� be the positional winning strategy for the parity game from q0S. Let q0SK be
the successor vertex selected by s�. Since s� is a winning strategy, q0SK is in the winning
region. Note that K is a clause of σeq0S

.
By Proposition 15 (1), there is a strategy sK for the grammar game that either leads to

an infinite play that does not visit a position of the shape wX, or to a position wX after
finitely many steps, where (q, i,X) ∈ K and q0

w→i q. In the first case, the resulting play of
the grammar game is won by prover by definition. In the second case, note that q0SK has a
corresponding two-step successor qX. Since q0SK was in the winning region of prover, but
owned by refuter, all its successors have to be in the winning region. In particular, qX is
in the winning region of prover (and the deterministic step to the helper vertex does not
matter).

We iterate this process to obtain both a play of the grammar game and a play of the
parity game, where the play of the parity game is conforming to a winning strategy, and is
therefore winning. As mentioned above, the play is trivially won by prover if we do not see
infinitely many positions of the shape wX. (In particular, this occurs if any of the clauses
K selected by s� is empty. In this case, the corresponding play of the parity game takes
the self-loop in the vertex for the clause.) Furthermore, plays that deadlock and plays that
generate only a finite word (because ε is the only word generated infinitely often) are also
won by prover.

Let us assume that the play of the grammar game is infinite, generates an infinite word
wplay and visits positions of shape wX infinitely often. Note that wplay = w(0)w(1) . . .,
where each w(j) is the finite word generated when going from wY to ww(j)Y ′. To argue
wplay ∈ Lω(A), we show that the unique run of AP on wplay is accepting. The run of the
parity game visits infinitely many positions of type (qXK, i, pY ), since plays of the parity
game that involve self-loops that handle empty clauses correspond to plays of the grammar
gane that do not see positions of the shape wX infinitely often. Actually, the helper vertex
occurring in the play form an infinite sequence (q(j)X(j)K(j), i(j), q(j+1)X(j+1)). Note that
q0 = q(0) w

(0)

→ i(0) q(1) w
(1)

→ i(1) . . . forms a sequence as in Lemma 29, and since the play was won
by prover, the largest i(j) occurring infinitely often has to be even, so wplay ∈ Lω(A). J

C.3 Details on Subsection 4.3
Proof of Theorem 19. Given a context-free game G,A, we construct Gω and Aω as follows:
We add a new symbol # to the terminal symbols. To obtain Gω, we add a new initial symbol
Sω and a rule Sω → SHω, where S is the initial symbol of G, and Hω is another fresh symbol
that has a rule Hω → #Hω. To obtain Aω, we add a new state qω, and for each transition
that goes to a final state, we add a transition with the same input symbol to qω. We add a
loop qω

#→ qω, and we make qω the only final state of Aω.
Note that Lω(Gω) = L(G)#ω, and Lω(A) = L(A)#ω.
Refuter wins the ω-regular non-inclusion game with respect to Gω, Aω from Sω if and

only if she wins the (finite) non-inclusion game G,A from S. Since the size of Gω resp.
Aω is polynomial in the size of G resp. A, and solving (finite) non-inclusion games is
2EXPTIME-hard by [16], this proves the claim. J

Proof of Theorem 20. We analyze (1) the time needed to construct the deterministic par-
ity automaton, (2) the number of iterations needed for the fixed point-iteration, (3) the
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time consumption per iteration, (4) the time for extending the solution, (5) the time the
construction of the parity game, and (6) the time needed to solve the parity game.

Steps (2) and (3) are analogous to the proof of the corresponding result in [16].
Here, Q is the set of states of the Büchi automaton A.

(1) As stated by Theorem 11, given a NBA with |W | states, one can construct a deterministic
parity automaton AP with m = |Q| = 2O(|Q|·log |Q|) ≤ 2|Q|cqpa many states and maximal
priority 2 · |Q| + 2 ≤ |Q|cprio for some cqpa, cprio ∈ N. The state set of this automaton
consists of the Safra-trees for A, and it can be constructed in singly exponential time
2|Q|cdet for some cdet ∈ N.

(2) The length of any chain of strict implications of formulas over a set of k atomic propositions
is at most 2k. To prove this, note that modulo logical equivalence, a formula is uniquely
characterized by the set of assignments such that the formula evaluates to true. Strict
implication between two formulas implies strict inclusion between the sets. The statement
follows since there are at most 2k different truth assignments. We can use this to obtain
that the number of iterations is bounded by |N | ·m ·2k, since the sequence of intermediary
solutions is a chain in the product domain, and the height of the product domain is the
height of the base domain multiplied by the number of components, i.e. 2k times the
number of variables |N | ·m.
Each atomic proposition consists of a state in Q and a priority in {0, . . . , 2|Q|+ 2}, i.e.
k = m · (2|Q|+ 2) ≤ 2|Q|cqpa · |Q|cprio ≤ 2|Q|catom . Altogether, the iteration needs

|N | ·m · 2k ≤ |N | · 2|Q|
cqpa · 22|Q|

catom
≤ |N | · 22|Q|

citr

many steps for some citr ∈ N.
(3) Let k ≤ 2|Q|catom be again the number of atomic propositions. Every clause has at most

size k and there are 2k different clauses, so every formula has size at most k · 2k ≤
2|Q|catom · 22|Q|

catom
≤ 22|Q|

cform
for some cform ∈ N.

Computing the operations used during the iteration according to Lemma 23 is polynomial
in the size of the formulas. For disjunction and conjunction, this is clear. For composition,
we need to iterate over the at most 2k clauses and over the at most

(m · 2k)k ≤
(

2|Q|
cqpa · 22|Q|

catom )2|Q|
catom

=
(

2|Q|
cqpa
)2|Q|

catom

·
(

22|Q|
catom )2|Q|

catom

= 2|Q|
cqpa ·2|Q|catom

· 22|Q|
catom 2|Q|

catom
≤ 22|Q|

cfct

functions mapping atomic propositions to clauses, for some cfct ∈ N. Each clause K and
function z determines a clause of the composition. To obtain its atomic proposition,
we need to iterate over the at most k atomic propositions (p, i) of K and compute
(p, i); z(p, i). To do this, we need to iterate over the at most k atomic propositions (q, j)
of z(p, i) and compute (p, i); (q, j). Overall, to compute the relational composition of
two formulas, we need

2k · 22|Q|
cfct
· k · k · (2|Q|

cqpa · |Q|cprio) ≤ 22|Q|
ccomp

steps, for some constant ccomp ∈ N.
Per iteration, we need to carry out at most m · |G| conjunctions, disjunctions and
relational compositions. Per grammar rule, we need to compute at most one conjunction
or disjunction, depending on the owner of the non-terminal. For each symbol on the
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right-hand side of a grammar rule, we need to compute at most one relational composition.
Overall, for one iteration, we need at most

m · |G| ·
((

22|Q|
cform

)c∧
+
(

22|Q|
cform

)c∨
+ 22|Q|

ccomp
)
≤ |G| · 22|Q|

cperitr

for some constants c∧, c∨, cperitr ∈ N. Here, 22|Q|
ccomp

is the cost of computing the
relational composition earlier, and

(
22|Q|

cform )c∧
and

(
22|Q|

cform )c∨
are rough estimations

for computing conjunction and disjunction.
(4) If we extend the solution of the equation system, we need compute the disjunction or

conjunction over at most |G| many finite solutions for each non-terminal X and each
state q ∈ Q. Consequently, we need up to

|N | · 2|Q|
cqpa · |G| ·

((
22|Q|

cform
)c∧

+
(

22|Q|
cform

)c∨)
≤ |G| · 22|Q|

ce

many steps for some constant ce ∈ N.
(5) The parity game has m · |N | many vertices owned by prover. Furthermore, we have

m · |N | · 2k′ many vertices for the clauses owned by refuter, where k′ = m · (2|Q|+ 2) · |N |
is the number of atomic propositions in the extended equation system. Additionally,
there are up to m · |N | · 2k′ · k′ many helper vertices also owned by refuter. The number
of edges is polynomial in the number of vertices, and the highest occurring priority is
again 2|Q|+ 2. Altogether, the size of the parity game is at most

m · |N |+m · |N | · 2k
′
+m · |N | · 2k

′
· k′ ≤ 22|Q|

cQparity
· 2|N |

cNparity

for some constants cQparity , cNparity ∈ N. Furthermore, the parity game can be constructed
in a time that is polynomial in its size. If we choose the constants to be sufficiently high,
the constructing the parity game is possible within the same bound.

(6) In general, solving parity games is in NP ∩ coNP, so we would not expect to have a
deterministic 2EXPTIME-algorithm that solves our parity game of doubly-exponential
size.
Fortunately, the number of nodes by prover is only singly exponential, namely
m · |N | ≤ 2|Q|cqpa · |N |. By Theorem 16, prover wins the parity game if and only if
she has a positional winning strategy s�. A positional strategy is a function that takes a
vertex pX and returns one of the 2k′ -many clauses of σepX . Therefore, there are only up
to

(2k
′
)2|Q|

cqpa ·|N | ≤ 22|Q|
cqpa ·(2|Q|+2)·|N |·2|Q|

cqpa ·|N | ≤ 22|Q|
cQstrat

· 2|N |
cNstrat

many such strategies, for some constants cQstrat , cNstrat ∈ N.
After some strategy is fixed, checking whether it is winning is polynomial in the size
of the game. We drop all edges originating in vertices owned by prover that were not
selected by the winning strategy. In the resulting graph, we need to check whether refuter
can win. In this case, the strategy would not be winning. To do this, we have to check
whether there is a vertex v reachable from the initial vertex q0S such that there is a
cycle from/to v such that the highest priority occurring on an edges in the cycle is odd.
If we choose the constants cQstrat , cNstrat to be sufficiently large, one can iterate over all
strategies and check whether they are winning in 22|Q|

cQstrat
· 2|N |

cNstrat many steps.
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Altogether we need

2|Q|
cdet +

(
|N | · 22|Q|

citr )
·
(
|G| · 22|Q|

cperitr )
+ |G| · 22|Q|

ce

+ 22|Q|
cQparity

· 2|N |
cNparity + 22|Q|

cQstrat
· 2|N |

cNstrat ≤ 22|Q|
c1
· 2|G|

c2

many steps for some constants c1, c2 ∈ N. Here, we used the rough estimation |N | ≤ |G|. J
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